
Shorter Regular Expressions from Finite-State
Automata�

Yo-Sub Han and Derick Wood

Department of Computer Science,
The Hong Kong University of Science and Technology

{emmous, dwood}@cs.ust.hk

Abstract. We consider the use of state elimination to construct shorter
regular expressions from finite-state automata. Although state elimina-
tion is an intuitive method for computing regular expressions from finite-
state automata, the resulting regular expressions are often very long and
complicated. We examine the minimization of finite-state automata to
obtain shorter expressions first. Then, we introduce vertical chopping
based on bridge states and horizontal chopping based on the structural
properties of given finite-state automata. We prove that we should not
eliminate bridge states until we eliminate all non-bridge states to obtain
shorter regular expressions. In addition, we suggest heuristics for state
elimination that lead to shorter regular expressions based on vertical
chopping and horizontal chopping.

Note that we have omitted almost all proofs in this preliminary
version.

1 Introduction

It is well known that the family of languages defined by finite-state automata
(FAs) is the same as the family of languages described by regular expressions [1].
This result is proved by showing that we can construct FAs from regular expres-
sions and that we can compute regular expressions from FAs.

There are a number of FA constructions; for example, the Thompson construc-
tion [2], the position construction [3, 4] and the follow construction [5]. These
constructions are inductive and, therefore, preserve the structural properties of
regular expressions. For instance, the size of a Thompson automaton is bounded
by the size of a given regular expression [6] and the number of states in a position
automaton is the number of character appearances in the corresponding regular
expression plus one [7].

When converting FAs into regular expressions, we can use either linear equa-
tions [8] or state elimination [9]. We consider state elimination. State elimination
was already in use in the 1960’s, in particular by Brzozowski and McCluskey,
Jr. [9] and was carefully formulated by Wood [10]. The idea behind state elimina-
tion is simple. We keep removing states, except the start and the final states for
� The authors were supported under the Research Grants Council of Hong Kong Com-

petitive Earmarked Research Grant HKUST6197/01E.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 141–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 Y.-S. Han and D. Wood

a a

a

b ba

b

a
aa∗b

b a

b

a
aa∗b

ab

ab

a(ab)∗(aa∗b+ab)

Fig. 1. An example of state elimination. The dotted states are being removed.

a given FA, while maintaining the transition information of the automaton until
there are no more states to eliminate. We illustrate state elimination in Fig. 1.

In Section 2, we define some basic notions. In Section 3, we describe state
elimination and suggest two ways to obtain smaller finite-state automata. Then,
we introduce vertical chopping and horizontal chopping of a given FA in Sec-
tions 4 and 5. Furthermore, we show that we should not eliminate bridge states,
which are defined in Section 4, until we eliminate all non-bridge states to ob-
tain a shorter regular expression. Finally, we suggest some heuristics for state
elimination that lead to shorter regular expressions.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be
the number of states in Q and |δ| be the number of transitions in δ. Then, the
size of A is |A| = |Q| + |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and
a ∈ Σ, we say p has an out-transition and q has an in-transition. Furthermore,
p is a source state of q and q is a target state of p. A string x in Σ∗ is accepted
by A if there is a labeled path from s to a final state in F that spells out x. Thus,
the language L(A) of a finite-state automaton A is the set of all strings spelled
out by paths from s to a final state in F . We define A to be non-returning if
the start state of A does not have any in-transitions and A to be non-exiting if
a final state of A does not have any out-transitions. We assume that A has only

Shorter Regular Expressions from Finite-State Automata 143

useful states: that is, each state appears on some path from the start state to
some final state.

