
M -equivalence of Parikh Matrix over a Ternary
Alphabet

Joonghyuk Hahn, Hyunjoon Cheon, and Yo-Sub Han

Department of Computer Science, Yonsei University, Seoul 03722, Republic of Korea
{greghahn,hyunjooncheon,emmous}@yonsei.ac.kr

Abstract. The Parikh matrix, an extension of the Parikh vector for
words, is a fundamental concept in combinatorics on words. We inves-
tigate M -unambiguity that identifies words with unique Parikh matri-
ces. While the problem of identifying M -unambiguous words for a bi-
nary alphabet is solved using a palindromicly amicable relation, it is
open for larger alphabets. We propose substitution rules that establish
M -equivalence and solve the problem of M -unambiguity for a ternary
alphabet. Our rules build on the principles of the palindromicly amica-
ble relation and enable tracking of the differences of length-3 ordered
scattered-factors. We characterize the set of M -unambiguous words and
obtain a regular expression for the set.

Keywords: Parikh Matrix · Parikh Vector · M -unambiguity · M -equivalence

1 Introduction

Parikh [10] introduced a concept of mapping words to vectors. The resulting
vector is called a Parikh vector, by counting the occurrences of each letter [6, 7].
Mateescu et al. [9] extended the Parikh vector to the Parikh matrix that cap-
tures more complex numeric properties, by considering occurrences of scattered-
factors.

Given an ordered alphabet Σ = {a1, a2, . . . , ak}, a Parikh matrix M over
Σ is a (k + 1) × (k + 1) upper triangular matrix, where its main diagonal fills
with all 1’s, the second diagonal counts the occurrences of length-1 scattered-
factors, the third diagonal counts length-2 ordered scattered-factors, and so on.
For instance, given a word w = 00121 over Σ = {0, 1, 2}, the Parikh vector of w
is (|w|0, |w|1, |w|2) = (2, 2, 1) and the Parikh matrix of w is

1 |w|0 |w|01 |w|012
0 1 |w|1 |w|12
0 0 1 |w|2
0 0 0 1

 =


1 2 4 2
0 1 2 1
0 0 1 1
0 0 0 1

 .

Note that the second diagonal (in red) is the Parikh vector of w. Parikh matri-
ces provide a simple and intuitive approach that computes the occurrences of
scattered-factors.



2 Hahn et al.

We say that two words u and v are M -equivalent if u and v have the same
Parikh matrix [5, 9]. Atanasiu et al. [3] identified a family of binary words having
the same Parikh matrix and characterized M -equivalence over binary words by
the concept of palindromicly amicable property. This characterization on M -
equivalence allows the identification of words with unique Parikh matrices—the
injectivity problem [2, 12]. Specifically, given a word u, if there is a distinct M -
equivalent word v, then u is M -ambiguous; otherwise, u is M -unambiguous [8].
The injectivity problem is to find M -unambiguous words over a given ordered
alphabet. Mateescu and Salomaa [8] constructed a regular expression for M -
unambiguous words and solved the injectivity problem over a binary alphabet.
However, it has been a challenging problem to extend this result to a larger
alphabet.

Researchers partially characterized M -equivalence and M -unambiguity over
a ternary alphabet [1, 4, 13]. Şerbănuţă and Şerbănuţă [4] enumerated all M -
unambiguous words and proposed patterns that identify M -unambiguous words
over a ternary alphabet. However, the pattern regular expression is incorrect;
it misses some M -unambiguous words such as bcbabcbabc. Nevertheless, their
work has laid a foundation for further research on M -unambiguity and M -
equivalence [1, 13]. However, a complete and simple characterization towards M -
equivalence and M -unambiguity over a general alphabet remains elusive [11, 14].
Even for a ternary alphabet, a comprehensive characterization of M -equivalence
such as palindromicly amicable property has been open for decades.

We propose substitution rules that maintain the occurrences of length-1 or -2
ordered scattered-factors and keep track of the occurrences of length-3 ordered
scattered-factors. Our three substitution rules can represent all words over a
given ternary alphabet. We introduce ∼=-relation that establishes M -equivalence
based on the substitutions and compute the language of M -unambiguous words
over a ternary alphabet.

