
Left is Better than Right for Reducing

Nondeterminism of NFAs

Sang-Ki Ko and Yo-Sub Han

Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea

{narame7,emmous}@cs.yonsei.ac.kr

Abstract. We study the NFA reductions by invariant equivalences. It is
well-known that the NFA minimization problem is PSPACE-complete.
Therefore, there have been approaches to reduce the size of NFAs in
low polynomial time by computing invariant equivalence and merging
the states within same equivalence class. Here we consider the nonde-
terminism reduction of NFAs by invariant equivalences. We, in partic-
ular, show that the left-invariant equivalence is more useful than the
right-invariant equivalence for reducing NFA nondeterminism. We also
present experimental evidence for showing that NFA reduction by left-
invariant equivalence achieves the better reduction of nondeterminism
than right-invariant equivalence.

Keywords: Nondeterministic finite automata, Regular expression, NFA
reduction, Invariant equivalences.

1 Introduction

Regular expressions are widely used for many applications such as search engine,
text editor, programming language, and so on. People often use regular expres-
sions to describe a set of pattern strings for the pattern matching problem.

Once a regular expression is given, then we convert a regular expression into an
equivalent nondeterministic finite-state automaton (NFA) by automata construc-
tions such as Thompson construction [21] or the position construction1 [6,17].
In some cases, the obtained NFA should be converted into a deterministic one
by the subset construction. However, the size of the deterministic finite-state
automaton (DFA) for the regular expression may be exponential. In addition
to that, the problem of minimizing NFAs is PSPACE-complete [14], thus, in-
tractable.

Since DFAs are usually much faster than NFAs, the most of applications
prefer DFAs to NFAs. For example, consider the membership problem which is
the simplest form of pattern matching problem based on FAs. Given an FA of
size m and a string of length n, the problem requires O(n) time if the FA is
deterministic whereas it takes O(m2n) time [7,22] in the worst-case if the FA is
nondeterministic.
1 Also known as Glushkov construction.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 238–251, 2014.
c© Springer International Publishing Switzerland 2014

Left is Better than Right for Reducing Nondeterminism of NFAs 239

start start

reject

reject

acceptaccept or reject

DFA NFA

Fig. 1. Difference between deterministic and nondeterministic computations

The real problem is, it is impossible to have small DFAs as NFAs for the same
regular languages. It is well known that exponential number of states may be
required for an NFA to be represented by a DFA. As an alternative solution,
there have been many approaches on NFA reduction techniques for the space-
efficient implementations of the applications using regular expressions.

The idea of reducing the size of NFAs by equivalence relations was first pro-
posed by Ilie and Yu [11]. Champarnaud and Coulon [5] modified the idea to use
preorders over the set of states instead of equivalences for the better reduction.
Later, Ilie et al. [9] showed that it is possible to reduce the size of an NFA with
n states and m transitions in O(m logn) time by equivalences and O(mn) time
by preorders. Ilie et al. [10] also showed that the optimal use of equivalences can
be computed in polynomial time and the optimal use of preorders is NP-hard.

Here we consider the problem of reducing the nondeterminism of NFAs by
using invariant equivalences because the nondeterminism is also a very important
factor for the efficient simulation of NFAs. We define the computation graph for
estimating the nondeterminism of NFAs and investigate several properties. Then,
we compare the right- and left-invariant equivalences by reducing NFAs by the
equivalences and give experimental results with uniformly generated random
regular expressions.

The paper is organized as follows. In Section 2, we shall give some defini-
tions and notations. We introduce the well-known construction of the position
automaton from a regular expression in Section 3. We present NFA reduction
by invariant equivalences in Section 4 and consider the nondeterminism of NFAs
in Section 5. The experimental results are given in Section 6. Section 7 concludes
the paper.

2 Preliminaries

Here we briefly recall the basic definitions used throughout the paper. For
complete background knowledge in automata theory, the reader may refer to
textbooks [7,22].