3 State Elimination

We define the state elimination of q ∈ Q \ {s, f} in A to be the bypassing
of state q, q’s in-transitions, q’s out-transitions and q’s self-looping transition
with equivalent expression transition sequences. For each in-transition (pi, αi, q),
1 ≤ i ≤ m, for some m ≥ 1, for each out-transition (q, γ, rj), 1 ≤ j ≤ n, for some
n ≥ 1, and for the self-looping transition (q, β, q) in δ, construct a new transition
(pi, αi · β∗ · γj , rj). If there exists transition (p, ν, r) in δ for some expression ν,
then we merge two transitions to give the bypass transition (p, (αi ·β∗ ·γj)+ν, r).
We then remove q and all transitions into and out of q in δ. We denote the
resulting automaton by Aq = (Q \ {q}, Σ, δq, s, F). State elimination maintains
the language accepted by a given automaton while removing states. Note that
we have regular expressions instead of single characters on a transition of Aq.
We say that a finite-state automaton with regular expressions on transitions is
an expression automaton (EA) [9, 11].

Given an FA A = (Q, Σ, δ, s, F) that is not non-returning and not non-exiting,
we transform A into a new FA A′ such that L(A′) = L(A) and A′ is non-returning
and non-exiting by introducing a new start state s′ and a new final state f ′ as
follows: A′ = (Q ∪ {s′, f ′}, Σ, δ ∪ {(s′, λ, s)} ∪ {(fi, λ, f ′) | fi ∈ F}, s′, f ′).

Lemma 1. Let A = (Q, Σ, δ, s, f) be a non-returning and non-exiting expression
automaton with at least three states and q be a state in Q\{s, f}. Then, L(Aq) =
L(A) and Aq is non-returning and non-exiting.

Once we eliminate all states in Q\{s, f} for A that is non-returning and non-
exiting, we obtain an expression automaton AQ\{s,f} = ({s, f}, Σ, (s, E, f), s, f),
where E is the corresponding regular expression for A.

One problem with state elimination is that it may increase the size of labels
on transitions exponentially while removing states for a given automaton. For
example in Fig. 2, if we remove q from the automaton A, then we have to
introduce O(mn) duplicate strings as new transition labels.

x1

xm

z1

zn

y

q
m,n⋃

i=1,j=1
xiy

∗zj

Fig. 2. An example of state elimination that produce many duplicate strings

144 Y.-S. Han and D. Wood

a a

a
c d

b

b d

p q r

Fig. 3. An example of different regular expressions by different removal sequences for
a given finite-state automaton. E1 = (aa + b)(a + cb)∗(cd + d) is the output of state
elimination in p → r → q order and E2 = (aa + b)a∗c(ba∗c)∗(ba∗d + d) + (aa + b)a∗d
is the output of state elimination in p → q → r order, where L(E1) = L(E2).

Another problem with state elimination is that different removal sequences
result in different regular expressions. Although we cannot always avoid expo-
nential blow-up, we can still obtain shorter regular expressions by choosing a
better removal sequence. Fig. 3 illustrates this idea.

Recently, Delgado and Morais [12] investigated heuristics for computing a
shorter regular expression from a given finite-state automaton A. They define
the weight of a state q in A. Given a transition t = (p, α, q), the weight of t is
the total number of character appearances in α. Then, the weight of a state q
in A, which we call state weight, is defined as the sum of in-transition weights +
the sum of out-transition weights + the loop weight. Then, they remove a state
that has the lightest weight based on state weight. Although this heuristic is
better than random selection, it is straightforward to give examples in which the
greedy choice does not lead to shorter regular expressions.

Assume that we have an algorithm to compute an optimal removal sequence
for a given automaton A. Then, if we have a smaller automaton A′ such that
L(A) = L(A′), then we can compute the optimal removal sequence more rapidly
and the removal sequence will lead to a shorter regular expression.

We define two states p and q in an FA A = (Q, Σ, δ, s, F) to be equivalent if
the following conditions hold: 1) p ∈ F if and only if q ∈ F and 2) (p, a, t) ∈ δ if
and only if (q, a, t) ∈ δ, where t ∈ Q and a ∈ Σ. If we have two equivalent states,
then we remove one of them, say p, and redirect all in-transitions of p into q.
This does not change the language of A but it does reduce the size of A.

Lemma 2. If two source states of a current state q are equivalent, then we need
fewer new transitions when eliminating q after merging the two states.