We explain some terms and notations in Section 2. We introduce substitu-
tion rules and an equivalence relation that characterizes M -equivalent words in
Section 3. Based on the proposed rules and relations, we compute a regular ex-
pression for M -ambiguous words and characterize M -unambiguity in Section 4.
We conclude our paper with a brief summary and a few questions in Section 5.

2 Preliminaries

Let N denote the set of all nonnegative integers and Z denote the set of all
integers. We use

(
u
k

)
to denote the binomial coefficient for u ≥ k ∈ N. An

alphabet Σk is a finite set of k letters and |Σk| = k is the number of letters in Σk.
We use Σ generally when the alphabet size k is not important. Without loss of
generality, we use nonnegative integers as alphabet letters (e.g., Σ3 = {0, 1, 2}).
A word u over Σ is a finite sequence of letters in Σ. Let |u| be the length of
u. The symbol λ denotes the empty word whose length is 0. Given a word w,
we use wR to denote its reversal; w = a1a2 · · · an and wR = anan−1 · · · a1. The
Kleene star Σ∗ of an alphabet Σ is the set of all words over Σ. An ordered



M -equivalence of Parikh Matrix over a Ternary Alphabet 3

alphabet (Σk, <) consists of an alphabet Σk = {a1, a2, . . . , ak} and a strict total
order < on Σk. We often denote the ordered alphabet by Σk = {a1 < a2 < · · · <
ak}. If a total order < is clear in the context, we simply use Σk to denote an
ordered alphabet.

Given two words u and v ∈ Σ∗, we say that v is a factor of u if u = αvβ
for some α, β ∈ Σ∗. Similarly, we say that v is a scattered-factor of u if there
exist u0, u1, . . . , un and v1, v2, . . . , vn ∈ Σ∗ such that v = v1v2 · · · vn and u =
u0v1u1 · · ·un−1vnun. We denote by |u|v the number of distinct occurrences of
a nonempty word v as a scattered-factor in u. For instance, if u = 0110 and
v = 01, then v is both a factor and a scattered-factor of u and |u|v = 2.

We now present definitions that are directly related to our problem on the
Parikh matrix.

Definition 1. Let Σk = {a1 < a2 < · · · < ak} be an ordered alphabet. The
Parikh mapping is a monoid morphism Ψ : Σ∗

k → Nk defined as Ψ(w) =
(|w|a1

, |w|a2
, . . . , |w|ak

). Then, Ψ(w) for w ∈ Σ∗
k is the Parikh vector of w.

The extension of the Parikh mapping to the Parikh matrix mapping considers
a (upper) unitriangular matrices of nonnegative integers. A unitriangular matrix
is a square matrix m = (mi,j)1≤i,j≤k such that (1) mi,j ∈ N, (2) mi,j = 0 for all
1 ≤ j < i ≤ k, and (3) mi,i = 1 for all 1 ≤ i ≤ k. The set of all unitriangular
matrices of dimension k ≥ 1 is denoted by Mk.

Definition 2. Let Σk = {a1 < a2 < · · · < ak} be an ordered alphabet. The
Parikh matrix mapping is a monoid morphism ΨΣk

: Σ∗
k → Mk+1 defined as

follows. For at ∈ Σk, if ΨΣk
(at) = (mi,j)1≤i,j≤k+1, then mi,i = 1 for 1 ≤ i ≤

k + 1, mt,t+1 = 1, and all the other entries are zero. Then, ΨΣk
(w) for w ∈ Σ∗

k

is the Parikh matrix of w.

Proposition 1. [9, Theorem 3.1] Let Σk = {a1 < a2 < · · · < ak} be an
ordered alphabet. We denote by ai,j the word aiai+1 · · · aj for 1 ≤ i ≤ j ≤ k. For
w ∈ Σ∗

k , its Parikh matrix ΨΣk
(w) has the following properties:

1. mi,j = 0, for all 1 ≤ j < i ≤ k + 1,
2. mi,i = 1, for all 1 ≤ i ≤ k + 1,
3. mi,j+1 = |w|u where u = ai,j for all 1 ≤ i ≤ j ≤ k.