240 S.-K. Ko and Y.-S. Han

Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet Σ
including the empty string λ. The size |Σ| of Σ is the number of characters in Σ.
For a string w ∈ Σ∗, we denote the length of w by |w| and the ith character of
w by wi. A language over Σ is any subset of Σ∗. A regular expression over Σ is
∅, λ, or a ∈ Σ, or is obtained by applying the following rules finitely many times.
For two regular expressions R1 and R2, the union R1 +R2, the concatenation
R1 · R2, and the star R∗

1 are regular expressions. For a regular expression R,
the language represented by R is denoted by L(R). The size |R| of a regular
expression R implies the number of symbols including the characters from Σ
and syntactic symbols such as +, ·, and ∗. We denote the number of occurrences
of characters from Σ in R by |R|Σ .

A nondeterministic finite-state automaton (NFA) A is specified by a 5-tuple
(Q,Σ, δ, s, F), where Q is a finite set of states, Σ is an input alphabet, δ :
Q×Σ → 2Q is a multi-valued transition function, s ∈ Q is the initial state and
F ⊆ Q is a set of final states.

For a transition q ∈ δ(p, a) in A, we say that p has an out-transition and q
has an in-transition. Furthermore, p is a source state of q and q is a target state
of p. The transition function δ can be extended to a function Q×Σ∗ → 2Q that
reflects sequences of inputs. A string w over Σ is accepted by A if there is a
labeled path from s to a state in F such that this path spells out the string w,
namely, δ(s, w) ∩ F �= ∅. The language L(A) recognized by A is the set of all
strings that are spelled out by paths from s to a final state in F . Formally we
write

L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.
For a state q ∈ Q, we denote

LL(A, q) = {w ∈ Σ∗ | q ∈ δ(s, w)}, LR(A, q) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅};
when A is understood from the context, we simply write LL(q),LR(q), respec-
tively.

For a state q ∈ Q and a string w ∈ Σ∗, the q-computation tree TA,q,w of A on
w is a labeled tree where the nodes are labeled by elements of Q× (Σ ∪ {λ, �}),
where � /∈ Σ. Note that TA,q,λ is a single-node tree labeled by (q, λ). Assume
that w = au, where a ∈ Σ, u ∈ Σ∗, and δ(q, a) = ∅. Then, TA,q,w is again a
single-node tree where the only node is labeled by (q, �). If δ(q, a) = {p1, . . . , pm},
where m ≥ 1, then TA,q,w is the tree with the root node labeled by (q, a) and
the root node has m children where the subtree rooted at the ith child is TA,pi,u

for i = 1, . . . ,m. We call the tree TA,s,w the computation tree of A on w and
simply denote TA,w. If there is an accepting computation for w in the NFA A,
TA,w has a leaf labeled by (q, λ), where q ∈ F .

We also define the computation graph GA,w of A on w by merging equivalent
subtrees of the computation tree as a single subtree. If TA,w has two computation
trees TA,q,v as subtrees, where w = uv, w, u, v ∈ Σ∗, and q ∈ Q, then we merge
the trees into one.

We denote the number of nodes and the number of edges of a computation
tree TA,w by |TA,w|N and |TA,w|E , respectively. We define the size |TA,w| of a

Left is Better than Right for Reducing Nondeterminism of NFAs 241

computation tree TA,w to be |TA,w|N + |TA,w|E . Note that the similar notations
are defined analogously for the size of computation graph.

3 NFA Constructions from Regular Expressions

We first recall the well-known construction called the position construction for
obtaining NFAs from regular expressions [6,17]. The automaton obtained from
the construction is called the position automaton which is also called the Glushkov
automaton.