Now we consider the target states of the current state t ∈ Q of an FA A =
(Q, Σ, δ, s, F). Assume that t has two target states p and q and two out-transitions
of t have the same character; namely, (t, a, p) ∈ δ if and only if (t, a, q) ∈ δ, where
a ∈ Σ, and p and q have no other in-transitions except from t as shown in Fig. 4.
Then, we delete p and attach all out-transitions of p to q so that all out-transitions
are from q.

Lemma 3. If the current state t, in an FA A = (Q, Σ, δ, s, F), has two target
states that are reachable only from t via the same transition label, then we need
fewer new transitions when removing q after merging the two states.

Shorter Regular Expressions from Finite-State Automata 145

t

p

q

t q
a

a

a

b

a
a

b

Fig. 4. Note that state t has the same out-transitions to two target states p and q. We
make all out-transitions of p leave from q and remove p.

Ilie et al. [13] adopted these ideas to minimize NFAs and designed anO(m log n)
time algorithm using O(m+n) space that discovers equivalent states for a given
FA A, where n is the number of states and m is the number of transitions of
A. Note that the nondeterministic finite-state automaton (NFA) minimization
problem in general is known to be PSPACE-complete [14].

4 Vertical Chopping

Assume that we have a finite-state automaton A that cannot be minimized any
further by using equivalent states. Then, we have to compute a removal sequence
for A. One question arising from Fig. 3 is why does removing the middle state at
the last step lead to a shorter regular expression than when removing it at the
second to last step. We observe that the middle state in Fig. 3 has some helpful
properties.

Definition 1. We define a state b in a DFA A to be a bridge state if it satisfies
the following three conditions:

1. State b is neither a start nor a final state.
2. For each string w ∈ L(A), its path in A must pass through b at least once.
3. Once w’s path passes through state b for the first time, the path can never

pass through any states that have been visited before apart from state b.

Note that we can decompose A into two subautomata A1 and A2 such that
L(A) = L(A1) · L(A2) from the first and the second requirements. However, we
may have several duplicate states and transitions in both A1 and A2 without
the third requirement. Then, it does not give a smaller subautomaton in the
worst-case. Fig. 5 illustrates this phenomenon.

The third requirement guarantees that if we partition A at a bridge state b
into A1 and A2, then all out-transitions of b appear only in A2. Therefore, A1
and A2 have only b as a common state between them. Fig. 6 gives an example
of bridge states.

Assume that there is only one final state in A. If there is more than one final
state, then we introduce a new final state f ′ and connect all final states to f ′

146 Y.-S. Han and D. Wood

0

A1 A2

1 2 3 4 5 6

0 1 2 3 0 1 2 3 4 5 6

A

Fig. 5. State 3 satisfies both the first and second conditions in Definition 1 and, there-
fore, we can partition A into two subautomata A1 and A2, where L(A) = L(A1)·L(A2).
However, A2 has the same size as A, where state 3 is now the start state of A2.

0 1

2

3 4

5

6

7

8

9
a

b

b

b
a a

b

b
a

a
b

b

a

a

a

Fig. 6. States 1 and 7 are bridge states

0 1

2

3 4

5

6

7

8

9
a

b

b

b
a a

b

b
a

a
b

b

a

a

a

7

Fig. 7. An example of vertical chopping of the automaton in Fig. 6 at state 7

by null transitions. Given an FA A = (Q, Σ, δ, s, f) and a bridge state b ∈ Q, we
partition A into two subautomata A1 and A2 as follows: A1 = (Q1, Σ, δ1, s, b)
and A2 = (Q2, Σ, δ2, b, f), where Q1 is a subset of states of A that appear on
some path from s and b without visiting b twice in A, Q2 = Q \ Q1 ∪ {b}, δ2
is a subset of transitions of A that appear on some path from b to f in A and
δ1 = δ \ δ2. Fig. 7 illustrates partitioning at a bridge state.

Lemma 4. Given an FA A, let A1 and A2 be subautomata of A that are parti-
tioned at a bridge state of A. Then, L(A) = L(A1) · L(A2).