Note that the Parikh matrix ΨΣ(w) for w ∈ Σ∗ satisfies the associativity of
matrix multiplication and ΨΣ(w) can be constructed from the Parikh matrices
of factors of w. For instance when w = uv, we have ΨΣ(w) = ΨΣ(u) · ΨΣ(v).

Example 1. Consider w = 0110 over a binary alphabet Σ2 = {0 < 1}. As an
example for Proposition 1,

ΨΣ2(0110) = ΨΣ2(0)ΨΣ2(1)ΨΣ2(1)ΨΣ2(0) =

1 2 2
0 1 2
0 0 1

 =

1 |0110|0 |0110|01
0 1 |0110|1
0 0 1

 .



4 Hahn et al.

3 M -equivalence

We discuss words with the equivalent Parikh matrices. For instance, the following
words u and v ∈ Σ∗ have the same Parikh matrix.

ΨΣ3
(u) =


1 |u|0 |u|01 |u|012
0 1 |u|1 |u|12
0 0 1 |u|2
0 0 0 1

 =


1 |v|0 |v|01 |v|012
0 1 |v|1 |v|12
0 0 1 |v|2
0 0 0 1

 = ΨΣ3
(v).

This equivalence relation is called M -equivalence [5, 9].

Definition 3. Given two words w and w′ over an ordered alphabet Σ, we define
w and w′ to be M -equivalent if ΨΣ(w) = ΨΣ(w

′), and denote it by w ≡M w′.

Researchers have studied how the changes in a word affect its Parikh matrix
and when the Parikh matrix does not change. Proposition 2 illustrates substitu-
tions of factors that do not change the Parikh matrix over arbitrary alphabets.

Proposition 2. [3, Proposition 3.1] Let Σk = {a1 < a2 < · · · < ak} be an
ordered alphabet and 1 ≤ i, j ≤ k. Then, the following equations hold:

1. If |i− j| ≥ 2, then ΨΣk
(aiaj) = ΨΣk

(ajai).

2. If |i− j| = 1, then ΨΣk
(aiajajai) = ΨΣk

(ajaiaiaj).

Proposition 2 is a necessary condition to establish M -equivalence but is not
sufficient because they are not applicable to every word such as 10101, which
is M -equivalent to 01110. Atanasiu et al. [3] proposed palindromicly amicable
property that identifies M -equivalent words over a binary alphabet.

Definition 4. [3] Let Σ2 = {0 < 1}. Two words α, β ∈ Σ∗
2 are palindromicly

amicable if the following two statements hold:

1. α and β are palindromes,

2. Ψ(α) = Ψ(β).

For x, y ∈ Σ∗
2 over Σ2 = {0 < 1}, x ≡pa y if a nonempty factor α ∈ Σ∗

2 of x
and a nonempty factor β ∈ Σ∗

2 of y are palindromicly amicable. We denote by
≡ pa∗, the reflexive and transitive closure of ≡pa.

Proposition 3. [3, Proposition 3.4] For x, y ∈ Σ∗
2 over Σ2 = {0 < 1},

1. ≡∗
pa is an equivalence relation.

2. If x ≡∗
pa y, then for all u ∈ Σ∗

2 , ux ≡∗
pa uy and xu ≡∗

pa yu.

Theorem 1. [3, Theorem 3.1] For Σ2 = {0 < 1} and x, y ∈ Σ∗
2 , x ≡M y if

and only if x ≡∗
pa y.



M -equivalence of Parikh Matrix over a Ternary Alphabet 5

Theorem 1 is based on the palindromicly amicable relation between x and y.
If we can compute y by substituting factors from x based on Proposition 2, then x
and y areM -equivalent. This is because the relation keeps the same value of |x|01
and the Parikh vector also does not change. Theorem 1, however, does not hold
for an alphabet with three or more letters. For instance, let Σ3 = {0 < 1 < 2}
and x = 10122101, y = 01122110. It is easy to see that x ≡∗

pa y but x ̸≡M y.1

We first consider the following conditions that are satisfied for words x and
y over a ternary alphabet to be M -equivalent:

1. Ψ(x) = Ψ(y),
2. |x|01 = |y|01, |x|12 = |y|12, and |x|012 = |y|012.

