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Abstract. We explore expression automata with respect to determin-
ism, minimization and primeness. We define determinism of expression
automata using prefix-freeness. This approach is, to some extent, simi-
lar to that of Giammarresi and Montalbano’s definition of deterministic
generalized automata. We prove that deterministic expression automata
languages are a proper subfamily of the regular languages. We define the
minimization of deterministic expression automata. Lastly, we discuss
prime prefix-free regular languages.

Note that we have omitted almost all proofs in this preliminary ver-
sion.

1 Introduction

Recently, there has been a resurgence of interest in finite-state automata that
allow more complex transition labels. In particular, Giammarresi and Montal-
bano [4] have studied generalized automata (introduced by Eilenberg [3]) with
respect to determinism. Generalized automata have strings (or blocks) as tran-
sition labels rather than merely characters or the null string. (They have also
been called string or lazy automata.) Generalized automata allow us to more
easily construct an automaton in many cases. For example, given the reserved
words for C++ programs, construct a finite-state automaton that discovers all
reserved words that appear in a specific C++ program or program segment. The
use of generalized automata makes this task much simpler.

It is well known that generalized automata have the same expressive power
as traditional finite-state automata. Indeed, we can transform any generalized
automaton into a traditional finite-state automaton using state expansion.
Giammarresi and Montalbano, however, took a different approach by defining
deterministic generalized automata (DGAs) directly in terms of a local
property which we introduce in Section 4.

Our goal is to re-examine the notion of expression automata; that is,
finite-state automata whose transition labels are regular expressions over the
input alphabet. We define deterministic expression automata (DEAs) by
extending the applicability of prefix-freeness.

We first define traditional finite-state automata and generalized automata
and their deterministic counterparts in Section 2 and formally define expression
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automata in Section 3. In section 4, we define determinism based on prefix-
freeness and investigate the relationship between deterministic expression au-
tomata and prefix-free regular languages. Then we consider minimization of de-
terministic expression automata, in Section 5, and introduce prime prefix-free
regular languages in Section 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ, where the elements of Σ∗ are called strings or blocks. We call an element
of Σ a character and an element of Σ∗ a string. A language over Σ is a subset
of Σ∗. The character ∅ denotes the empty language and the character λ denotes
the null string.

Given two strings x and y in Σ∗, x is said to be a prefix of y if there is a
string w such that xw = y and we define x to be a proper prefix of y is x �= λ
and x �= y. Given a set X of strings over Σ, X is prefix-free if no string in X
is proper prefix of any other string in X.

A traditional finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F ),
where Q is a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a
(finite) set of transitions, s ∈ Q is the start state and F ⊆ Q is a set of final
states. A string x over Σ is accepted by A if there is a labeled path from s to a
state in F such that this path spells out the string x. Thus, the language L(A) of
a finite-state automaton A is the set of all strings that are spelled out by paths
from s to a final state in F . Automata that do not have any useless states;
that is states that do not appear on any path from the start state to some final
state are called trim or reduced [3, 9].

Eilenberg [3] introduced generalized automata, an extension of traditional
finite-state automata by allowing strings on the transitions. A generalized au-
tomaton A is specified by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ ⊆ Q×Σ∗×Q is a finite set of block transitions, s ∈ Q
is the start state and F ⊆ Q is a set of final states. Giammarresi and Mon-
talbano [4] define a deterministic generalized automaton using a local notion of
prefix-freeness. A generalized automaton A is deterministic if, for each state q
in A, the following two conditions hold:

1. The set of all blocks in out-transitions from q is prefix-free.
2. For any two out-transitions (q, x, p) and (q, y, r) from q, if x = y, then we

require that p = r.

Note that Giammarresi and Montalbano do not require condition 2 and, as
a result, some DGAs are nondeterministic.

Since regular languages L are sets of strings, we can apply the notion of
prefix-freeness to such sets.

Definition 1. A (regular) language L over an alphabet Σ is prefix-free if, for
all distinct strings x and y in L, x is not a prefix of y and y is not a prefix of
x. A regular expression α is prefix-free if L(α) is prefix-free.
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Lemma 1. A regular language L is prefix-free if and only if there is a trim
deterministic finite-state automaton (DFA) A for L that has no out-transitions
from any final state.

3 Expression Automata

It is well known that regular expressions and (deterministic) finite-state au-
tomata have exactly the same expressive power [6, 12]. A finite-state automaton
allows only a single character in a transition and a generalized automaton [3]
allows a single string, possibly the null string, in a transition. It is natural to
extend this notion to allow a regular expression in a transition, since a character
and a string are also regular expressions. This concept was first considered by
Brzozowski and McCluskey, Jr. [1].