Given a regular expressionR, we first mark each character of R with a unique
index called the position. From the leftmost character of R, we mark the index
of each character with the number from 1 to |R|Σ . The set of indices is called
the positions of R and denoted by pos(R) = {1, 2, . . . , |R|Σ}. We also denote
pos0(R) = pos(R) ∪ {0}. We denote the marked regular expression obtained

from R by R. Note that L(R) ⊆ A
∗
, where A = {ai | a ∈ Σ, 1 ≤ i ≤ |R|Σ}. For

instance, if R = abc+ d(ef)∗, then R = a1b2c3 + d4(e5f6)
∗. For a ∈ Σ, a = a.

For a regular expression R, we define first, last, and follow as follows:

first(R) = {i | aiw ∈ L(R)},
last(R) = {i | wai ∈ L(R)},

follow(R, i) = {j | uaiajv ∈ L(R)}.
We extend follow(R, 0) = first(R) and define last0(R) to be last(R) if λ ∈ L(R)

and last(R) ∪ {0} otherwise.
Then, the position automaton of R is defined as follows:

Apos(R) = (pos0(R), Σ, δpos, 0, last0(R)),

where

δpos = {(i, a, j) | j ∈ follow(R, i), a = aj}.
Notice that the position automaton of R recognizes the same language with the
regular expression R, that is, L(R) = L(Apos(R)).

The position automaton has two useful properties as follows.

Property 1. The position automaton for the regular expression R has always
|R|Σ + 1 states.

Proof. Recall that every position automaton satisfies Property 2. The NFA
Apos(R)/≡L is obtained from Apos(R) by merging states if they are in the
same left-invariant equivalence class. In other words, any two states q and p
are merged if p ≡L q, thus, LL(p) = LL(q). This implies that p and q should
have in-transitions consuming the same character because otherwise LL(p) �=
LL(q). Therefore, the merged state by the left-invariant equivalence ≡L also has
in-transitions labeled by the same character.
�

242 S.-K. Ko and Y.-S. Han

Property 1 guarantees that the position automaton always has smaller number
of states than Thompson’s automaton [21].

Property 2. All in-transitions for any state of the position automaton are labeled
by the same character.

Caron and Ziadi [4] named the second property as the homogeneous property.
We say that an FA is homogeneous if all in-transitions to a state have the same
label. The homogeneous property helps to improve the regular expression search
algorithms because we can represent the DFA using O(2|R|Σ + |Σ|) bit-masks
of length |RΣ | instead of O(2|R|Σ · |Σ|) [18,19]. We can compute the position
automaton in quadratic time in the size of regular expression using inductive
definition of first, last, and follow [3].

Note that there have been proposed two more algorithms for obtaining smaller
NFAs than position automata from regular expressions. Antimirov [2] introduced
an NFA construction based on partial derivatives called the partial derivate au-
tomaton. Ilie and Yu [12] constructed an NFA called the follow automaton based
on the follow relation. It is already proven that a partial derivative automaton
and a follow automaton are quotients of the position automaton and always
smaller than the position automaton.

4 NFA Reduction by Invariant Equivalences

There have been many results for reducing the size of NFAs by using invariant
equivalences [9,11,13]. Here we briefly recall how the reduction works.

Basically, the idea of NFA reduction is from DFA minimization in the sense
that we find indistinguishable states and merge them to reduce the size of DFAs.
Let A = (Q,Σ, δ, s, F) be an NFA. For any two states p and q of A, we say that
p and q are distinguishable if there exists a string w such that δ(q, w)∩F �= ∅ and
δ(p, w)∩F = ∅. Naturally, this leads to the fact that p and q are indistinguishable
if and only if LR(p) = LR(q). If ≡ is an equivalence on Q which is right-invariant
with respect to A, then p ≡ q implies that p and q are indistinguishable.

The largest right-invariant equivalence relation ≡R over Q should satisfy the
following properties:

(i) ≡R ∩(F × (Q− F)) = ∅,
(ii) for any p, q ∈ Q, a ∈ Σ, p ≡R q if for all q′ ∈ δ(q, a), there exists p′ ∈ δ(p, a)

such that q′ ≡R p′.