Certain substitutions preserve the value of 01-,12-, and 012-occurrences, im-
plying that the substitutions also do not change the Parikh matrix. We investi-
gate what these substitutions are.

Proposition 4. [2, Theorem 13] For Σ3 = {0 < 1 < 2}, the following state-
ments hold for α, β, u ∈ Σ∗

3 .

1. If w = α02β and w′ = α20β, then w ≡M w′.
2. If w = α01u10β and w′ = α10u01β where |u|2 = 0, then w ≡M w′.
3. If w = α12u21β and w′ = α21u12β where |u|0 = 0, then w ≡M w′.

While Proposition 4 suggests useful substitution rules that preserve the
Parikh matrix, the substitution rules are not applicable to all the words. We
cannot apply the second rule to w = α01u10β such that |u|2 > 0. Likewise,
the third rule is not applicable to w = α12u21β such that |u|0 > 0. For in-
stance, we cannot apply any substitutions in Proposition 4 to an M -ambiguous
word u = 0101210121. On the other hand, for w that we can apply substitutions
in Proposition 4, we cannot enumerate all w′ that are M -equivalent to w. For
u = 1002101112, we cannot compute u′ = 0101210121, which is M -equivalent
to u by Proposition 4. If we design equivalence relations that maintain the same
Parikh matrix for a given word u ∈ Σ∗

3 , then any relations should preserver the
value of |u|01, |u|12, and |u|012. This leads us to design an equivalence relation
that considers the following:

1. For all M -ambiguous words, the relation should be applicable.
2. Given an M -ambiguous word u, all M -equivalent words to u should be com-

puted.

We relax the constraint that a single substitution rule should preserve the
Parikh matrix value and allow the value of 012-occurrences to change. We suggest
Proposition 4.

Proposition 5. For Σ3 = {0 < 1 < 2}, and u, α, β ∈ Σ∗
3 , the followings are

substitution rules that satisfy Ψ(w) = Ψ(w′), |w|01 = |w|01, and |w|12 = |w′|12:

1. If w = α02β and w′ = α20β, then |w|012 = |w′|012.
1 x ≡pa 10211201 ≡pa 11200211 ≡pa 02111120 ≡pa y



6 Hahn et al.

2. If w = α01u10β and w′ = α10u01β, then |w|012 = |w′|012 + |u|2.
3. If w = α12u21β and w′ = α21u12β, then |w|012 = |w′|012 − |u|0.

Proof. Three substitution rules satisfy Ψ(w) = Ψ(w′) because each rule does not
change the numbers of 0’s, 1’s, and 2’s. The first substitution rule does not change
the numbers of 01’s and 12’s. The second and the third substitution rules change
01 to 10 (respectively, 12 to 21) and also change 10 to 01 (respectively, 21 to 12),
which keeps the same numbers of 01’s and 12’s at the end. For the occurrences
of 012, Proposition 5 can be deduced by computing |w|012 and |w′|012.

In the first substitution rule,

|w|012 = |α02β|012 = |α|012+ |β|012+ |α|01× (|02|2+ |β|2)+(|α|0+ |02|0)×|β|12,

|w′|012 = |α20β|012 = |α|012+ |β|012+ |α|01× (|20|2+ |β|2)+(|α|0+ |20|0)×|β|12.

It is easy to verify that |02|0 and |02|2 are the same to |20|0 and |20|2,
respectively. Therefore, we know that |w|012 = |w′|012.