Definition 2. An expression automaton A is specified by a tuple
(Q, Σ, δ, s, f), where Q is a finite set of states, Σ is an input alphabet, δ ⊆
Q×RΣ ×Q is a finite set of expression transitions, where RΣ is the set of all
regular expressions over Σ, s ∈ Q is the start state and f ∈ Q is the final state.
(Note that we need only have one final state.) We require that, for every pair p
and q of states, there is exactly one expression transition (p, α, q) in δ, where α
is a regular expression over Σ.

We can also use the functional notation δ:Q×Q→ RΣ that gives the equiv-
alent representation. An expression transition (p, α, q) gives δ(p, q) = α. Note
that δ contains exactly |Q|2 transitions, one transition for each pair of states,
and whenever (p, ∅, q) is in δ, for some p and q in Q, A cannot move from p to
q directly.

We generalize the notion of accepting transition sequences to accepting ex-
pression transition sequences and accepting language transition sequences.

Definition 3. An accepting expression transition sequence is a transition
sequence of the form:

(p0 = s, α1, p1) · · · (pm−1, αm, pm = f),

for some m ≥ 1, where s and f are the start and final states, respectively.
The second notion is an accepting language transition sequence of the

form:
(p0 = s, L(α1), p1) · · · (pm−1, L(αm), pm = f),

for some m ≥ 1, where s and f are the start and final states, respectively.

We include a proof sketch that every finite-state automaton can be converted
into an equivalent expression automaton and conversely.

Lemma 2. Every trim finite-state automaton can be converted into an equiva-
lent trim expression automaton. Therefore, every regular language is an expres-
sion automaton language.
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Fig. 1. An example of the state elimination of a state q

We next establish that we can convert every expression automaton A into an
equivalent finite-state automaton; that is combining the two results, expression
automata and finite-state automata have the same expressive power. We prove
this fact by constructing a regular expression α such that L(α) = L(A). A trim
expression automaton A = (Q, Σ, δ, s, f) is non-returning if δ(q, s) = ∅, for
all q ∈ Q. It is straightforward to show that any trim expression automaton A
can be converted into a trim non-returning expression automaton for the same
language L(A).

We define the state elimination of q ∈ Q \ {s, f} in A to be the bypassing
of state q, q’s in-transitions, q’s out-transitions and q’s self-looping transition
with equivalent expression transition sequences. For each in-transition (pi, αi, q),
1 ≤ i ≤ m, for some m ≥ 1, for each out-transition (q, γ, rj), 1 ≤ j ≤ n, for
some n ≥ 1, and for the self-looping transition (q, β, q) in δ, construct a new
transition (pi, αi ·β∗ · γj , rj). Since there is always an existing transition (p, ν, r)
in δ, for some expression ν, we merge two transitions to give the bypass transition
(p, (αi · β∗ · γj)+ν, r). We then remove q and all transitions into and out of q in
δ. We denote the resulting expression automaton by Aq = (Q \ {q}, Σ, δq, s, f)
after the state elimination of q. Thus, we have established the following state
elimination result:

Lemma 3. Let A = (Q, Σ, δ, s, f) be a trim and non-returning expression au-
tomaton with at least three states and q be a state in Q \ {s, f}. Define Aq =
(Q \ {q}, Σ, δq, s, f) to be a trim and non-returning expression automaton such
that, for all pairs p and r of states in Q \ {q},

δq(p, r) = δ(p, r) + (δ(p, q) · δ(q, q)∗ · δ(q, r)).

Then, L(Aq) = L(A) and Aq is trim and non-returning.

The elimination of a state q preserves all the labeled paths from q’s predeces-
sors to its successors. Therefore, state elimination does not change the language
accepted by the expression automaton A.

To complete the construction of an equivalent regular expression, we re-
peatedly eliminate one state at a time until Q = {s, f}. Thus, we are left
with a trim and non-returning expression automaton Ā, that has exactly two
states s and f . Note that δ(s, s) = ∅ and δ(f, s) = ∅ since Ā is trim and non-
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Fig. 2. An expression automaton for the regular language L(a(ab)∗(aa∗b+ab)) and its
state eliminations

returning. Thus, only the transitions δ(s, f) and δ(f, f) can be nontrivial. Hence,
L(Ā) = L(δ(s, f) · δ(f, f)∗) = L(A). We have established the following result:

Theorem 1. A language L is an expression automaton language if and only if
L is a regular language.