After computing ≡R, we can reduce the NFA A by simply merging all states
in the same equivalence class. Given an equivalence ≡ and an NFA A, we de-
note the NFA obtained after merging the equivalent states by A/≡. For any
regular expression R, A(R)/≡R is always smaller than the partial derivative au-
tomaton and the follow automaton since ≡R is the largest one among all the
right-invariant equivalence relations.

Note that the largest left-invariant equivalence relation ≡L can be computed
by reversing the given NFA and computing the largest right-invariant equivalence

Left is Better than Right for Reducing Nondeterminism of NFAs 243

of it. Although the partial derivative automaton [2] and the follow automaton [12]
can be obtained by the right-invariant equivalence relations, the left-invariant
equivalence has some nice properties.

0

7

10

13 15

1

4

22

16

19

8

11

14

2

5

23

17

20

12

6

3

24

21

18

9

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

f

e

f

e

f

e

f

Fig. 2. A position automaton Apos(R) where R = ace+ acf + ade+ adf + bce+ bcf +
bde+ bdf

See the position automaton Apos(R) in Fig. 2 as an inspiring example. Note
that this example is already used in the paper by Ilie and Yu [13]. Fig. 3 is an
NFA reduced by ≡R and Fig. 4 is an NFA reduced by ≡L.

0

1, 13

7, 19

4, 16

10, 22

2, 8, 14, 20

5, 11, 17, 23

3, 6, 9, 12, 15, 18, 21, 24

a, b

a, b

a, b

a, b

c

d

c

d

e

f

Fig. 3. An NFA Apos(R)≡R

While the number of states is smaller when reduced by ≡R than ≡L, the
NFA reduced by ≡L is deterministic. Note that the NFA reduction by ≡L does
not always produce DFAs. However, this example implies that the left-invariant
equivalence is useful for reducing nondeterminism of NFAs since the equivalence
relation is computed in the same direction as the simulation of NFAs.

We also mention that the NFA reduction by the left-invariant equivalence pre-
serves the homogeneous property which is very useful for the regular expression
search algorithms.

244 S.-K. Ko and Y.-S. Han

0

2, 5

8, 11

14, 17

20, 23

1, 4, 7, 10

13, 16, 19, 22

15

12

6

3

24

21

18

9
a

b

c

d

c

d

e

f

e

f

e

f

e

f

Fig. 4. An NFA Apos(R)≡L

Lemma 1. Let R be a regular expression. Then, Apos(R)/≡L is homogeneous.

5 Nondeterminism of NFAs

Many researchers have studied variousmeasures of nondeterminism inNFAs [8,20].
Here we compare the nondeterminism of NFAs using the size of the computation
graph. We give an example for the comparison of the computation tree and the
computation graph.

Example 1. Let A be an NFA described in Fig. 5. Then, the computation tree

a

a

a

b

c

0

1

2

3

4

b

b

b

Fig. 5. An NFA A

and the computation graph of A on the string abbb are depicted in Fig. 6.

Now let us discuss the reason why we compare the nondeterminism of NFAs
using the computation graph instead of the computation tree. Let A be an
NFA of size m and w be a string of length n. Hromkovic̆ et al. [8] showed
that the number of accepting computation can be exponential in the worst-case.

Left is Better than Right for Reducing Nondeterminism of NFAs 245

4 4 4 42

42 2 4

2

4 4

1 3 2

0
GA,abbb

4

1 3 2

0

42

TA,abbb

4 2

Fig. 6. The computation tree and the computation graph of the NFA A on the string
aaab

This follows that the size of the computation tree can be also exponential since
a computation tree has corresponding leaves for each accepting computation.
This implies that the size of the computation tree can be quite different with
the runtime complexity for simulating A on w, which is O(m2n) in the worst-
case. On the other hand, the size of computation graph almost coincides with
the algorithmic complexity of NFA simulation.