For the second substitution rule, the substitution only occurs in the factor
01u10 in w. We only have to keep track of 012 occurrences in 01u10 of w and
10u01 of w′. While |01u10|012 = |u|012 + |01|0 × |u|12 + |01|01 × |u|2, after the
substitution, |10u01|012 = |u|012 + |10|0 × |u|12 + |10|01 × |u|2 = |u|012 + |u|12.
Therefore, the second substitution rule reduces the occurrences of 012 by |u|2.
Similarly, we can show that the third substitution rule increases the occurrences
of 012 by |u|0. ⊓⊔

We employ the second and third substitution rules of Proposition 5 to keep
track of the occurrences of 012 and furthermore, analyze when |w|012 = |w′|012.
For instance, given w,w′ ∈ Σ∗

3 , Figure 1 demonstrates that |w|′012 = |w|012 −
|α|2+ |β|0 when applied with the substitution rules of Proposition 5. Thus, when
|α|2 = |β|0, the Parikh matrices of w and w′ are the same.

01 10 12 21

︷ ︸︸ ︷

10 01 21 12

α βu

α βu

S1 = |01α10|012 ︷ ︸︸ ︷S2 = |12β21|012

w :

w′ :

⇒ |w′|012 = |w|012 − |α|2 + |β|0

∆S1 : −|α|2
∆S2 : +|β|0

21

Fig. 1. An illustration of substitutions maintaining M -equivalence for a word w =
01α10u12β21.

Figure 1 demonstrates one of the four scenarios where a single substitution
step involving two replacements maintains the identical |w|012 values, thereby
preserving the Parikh matrix. Additionally, there are cases where the swapping
pairs overlap. Figure 2 further illustrates cases of alternating sequences, with 01
followed by 12 and 10 followed by 21.



M -equivalence of Parikh Matrix over a Ternary Alphabet 7

01 12 10 21

︷ ︸︸ ︷

10 21 01 12

α βu

α βu

S1 = |01α12u10|012

︸ ︷︷ ︸
S2 = |12u10β21|012

w :

w′ :

⇒ |w′|012 = |w|012 − (|α|2 + |u|2) + (|u|0 + |β|0)

∆S1 : −(|α|2 + |u|2 + 1)

∆S2 : +(|u|0 + |β|0 + 1)

Fig. 2. An illustration of substitutions for a word w such that w = 01α12u10β21,
where 12 occurs before 10.

While Figures 1 and 2 illustrate words with the same Parikh matrix by
Proposition 5, there are otherM -ambiguous words w ∈ Σ∗

3 that are not identified
by Proposition 5, for instance, 012102021. Figure 3 depicts patterns of such
words.

01 102 21

︷ ︸︸ ︷

10 012 21

α β

α β

S1 = |01α10|012 ︷ ︸︸ ︷S2 = |12β21|012

w :

10 021 12α βw′ :

⇒ |w′|012 = |w|012 − |α|2 + |β|0

∆S1 : −|α|2

∆S2 : +|β|0

Fig. 3. An illustration of substitutions for a word w such that w = 01α102β21 where
w cannot maintain M -equivalence with a single substitution.

For M -equivalent words with such patterns, we develop substitution rules
from Proposition 5 and introduce an equivalence relation of (w,∆|w|012), the
pair of a word w and a relative occurrence of 012.

Definition 5. Given an ordered ternary alphabet Σ3 = {0 < 1 < 2}, let ∼= be
the minimal symmetric relation on Σ∗

3 × Z satisfying:

R1. (α02β, k) ∼= (α20β, k),
R2. (α01u10β, k) ∼= (α10u01β, k − |u|2) for all u such that |u|2 ≤ 1, and
R3. (α12u21β, k) ∼= (α21u12β, k + |u|0) for all u such that |u|0 ≤ 1,

where α, β, u ∈ Σ∗
3 and k ∈ Z. Then, a ∼=-sequence (u1, k1), (u2, k2), . . . , (un, kn)

is a sequence of pairs satisfying (ui, ki) ∼= (ui+1, ki+1).
A relation ∼=∗ is a minimal equivalence relation on Σ∗

3 × Z that satisfying:

R4. (u, k) ∼= (v, l) implies (u, k) ∼=∗ (v, l), and
R5. (αuβ, k) ∼=∗ (αvβ, l) implies (xuy, k′) ∼=∗ (xvy, l′) and k − l = k′ − l′,



8 Hahn et al.

where α, β, u, v, x, y ∈ Σ∗
3 and k, l, k′, l′ ∈ Z.