4 Deterministic Expression Automata

We now define deterministic expression automata (DEAs) and investigate
their properties. A traditional finite-state automaton is deterministic if, for
each state, the next state is uniquely determined by the current state and the
current input character [12].

For an expression automaton, the situation is not as simple. When processing
an input string with a given expression automaton and a given current state,
we need to determine not only the next state but also an appropriate prefix of
the remaining input string since each of the current state’s out-transitions is
labeled with a regular expression (or a regular language) instead of with a single
character.

An expression automaton is deterministic if and only if, for each state p of the
automaton, each two distinct out-transitions have disjoint regular languages and,
in addition, each regular language is prefix-free. For example, the out-transition
of the expression automaton in Figure 3(a) is not prefix-free, L(a∗) is not prefix-
free since ai is a prefix of aj , for all i and j such that 1 ≤ i ≤ j; hence, this
expression automaton is not deterministic. On the other hand, the expression
automaton in Figure 3(b) is deterministic since L(a∗b) is a prefix-free language.
We give a formal definition as following.

Definition 4. An expression automaton A = (Q, Σ, δ, s, f), where |Q| = m, is
deterministic if and only if the following three conditions hold:
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Fig. 3. a. Example of non-prefix-freeness. b. Example of prefix-freeness

1. Prefix-freeness: For each state q ∈ Q and for q’s out-transitions

(q, α1, q1), (q, α2, q2), . . . , (q, αm, qm),

L(α1) ∪ L(α2) ∪ · · · ∪ L(αm) is a prefix-free regular language.
2. Disjointness: For each state q ∈ Q and for all pairs of out-transitions αi

and αj, where i �= j and 1 ≤ i, j ≤ m,

L(αi) ∩ L(αj) = ∅.

3. Non-exiting: For all q ∈ Q, δ(f, q) = ∅.
We use the acronym DEA to denote deterministic expression automaton.

Lemma 4. If a trim DEA A = (Q, Σ, δ, s, f) has at least three states, then, for
any state q ∈ Q \ {s, f}, Aq is deterministic. However the converse does not
hold.

Proof. This result follows from Lemma 3 since the catenation of prefix-free lan-
guages is a prefix-free language.

Therefore, state elimination for a DEA preserves determinism.

Lemma 5. There exists a trim expression automaton A that is deterministic if
and only if L(A) is prefix-free.

Lemma 5 demonstrates that the regular languages accepted by DEAs are
prefix-free and conversely. Thus, DEA languages define a proper subfamily of
the regular languages.

Theorem 2. The family of prefix-free regular languages is closed under catena-
tion and intersection but not under union, complement or star.

These closure and nonclosure results can be proved straightforwardly.

5 Minimization of DEAs

It is natural to attempt to reduce the size of an automaton as much as possible to
save space. There are well-known algorithms to truly minimize DFAs [5, 8] in that
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they give unique (up to renaming of states) minimal DFAs. Recently, Giammar-
resi and Montalbano [4] suggested a minimization algorithm for deterministic
generalized automata (DGAs). The technique does not however result in a
unique minimal DGA. For a given DGA they introduce two operations in their
quest for a minimal DGA. The first operation identifies indistinguishable states
similar to minimization for DFAs and the second operation applies state elim-
ination to reduce the number of states in a DGA (at the expense of increasing
the label lengths of the transitions).

We define the minimization of a DEA as the transformation of a given DEA
into a DEA with a smaller number of states. Note that, for all DEAs, we can
construct an equivalent simple DEA, which consists of one start and one final
states with one transition between them, from any DEA using a sequence of
state eliminations.

Given a trim DEA A = (Q, Σ, δ, s, f), we define, for a state q ∈ Q, the
right language L−→q to be the set of strings defined by the trim DEA A−→q =
(Q′, Σ′, δ′, q, f), where Q′ ⊆ Q, Σ′ ⊆ Σ, δ′ ⊆ δ. Similarly we define the left
language L←−q defined by the trim DEA A←−q = (Q′, Σ′, δ′, s, q), where Q′ ⊆
Q, Σ′ ⊆ Σ, δ′ ⊆ δ.