Lemma 2. Given an NFA A with m states and a string w ∈ Σ∗ of length n,
the following statements hold:

(i) the number of nodes and edges in the computation graph of A on w are at
most mn+ 1 and m+m2(n− 1), respectively, and

(ii) the number of nodes and edges in the computation tree of A on w are at

most mn+1−1
m−1 and mn+1−1

m−1 − 1, respectively.

Proof. We first prove (i). Since we assume that A has only one initial state, the
simulation of A starts with one state. After then, A may simulate all states in
the worst-case because of the nondeterminism. Therefore, the number of nodes
in the computation graph of an NFA can be mn+ 1 in the worst-case.

Moreover, the graph can have m edges from the initial node since A can move
to all states by reading a character in the worst-case. Then, since each state of
A can have m options to move by reading a character, the number of edges in
the computation graph of A can be m+m2(n− 1) in the worst-case.

Now we prove (ii). The computation tree of A on w has one initial node and
has m children by reading any character. Then, every node of the computation
tree can have m children since there can be up to m transitions for each state
and character. Thus, the total number of nodes can be

1 +m+m2 + · · ·+mn−1 +mn =
mn+1 − 1

m− 1
.

Note that the number of edges can be mn+1−1
m−1 − 1 since a tree always has t− 1

edges if there are t nodes.
�

246 S.-K. Ko and Y.-S. Han

We have a simple lower bound NFA for the given upper bounds in Lemma 2,
which is an m-state NFA A = (Q,Σ, δ, s, F), where Q = F and Q = δ(q, a) for
all q ∈ Q and a ∈ Σ. Fig. 7 depicts the lower bound when m = 2.

root root

m

m

m

m

m

m

m2

m3

mn−1

mn

Fig. 7. A lower bound example when m = 2 for the upper bound in Lemma 2

We establish the following result as a corollary.

Corollary 1. Given an NFA A with m states and a string w ∈ Σ∗ of length n,
|GA,w| is in O(m2n) and |TA,w| is in O(mn).

However, the size of the computation graph and tree is linear in the length of
the input string for DFAs in the worst-case.

Lemma 3. Let A = (Q,Σ, δ, s, F) be a DFA and w ∈ Σ∗ be a string. Then,
|TA,w|N ≤ |w|+ 1 and |TA,w|E ≤ |w|.
Proof. Since A is a DFA, we have only one transition from any state of A to
proceed by reading an input character. Therefore, we always have a sequence of
states visited by reading the string w instead of tree structure. If w = λ, then
|TA,w| = 1 since TA,λ consists of a single node labeled by (s, λ). Otherwise, we
have an accepting computation

s → q1 → q2 → q3 → · · · → q|w|−1 → q|w|

of length |w| + 1 in the worst-case, where δ(s, w1) = q1, δ(qi, wi+1) = qi+1 and
qi ∈ Q for i = 1, . . . , |w|. Note that the sequence itself is the computation tree
in DFAs. If the DFA is incomplete and the computation fails before completed,
the length of the computation becomes shorter than |w|+ 1.
�
Corollary 2. Let A = (Q,Σ, δ, s, F) be a DFA and w ∈ Σ∗ be a string. Then,
|GA,w|N ≤ |w|+ 1 and |GA,w |E ≤ |w|.

Considering that the size of the computation graph represents the computa-
tional cost for simulating FAs well, it is evident that DFAs are much better than

Left is Better than Right for Reducing Nondeterminism of NFAs 247

NFAs regardless of the size of FAs because they make a deterministic choice at
each step.

Here we consider the advantage of reducing NFAs by the left-invariant equiv-
alence. The empirical studies on NFA reductions show that the right-invariant
equivalence is more powerful in terms of better reduction on the number of
states and transitions. However, it turns out that the left-invariant equivalence
can reduce the nondeterminism of NFAs better than the right-invariant.