It is easy to verify that the minimal symmetric relation ∼= keeps the same values
of |u|01 and |u|12 based on Proposition 4 and Definition 5. Note that, for binary
words u and v over Σ2 = {0 < 1}, we have u ≡∗

pa v if and only if (u, k) ∼=∗ (v, k).

Proposition 6. For any u, v ∈ Σ∗
3 and k, l ∈ Z, (u, k) ∼=∗ (v, l) implies (u, k +

c) ∼=∗ (v, l + c) for an arbitrary integer c ∈ Z.

We present Lemma 1 which generalizes R2 and R3 of Definition 5.

Lemma 1. For any u ∈ Σ∗
3 , (01u10, k)

∼=∗ (10u01, k − |u|2) and (12u21, k) ∼=∗

(21u12, k + |u|0).

Proof. Consider the first case. For bases, if |u|2 ≤ 1, then the relation holds by
definition, if |01u10| ≤ 5, the relation holds.

Assume that, for all N > 1 and L > 5, (01u10, k) ∼=∗ (10u01, k−|u|2) for (1)
|u|2 ≤ N and |01u10| < L and (2) |u|2 < N and |01u10| ≤ L.

Consider (01u10, 0) where |u|2 = N , and |01u10| = L.

1. |u|1 = 0. We show the congruence by prepending 21 and appending 12.

(2101u1012, 0)
∼=∗(21012u′21012, 0) [R1, (u, 0) ∼=∗ (2u′2, 0), u ∈ L((0 + 2)∗), |u|2 ≥ 2]
∼=∗(12021u′12021,−2) [R3]
∼=∗(12201u′10221,−2) [R1]
∼=∗(12210u′01221,−2− |u′|2) [IH; |01u′10| = L− 2 < L]

=(12210u′01221,−|u|2) [|u′|2 = |u|2 − 2]
∼=∗(21120u′02112,−|u|2) [R3]
∼=∗(21102u′20112,−|u|2) [R1]
∼=∗(2110u0112,−|u|2) [R1, (u, 0) ∼=∗ (2u′2, 0)]

2. |u|1 = 1. If u ∈ L((0+2)∗2(0+2)∗1(0+2)∗2(0+2)∗), we can use a procedure
similar to that used in the case of |u|1 = 0. Thus, let us assume that u ∈
L((0 + 2)∗10∗) without loss of generality. By appending 01,

(01u1001, 0)

=(01u′1v′1001, 0) [u = u′1v′, |u′|1 = 0, |u′|2 > 1, v′ ∈ L(0∗)]
∼=∗(01u′1v′0110, 0) [R2]

=(01u′10v′110, 0)
∼=∗(10u′01v′110,−|u|2) [IH; |10u′01| = L− 1 < L. |u′|2 = |u|2]
∼=∗(10u′10v′101,−|u|2) [R2]

=(10u′1v′0101,−|u|2)
=(10u0101,−|u|2)



M -equivalence of Parikh Matrix over a Ternary Alphabet 9

3. |u|1 ≥ 2. We prepend 10 and append 01, then,

(1001u1001, 0)
∼=∗(0110u0110, 0) [R2]

=(0110x1u′1y0110, 0) [u = x1u′1y, u′ ∈ Σ∗
3 , x, y ∈ L((0 + 2)∗)]

∼=∗(011x01u′10y110, 0) [R1]

if |x|2 + |y|2 > 0, |x|2, |y|2 ≤ |u|2, then we can apply IH several times.