Note that if states p and q are bridge states in A, then q is still a bridge
state in one of the resulting subautomata after the partitioning of A at p. For

Shorter Regular Expressions from Finite-State Automata 147

example, as shown in Fig. 6, state 1 is a bridge state of A and is a bridge state of
A1, shown in Fig. 7, after chopping at state 7. Let B = {b1, b2, . . . , bk} be a set
of bridge states in A, where k is the total number of bridge states in A. Then,
B \ {bi} is the set of bridge states of A1 and A2 after chopping A at state bi.

We say a path in A is simple if it does not have any cycles. Then, from the
second requirement of bridge states in Definition 1, we establish the following
statement.

Lemma 5. Let P be a simple path from s to f in A. Then, only the states in
P can be bridge states of A.

Since A is essentially a directed graph, we can compute all bridge states for
A using Depth-First Search (DFS) based on Lemma 5.

Theorem 1. We can compute a set of bridge states for a given automaton A =
(Q, Σ, δ, s, f) in O(|Q| + |δ|) time using DFS.

Now we demonstrate how bridge states can help to compute a shorter regular
expression from a given automaton A. Note that we use state elimination for
computing regular expressions. As we have mentioned previously, the removal
sequence for state elimination is crucial when we wish to compute a shorter
regular expression.

Lemma 6. If all states in a given automaton A = (Q, Σ, δ, s, f) are bridge
states, then state elimination results in the same regular expression whatever the
removal sequence of states of A we use.

a b b c a

c b b

Fig. 8. An example of an FA whose states are all bridge states. Note that state elimi-
nation always gives ac∗bbb∗cb∗a no matter which removal sequence we use.

Now we answer the question arising in Fig. 3. We assume that there are no
three consecutive bridge states in A. If there are, then we delete the middle bridge
state by state elimination. Given an expression automaton A = (Q, Σ, δ, s, f), let
C(A) be the total number of character appearances in transitions of A; that is,

C(A) =
∑

i,j

|eij |, for each (qi, eij , qj) ∈ δ, where qi, qj ∈ Q.

For example, if A is ({s, f}, Σ, (s, E, f), s, f), which is the final expression au-
tomaton of state elimination for computing a corresponding regular expression,
then C(A) = |E|.

148 Y.-S. Han and D. Wood

Theorem 2. Given an expression automaton A = (Q, Σ, δ, s, f) and a set B
of bridge states of A, the optimal removal sequence must eliminate all states in
Q \ B before eliminating any bridge states.

Proof (sketch of proof). Without loss of generality, we assume that we have an
optimal removal sequence OPT of state eliminations for A that eliminates a
bridge state b first. We prove that there is a shorter regular expression using a
different removal sequence and, therefore, OPT is not an optimal sequence.

Since we assume that there are no three consecutive bridge states in A, either
a target state or a source state of b must not be a bridge state. Let us assume that
a target state is not a bridge state. Let Ab be the resulting expression automaton
after the state elimination of b. Then, C(A) < C(Ab) by Fig. 2. Let q be the next
state to be eliminated after b by OPT. We consider two cases: Case 1 is when q
is a target or a source state of b and Case 2 is when q is neither a target state
nor a source state of b.

1. If q is a target or a source state of b. Assume that q is a target state of b. In Ab,
q has at least the same number of in-transitions compared to q in A and each
in-transition of q in Ab has a longer expression than the regular expression
of the corresponding in-transitions of q in A. Therefore, C(Ap) < C(Abp).
Moreover, a target state of p in Abp has longer expressions of in-transitions
than the corresponding expression of in-transitions in Ap.

2. If q is neither a target nor a source state of b. The state elimination of q
produces the same new expressions in both A and Ab. Then, since C(A) <
C(Ab), we conclude that C(Ap) < C(Abp).

Let AOPT be the expression automaton computed by OPT and A′ be the
corresponding expression automaton that we construct by eliminating the same
state as OPT does except for b. Then, by the same argument, it is always true
that C(A′) < C(AOPT). Once OPT completes state elimination, then C(A′) <
C(AOPT) and A′ has three states s, f and b. Note that C(AOPT) is the size of
the regular expression computed by OPT.