Lemma 4. Let A = (Q,Σ, δ, s, F) be an NFA and A′ be an NFA obtained from
A by merging two equivalent states q and p in Q. Then, there exists a string
w ∈ Σ∗ such that |GA′,w|N < |GA,w|N if and only if LL(p) ∩ LL(q) �= ∅.
Proof.
(⇐=) We first prove the statement that if LL(p) ∩ LL(q) �= ∅, then there exists
a string w such that |GA′,w|N < |GA,w |N . Since LL(p) ∩ LL(q) �= ∅, we say a
string w′ ∈ LL(p) ∩ LL(q). Consider the computation graphs GA,w and GA′,w,
where w = w′u and w′, u ∈ Σ∗. While the computation of A on w maintains two
states p and q after reading w′, the computation of A′ only maintains the merged
state. As a result, the number of nodes in the computation graph decrease.
(=⇒) We prove that if there exists a string w such that |GA′,w|N < |GA,w|N ,
then LL(p)∩LL(q) �= ∅. The decrease on the number of nodes in the computation
graph GA′,w implies that at least one state visited during the simulation of A
on w is merged with the other state. This means that there exists a string w′,
where w′u = w and w′, u ∈ Σ∗, which makes A to visit the merged state. Since
the merged states are p and q by assumption, w′ ∈ LL(p) ∩ LL(q).
�

From Lemma 4, the following result is immediate.

Theorem 1. Let A be an NFA and ≡ be a left-invariant equivalence. If there
exist two distinct equivalent states in A, then there exists a string w ∈ Σ∗ such
that |GA/≡,w| < |GA,w|.

We also observe that NFA reduction by the right-invariant does not guarantee
the reduction of nondeterminism.

Corollary 3. There exist an NFA A with two distinct equivalent states and
a right-invariant equivalence ≡ such that for any string w ∈ Σ∗, |GA/≡,w| <
|GA,w|.

6 Experimental Results

We present experimental results regarding the NFA reduction by invariant equiv-
alences. Especially, we aim to analyze how the NFA reduction affects the nonde-
terminism of NFAs. For experiments, we have used uniformly generated random
regular expressions by FAdo [1].

FAdo [1] is an ongoing project developed by Almeida et al. that provides a set
of formal language manipulation tools. We have used 1,000 uniformly generated

248 S.-K. Ko and Y.-S. Han

regular expression by the FAdo system. Note that the random generation of
regular expressions is based on Mairson’s work [16] for generating words in a
context-free language uniformly. The context-free language used for the random
generation of regular expressions is presented by Lee and Shallit [15].

6.1 Size Reduction of NFAs

First we look at the size reduction of NFAs constructed from random regular
expressions by invariant equivalences. See Table 1 for the result.

Table 1. The average states/transitions in position automata and reduced NFAs con-
structed from uniform random regular expressions

|R| |Σ| Number of states/transitions

Apos Apos/≡L Apos/≡R Apos/≡LR Apos/≡RL

20
2 13.2/21.0 11.6/16.9 9.5/14.0 9.2/13.5 9.0/13.3
5 16.3/19.7 15.8/19.0 13.2/16.0 13.0/15.9 13.0/15.8
10 17.3/19.5 17.1/19.2 14.8/16.9 14.7/16.8 14.7/16.7

50
2 29.8/58.3 24.4/41.4 20.2/34.7 19.0/32.4 18.6/31.8
5 36.6/51.8 34.7/47.8 28.4/38.5 27.7/38.0 27.6/37.5
10 40.7/50.1 39.6/48.1 34.1/41.2 33.7/40.8 33.6/40.6

100
2 57.9/122.9 45.5/83.8 38.2/70.2 35.5/65.8 34.7/63.1
5 71.0/108.4 66.3/97.3 54.7/76.5 53.1/75.3 52.9/73.9
10 80.0/103.0 77.8/98.9 67.1/81.9 66.1/81.1 65.9/80.4

When we compare the size reduction effects of the right- and left-invariant
equivalences, it is obvious that the right-invariant equivalence is superior on
average for reducing the size of NFAs from the result.