(011x01u′10y110, 0)
∼=∗(011x10u′01y110,−|u′|2) [IH]
∼=∗(101x01u′10y101,−|u|2) [IH]

=(1010u0101,−|u|2) [R1]

Suppose not the case, i.e., |x|2 + |y|2 = 0. Then, by IH, (01u′10, 0) ∼=∗

(10u′01,−|u|2) holds; Note that |01u′10| ≤ L− 2 < L and |u|2 = |u′|2. Thus

(011x01u′10y110, 0)
∼=∗(011x10u′01y110,−|u|2) [IH, R5]
∼=∗(101x01u′10y101,−|u|2) [R2]
∼=∗(1010x1u′1y0101,−|u|2) [R1]

=(1010u0101,−|u|2)

For every case, R5 implies that (01u10, 0) ∼=∗ (10u01,−|u|2). Thus, by induction,
(01u10, 0) ∼=∗ (10u01,−|u|2) holds for all u ∈ Σ∗

3 .
The second statement can be shown by swapping the roles of R2 and R3.

Lemma 2. For two M -equivalent words u and v over a ternary alphabet Σ3 =
{0, 1, 2}, and two integers k and l such that k ≤ l, let S = [(u, k) ∼= · · · ∼= (v, l)]
be a ∼=-sequence from (u, k) to (v, l). Then, for any integer t between k and
l (k ≤ t ≤ l), there exists a pair (w, t) ∈ S for some w ∈ Σ∗

3 .

Proof. For the sake of contradiction, assume that there exists t such that (u′, t) /∈
S. Then, there must be two pairs (ui, t − 1) ∼= (ui+1, t + 1). However, by Defi-
nition 5, |ki+1 − ki| ≤ 1 for (ui, ki) ∼= (ui+1, ki+1). This leads to a contradiction
that such pairs of (ui, t− 1) and (ui+1, t+ 1) do not exist. Therefore, the state-
ment holds. ⊓⊔

Theorem 2. Let Σ be an ordered ternary alphabet Σ3. For two words u, v ∈ Σ∗
3

and two integers k, l, we have a ∼=-sequence S = [(u, k) ∼=∗ (v, l)] if and only if

1. |u|012 − |v|012 = k − l,
2. |u|x = |v|x for x ∈ {0, 1, 2, 01, 12}.

Proof. [only-if direction] We prove the statement by induction on the length of
a ∼=-sequence. For two words u, v ∈ Σ∗

3 and two integers k, l satisfying (u, k) ∼=0



10 Hahn et al.

(v, l) or (u, k) ∼=1 (v, l), it is trivial to see that the two conditions hold. Note
that, in the case of ∼=0, it is immediate that u = v and k = l. Suppose that if
(ui, ki) ∼=i (vi, li), then the two conditions hold for 2 ≤ i < N . For (u, k) ∼=N

(v, l), there exist two positive integers i, j such that i+ j = N and a pair (w,m)
such that (u, k) ∼=i (w,m) ∼=j (v, l). Thus, the statement holds for ∼=∗.

From the statement, we know that if (u1, k1) ∼=∗ (un, kn), then there is a
∼=-sequence whose length is bounded above by

( |u|
|u|0

)
·
(|u|−|u|0

|u|1

)
. In other words,

there always exists a finite ∼=-sequence.
[if direction] Since it is trivial when u = v, we assume that u ̸= v. We prove

by induction on the length of u and v. When |u| = |v| ≤ 3, we prove the claim
by checking every pair of words.

Our induction hypothesis (IH) is that, for N ≥ 4, if we have two words
u and v, which satisfy the two preconditions and |u| = |v| < N , then, we have
(u, k) ∼=∗ (v, l). Consider two words u and v of length N . When u and v share the
same nonempty prefixes and suffixes, we can easily see that IH holds. Without
loss of generality, let u = au′ and v = av′. We know that u′ and v′ satisfy the
two preconditions and (u′, k) ∼=∗ (v′, l). By R5 of Definition 5, (u, k) ∼=∗ (v, l).

Thus for some symbols up, us, vp, vs ∈ Σ3 such that up ̸= vp and us ̸= vs, the
strings u and v satisfies u = upu

′us and v = vpv
′vs. In other words, they do not

have common nonempty prefixes and suffixes.
It is easy to see that, if and only if u and v are in the following forms,

(u, k) ∼= (v, l) holds:

1. u = 01x10, v = 10x01, or
2. u = 21y12, v = 12y21.