Now we eliminate b from A′ and denote the resulting expression automaton by
A′

b. Note that C(A′
b) = C(A′) is the size of the corresponding regular expression

that we have computed. Since C(A′
b) = C(A′) < C(AOPT), we have computed a

regular expression that is shorter than the regular expression computed by OPT
— a contradiction. Therefore, the optimal removal sequence must eliminate all
non-bridge states before eliminating any bridge states. �	

Theorem 2 suggests that given an automaton A, we identify all bridge states of
A, chop A into several subautomata using bridge states, compute corresponding
regular expressions for each subautomaton and catenate the resulting regular
expressions to give a regular expression for A. Note that each subautomaton is
disjoint from every other subautomaton except for bridge states. Thus, vertical
chopping is a divide-and-conquer approach based on the structural properties
of A.

Shorter Regular Expressions from Finite-State Automata 149

5 Horizontal Chopping

Now we have an automaton A without any bridge states and, therefore, we can
assume that there is only one start state and one final state in A. Although
we cannot avoid computing a removal sequence for A, we can sometimes avoid
examining all removal sequences of A to compute such a sequence. For example,
we can partition A, shown in Fig. 9, into two subautomata Au and Al and
compute corresponding regular expressions eu and el for Au and Al, respectively.
Then, a regular expression for A is eu + el, which does not increase the number
of character appearances.

4

5

6

b

b

b
a a

b

b
a

a

7

Au

Al

⇒1

2

3

4

5

6

b

b

b
a a

b

b
a

a

71

2

3

71

Fig. 9. An example of horizontal chopping for a given automaton without bridge states

Another interesting observation is as follows. Assume that an optimal removal
sequence is 5 → 3 → 4 → 6 → 2 for the given FA in Fig. 9. Then, a removal
sequence, 3 → 4 → 6 → 5 → 2 gives the same regular expression as before since
state elimination of a state in the upper subautomaton does not affect expressions
in the lower subautomaton. It implies that sometimes when we compute an optimal
removal sequence for a given FA A, we can compute optimal removal sequences
for subautomata and combine them. This approach is also a divide-and-conquer
approach. Since we partition A horizontally, we call it horizontal chopping.

For horizontal chopping of a given FA A = (Q, Σ, δ, s, f), we have to identify
subautomata of A such that all subautomata are disjoint from each other except
s and f . Our algorithm is based on DFS. When exploring A, we maintain a group
index for each state of A. First, we assign a different group index for each child of
s in A. Assume p is the current state with group index i and q is the next state
to visit in DFS. If q does not have a group index, (then it must have been visited
for the first time) q inherits the group index i from p. Otherwise, q already has a
group index j and we combine two group indices i and j and regard them as the
same group. We continue to explore until we have visited all states in A.

Fig. 10 illustrates how DFS identifies groups from a given automaton. Note
that when we visit state q from state p, we merge group 1 and group 2 into a
single group.

150 Y.-S. Han and D. Wood

s p

q

f

1

2

3

1 1

2 2

1

1

1

3 3 3 3

Fig. 10. An example of DFS that identify groups. The label outside a state is its group
index. Note that group 1 and group 2 belong to the same group because of q. Therefore,
there are two disjoint subautomata that we can use horizontal chopping.

Theorem 3. Given a finite-state automaton A = (Q, Σ, δ, s, f), we can discover
all subautomata that are disjoint from each other except s and f in O(|Q|+ |δ|)
time using DFS.

Moreover, once we partition A horizontally, some states become bridge states
of subautomata. For example, state 2 is a bridge state of Au and states 3, 4 and
6 are bridge states of Al in Fig. 9. Note that these states are not bridge states of
A. Therefore, we can compute bridge states for each subautomaton and perform
vertical chopping if there are bridge states; then, again we can repeat horizon-
tal chopping. We continue chopping until no further chopping is possible, and,
then compute a removal sequence. Note that state elimination using horizontal
chopping and vertical chopping works well for FAs that preserve the structural
properties of corresponding regular expressions. For example, for each catena-
tion operation of a given regular expression that is not enclosed by a Kleene
star, there is a bridge state in the corresponding Thompson automaton and po-
sition automaton. Similarly, for each union operation that is not enclosed by a
Kleene star, we can find a horizontal chopping in the corresponding Thompson
automaton. On the other hand, we might not be able to perform any vertical
chopping or horizontal chopping in the worst-case. However, then it implies that
such an FA is already complex and barely preserves any structural properties of
the possible regular expressions. In this case, we can only choose brute force.