On the average of all the position automata used in the experiment, the
number of states is reduced 8.3% by ≡L and 22.7% by ≡R. The number of
transitions is reduced 14.8% by ≡L whereas 29.7% is reduced by ≡R.

We also compare two more reductions, where we reduce the NFAs in both di-
rections. For simplicity, we writeApos/≡LR andApos/≡RL instead of (Apos/≡L)/≡R

and (Apos/≡R)/≡L , respectively. On average, ≡RL is slightly better in terms of
the size reduction of NFAs than ≡LR since ≡RL reduces 25.0% of states and
31.6% of transitions whereas ≡LR reduces 25.5% of states and 32.7% of tran-
sitions. However, the difference between the two-way reductions is very small
compared to the difference between ≡R and ≡L.

6.2 Reduction of Nondeterminism

For measuring the degree of the practical nondeterminism in NFAs, we use
the following definition which can be the measurement of nondeterminism for
simulating strings with the NFAs.

Left is Better than Right for Reducing Nondeterminism of NFAs 249

Let A be an NFA and w be a string. Then, we define the redundancy of
simulation RSA,w of A on w as follows:

RSA,w =
|GA,w |E

|w| .

Recall that the number of edges in the computation graphGA,w almost coincides
with the practical time complexity for simulating w on A. We divide |GA,w |E
by |w| to obtain the redundancy of simulation since |w| is the optimal number
of edges in the computation graph for simulating w on any FA A if w ∈ L(A).
Therefore, RSA,w = 1 if the given NFA is deterministic or simulates the string w
deterministically. We conduct experiments with the randomly generated regular
expressions used in the previous experiments.

For generating random strings of the regular expressions, we use a Java library
called Xeger2. We use random strings from the regular expressions instead of
uniformly generated random strings because if the computations fail easily, it is
difficult to compare the nondeterminism of NFAs.

Once we choose 1,000 random regular expressions, we convert the regular
expressions into position automata and reduce the automata by four different
equivalences ≡L, ≡R, ≡LR, and ≡RL. Then, we generate 10,000 random strings
by Xeger for each regular expression and simulate the five types of automata
with the strings.

Table 2 summarizes the result of the experiment. Under the assumption that
the redundancy ratio reflects the nondeterminism of NFAs for simulating strings,
the best reduction is obtained by ≡LR in all cases.

Table 2. The average states/transitions in position automata and reduced NFAs con-
structed from uniform random regular expressions

|R| |Σ| RSA,w

Apos Apos/≡L Apos/≡R Apos/≡LR Apos/≡RL

20
2 1.625 1.331 1.469 1.296 1.401
5 1.103 1.046 1.096 1.046 1.076
10 1.043 1.009 1.043 1.009 1.024

50
2 2.227 1.662 1.946 1.628 1.795
5 1.132 1.043 1.122 1.042 1.086
10 1.062 1.018 1.059 1.018 1.034

100
2 2.516 2.149 2.365 2.115 2.314
5 1.172 1.066 1.164 1.065 1.112
10 1.059 1.015 1.057 1.015 1.033

The interesting result is that ≡L shows the better reduction than ≡R as
anticipated in Theorem 1. On average, the redundancy ratio is reduced 12.4%

2 Xeger generates a random string from a regular expression.
https://code.google.com/p/xeger/

https://code.google.com/p/xeger/

250 S.-K. Ko and Y.-S. Han

by ≡L and 4.8% by ≡R. This result clearly suggests that the reduction by the
left-invariant equivalence is more useful than the right-invariant one to reduce
the nondeterminism of NFAs.