We define two distinct states p and q to be indistinguishable if L−→p = L−→q .
We denote this indistinguishability by p ∼ q. Note that if p ∼ q, then there must
exist a pair of indistinguishable states in the following states in a DFA. However,
this property does not always hold for a DEA; see Fig. 4.

a∗b
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b

bcad

c

a

s

r

u v

f

Fig. 4. An example of indistinguishable states. Note that r and u are distinguishable
although p ∼ q

Based on the notion of the right language, we define a minimal DEA as
following.

Definition 5. A trim DEA A is minimal if all states A are distinguishable from
each other.

Thus, we minimize a DEA by merging indistinguishable states. We now ex-
plain how to merge two indistinguishable states p and q to give one state p,
say. The method is simple, we first remove state q and its out-transitions and



The Generalization of Generalized Automata: Expression Automata 163

e6

e5

e4

e3

e5 + e6

e1 + e2

e3 + e4

q

p

q

pe2

e1

Fig. 5. An example of the merging two indistinguishable states p and q. The dotted
lines show the removal of transitions

then redirect its in-transitions into state p. Once we have defined this micro-
operation, we can repeat it wherever and whenever we find two indistinguishable
states. Since there are only finitely many states, we can guarantee termination
and minimality.

Now we need to prove that the micro-operation on p ∼ q in A does not
change L(A). Observe that since L−→p = L−→q , we can remove state q and its
out-transitions and redirect q’s in-transitions to be in-transitions of p. Now, let
L←−p and L←−q be the left languages of p and q. Observe that redirecting q’s in-
transitions to be new in-transitions of p implies that the new left language of
p is now L←−p ∪ L←−q whereas before the redirection the left language of p and
q are L←−p and L←−q . Moreover, since L−→p = L−→q , once q is removed the right
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Fig. 6. Two different minimal DEAs for the DEA in Fig. 4
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language of p is unchanged. Finally, we catenate the two languages to obtain
(L←−p ∪L←−q ) ·L−→p = (L←−p ·L−→p )∪ (L←−q ·L−→p ) = (L←−p ·L−→p )∪ (L←−q ·L−→q ), before
the removal of q.

Note that, as with DGA, we cannot guarantee that we obtain a unique mini-
mum DEA from a given DEA. We can only guarantee that we obtain a minimal
DEA. For example, the automaton in Fig. 4 can be minimized in at least two
different ways. As shown in Fig. 6(a), we merge p into q and remove state r
which is now unreachable. In Fig. 6(b), we merge q into p and remove state
u which is unreachable. But the second state v from q has an in-transition
from s, which prevents v from being useless. The two minimizations result
in two different minimal expression automata that have the same numbers of
states.

6 Prime Prefix-Free Regular Languages

Assume that we have the regular expressions α1 = b∗a∗ and α2 = a∗b∗. Once
we catenate them however, α1 ·α2 = b∗a∗b∗ and we have only three stars, b∗, a∗

and b∗, instead of four stars. Prefix-freeness ensures that there is no such loss
as a result of catenation. Similarly, any infinite regular language, can be split
unboundedly often. For example, L(a∗) = L(a∗) · L(a∗) · L(a∗) · · ·L(a∗).

These two examples have led us to investigate whether an unbounded split
is possible for an infinite prefix-free regular language. There are some known
results on the prime decomposition of finite languages and decomposition of
regular languages [7, 10].

Definition 6. A prefix-free regular language L is prime if L �= L1 · L2 for any
two non-trivial prefix-free regular languages L1 and L2.

We say a state b in a DFA A is a bridge state if the following conditions
hold:

1. b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b at least once.

Then we partition A at b into two subautomata A1 and A2 such that all
out-transitions from b belong to A2 and make b to be the final state of A1 and
the start state of A2, respectively. It ensures that A1 defines a prefix-free regular
language.

Theorem 3. A prefix-free regular language L is a prime prefix-free regular lan-
guage if and only if there is no bridge state in the minimal DFA A for L.

Theorem 3 shows that a given prefix-free regular language L cannot be split
unboundedly often because its minimal DFA has a finite number of states.
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7 Conclusion

State elimination is a natural way to compute a regular expression from a given
automaton that results in an automaton that we call an expression automaton.
We have formally defined expression automata and DEAs based on the notion
of prefix-freeness. In addition, we have shown that DEA languages are prefix-
free regular languages and, therefore, they are a proper subfamily of regular
languages.

We have studied the minimization of DEA and demonstrated that minimiza-
tion is not unique in general. Since the regular expression equivalence problem
is PSPACE-complete [11], we believe that the complexity of minimization is at
least PSPACE-complete.
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