6 Conclusions

There are several FA constructions from regular expressions and each construc-
tion has different properties [7, 6, 3, 5, 4, 2]. On the other hand, there are only
two main methods to compute a regular expression from a given FA; namely,

Shorter Regular Expressions from Finite-State Automata 151

linear equations [8] and state elimination [9]. State elimination is an intuitive
construction: we compute a regular expression by removing states in a given
automaton while maintaining expressions in transitions. The resulting regular
expression obtained by state elimination depends on the removal sequence of
states. If we choose a good removal sequence, then we obtain a shorter regular
expression. On the other hand, we have to try all possible sequences to find the
optimal sequence, which is undesirable since there are O(m!) sequences, where
m is the number of states. Moreover, state elimination blows up the sizes of
regular expressions in transitions. These observations attract us to investigate
state elimination for reducing the size of regular expressions and computing a
better removal sequence that ensures to have a shorter regular expression.

We have examined NFA minimization to reduce the number of character
appearances based on state equivalence. Furthermore, we have investigated the
properties of bridge states of an FA and showed that bridge states must be
eliminated after eliminating all non-bridge states in A in order to have a shorter
regular expression. We can perform vertical chopping of A using bridge states.
We have also discovered that we can use horizontal chopping that ensures to
compute a state removal sequence of A quickly: once we partition A horizontally,
then we can repeat vertical chopping for each subautomaton. We have designed
two algorithms for identifying vertical chopping and horizontal chopping of A
based on DFS. Both algorithms have a linear running time in the size of A. The
combination of vertical chopping and horizontal chopping suggests a divide-and-
conquer heuristic for computing a better removal sequence of states of A.

References

1. Kleene, S.: Representation of events in nerve nets and finite automata. In Shannon,
C., McCarthy, J., eds.: Automata Studies, Princeton, NJ, Princeton University
Press (1956) 3–42

2. Thompson, K.: Regular expression search algorithm. Communications of the ACM
11 (1968) 419–422

3. Glushkov, V.: The abstract theory of automata. Russian Mathematical Surveys
16 (1961) 1–53

4. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Transactions on Electronic Computers 9 (1960) 39–47

5. Ilie, L., Yu, S.: Follow automata. Information and Computation 186 (2003) 140–
162

6. Giammarresi, D., Ponty, J.L., Wood, D., Ziadi, D.: A characterization of Thompson
digraphs. Discrete Applied Mathematics 134 (2004) 317–337

7. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoretical Com-
puter Science 233 (2000) 75–90

8. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press,
New York, NY (1974)

9. Brzozowski, J., McCluskey, Jr., E.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Transactions on Electronic Computers EC-12 (1963)
67–76

152 Y.-S. Han and D. Wood

10. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York, NY
(1987)

11. Han, Y.S., Wood, D.: The generalization of generalized automata: Expression
automata. In: Proceedings of CIAA’04, Springer-Verlag (2004) 156–166 Lecture
Notes in Computer Science 3317.

12. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a
given regular language. In: Proceedings of CIAA’04, Springer-Verlag (2004) 312–
314 Lecture Notes in Computer Science 3317.

13. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In Karhumaki, J., Maurer, H.,
Paun, G., Rozenberg, G., eds.: Theory is Forever (Salomaa Festschrift). Lecture
Notes in Computer Science 3113, Springer-Verlag, Heidelberg (2004) 112–124

14. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22 (1993) 1117–1141

	Introduction
	Preliminaries
	State Elimination
	Vertical Chopping
	Horizontal Chopping
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