One more thing to note is, ≡L shows the better result than ≡RL. Recalling
that ≡LR shows better result than ≡R in terms of the size reduction of NFAs,
this result is noticeable. From the empirical result, ≡LR can be the best option
for reducing the size and the nondeterminism of NFAs at the same time.

7 Conclusions

We have studied the relationship between NFA reductions and nondeterminism
of NFAs. The NFA reduction techniques based on the equivalence and preorder
relations are well investigated in literature.

Here we have considered the NFA reduction by invariant equivalences. While
the most of NFA constructions focus on the right-invariant equivalence for ob-
taining small NFAs from regular expressions, we have revealed that the reduction
by left-invariant equivalence helps to reduce the nondeterminism of NFAs better
than the right-invariant equivalence. We have presented empirical results with
randomly generated regular expressions.

In future, we aim at comparing the NFA reduction techniques by equivalences
and preorders with respect to the nondeterminism of reduced NFAs. Investigat-
ing how to optimally reduce the nondeterminism of NFAs is an open problem.

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and gUItar:
Tools for automata manipulation and visualization. In: Maneth, S. (ed.) CIAA
2009. LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science 155(2), 291–319 (1996)

3. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120, 197–213 (1993)

4. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoretical Com-
puter Science 233(1-2), 75–90 (2000)

5. Champarnaud, J.-M., Coulon, F.: NFA reduction algorithms by means of regular
inequalities. Theoretical Computer Science 327(3), 241–253 (2004)

6. Glushkov, V.M.: The Abstract Theory of Automata. Russian Mathematical Sur-
veys 16, 1–53 (1961)

7. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation, 2nd edn. Addison-Wesley, Reading (1979)

8. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Infor-
mation and Computation 172(2), 202–217 (2002)

9. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Karhumäki, J., Maurer, H.,
Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 112–124.
Springer, Heidelberg (2004)

Left is Better than Right for Reducing Nondeterminism of NFAs 251

10. Ilie, L., Solis-Oba, R., Yu, S.: Reducing the size of nFAs by using equivalences and
preorders. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS,
vol. 3537, pp. 310–321. Springer, Heidelberg (2005)

11. Ilie, L., Yu, S.: Algorithms for computing small NFAs. In: Diks, K., Rytter, W.
(eds.) MFCS 2002. LNCS, vol. 2420, pp. 328–340. Springer, Heidelberg (2002)

12. Ilie, L., Yu, S.: Follow automata. Information and Computation 186, 140–162
(2003)

13. Ilie, L., Yu, S.: Reducing NFAs by invariant equivalences. Theoretical Computer
Science 306(1-3), 373–390 (2003)

14. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22(6), 1117–1141 (1993)

15. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In:
Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS,
vol. 3317, pp. 2–22. Springer, Heidelberg (2005)

16. Mairson, H.G.: Generating words in a context-free language uniformly at random.
Information Processing Letters 49(2), 95–99 (1994)

17. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Transactions on Electronic Computers 9(1), 39–47 (1960)

18. Navarro, G., Raffinot, M.: Compact DFA representation for fast regular expression
search. In: Proceedings of the 5th International Workshop on Algorithm Engineer-
ing, pp. 1–12 (2001)

19. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings: Practical On-line
Search Algorithms for Texts and Biological Sequences. Cambridge University Press,
New York (2002)

20. Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of non-
determinism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013.
LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)

21. Thompson, K.: Regular expression search algorithm. Communications of the
ACM 11(6), 419–422 (1968)

22. Wood, D.: Theory of Computation. Harper & Row (1987)

	Left is Better than Right for Reducing
Nondeterminism of NFAs

	1 Introduction
	2 Preliminaries
	3 NFA Constructions from Regular Expressions
	4 NFA Reduction by Invariant Equivalences
	5 Nondeterminism of NFAs
	6 Experimental Results
	6.1 Size Reduction of NFAs
	6.2 Reduction of Nondeterminism

	7 Conclusions
	References