Note that u = 02 and v = 20 never occur due to the restriction on the length.
We now show that there exists a string x such that S = [(u, k) ∼=∗ (x, c) ∼=∗

(v, l)], where x = ax′b and a, b ∈ Σ3. Then, only one of the following two cases
holds:

1. All x’s between (u, k) and (v, l) satisfies up ̸= a ̸= vp and us ̸= b ̸= vs, or
2. at least one x between (u, k) and (v, l) satisfies a ∈ {up, vp} or b ∈ {us, vs}.

For the first case, we subdivide S = [(u, k) ∼= (x1, c1) ∼=∗ (x2, c2) ∼= (v, l)]
into three subsequences S1 = [(u, k) ∼= (x1, c1)], S2 = [(x1, c1) ∼=∗ (x2, c2)] and
S3 = [(x2, c2) ∼= (v, l)]. It should be the case that x1 = ax′

1b and x2 = ax′
2b,

where up ̸= a ̸= vp and us ̸= b ̸= vs. Then, the base cases cover S1 and S3, and
we can apply R5 of Definition 5 on S2. Note that all strings in S2 have common
prefixes and suffixes.

For the second case, we can subdivide S into two subsequences S′
1 = [(u, k) ∼=∗

(x, c)] and S′
2 = [(x, c) ∼=∗ (v, l)]. Without loss of generality, let a = up. Then, u

and x have a common prefix. We can detach the common prefix and IH applies
on u′us and x′b thus the sequence S′

1 is covered. Note that Theorem 2 also applies
on S′

2 because |x|012−|v|012 = (|u|012−k+c)−|v|012 = (|u|012−|v|012)−k+c =
(k − l) − k + c = c − l and the occurrences of length-1 and length-2 ordered
scattered-factors are the same. Therefore, (u, k) ∼=∗ (v, l). ⊓⊔



M -equivalence of Parikh Matrix over a Ternary Alphabet 11

Theorem 2 provides a characterization for M -equivalence over a ternary al-
phabet. The following result is immediate from Theorem 2.

Corollary 1. For a ternary alphabet Σ3 and two words u, v ∈ Σ∗
3 , u ≡M v if

and only if (u, 0) ∼=∗ (v, 0).

4 M -unambiguity

We investigate another property of the Parikh matrix, M -unambiguity. Recall
that a word w ∈ Σ∗ is M -unambiguous if there is no word w′ ̸= w such that
w ≡M w′. Otherwise, w is M -ambiguous. Atanasiu et al. [3] established the
family of M -ambiguous words over a binary alphabet. Then, Mateescu and Sa-
lomaa [8] first presented a regular expression of an M -unambiguous language
over a binary alphabet.

Theorem 3. [8, Theorem 3] For a binary alphabet Σ2 = {0 < 1}, a word
w ∈ Σ∗

2 is M -unambiguous if and only if

w ∈ L(0∗1∗ + 1∗0∗ + 0∗10∗ + 1∗01∗ + 0∗101∗ + 1∗010∗).

The regular expression in Theorem 3 is sufficient to identify M -unambiguous
words over a binary alphabet. However, we cannot apply the same result to
M -unambiguous words over a ternary alphabet. Şerbănuţă and Şerbănuţă [4]
presented a collection of regular expressions of M -unambiguous words by enu-
merating all words for a ternary alphabet2. Based on Corollary 1, we establish an
intuitive approach that computes a regular expression for M -ambiguous words
and identifies M -unambiguous words.

Theorem 4. Given a ternary alphabet Σ3 = {0 < 1 < 2}, let L ⊆ Σ∗
3 be a

regular language defined by the union of the following regular expressions.

E1 = Σ∗
3 · (02+01(0+1)∗10+10(0+1)∗01+12(1+2)∗21+21(1+2)∗12) ·Σ∗

3

E2 = Σ∗
3 · (01Σ∗

32Σ
∗
310Σ

∗
310Σ

∗
32Σ

∗
301) ·Σ∗

3

E3 = Σ∗
3 · (01Σ∗

32Σ
∗
310Σ

∗
312Σ

∗
30Σ

∗
321) ·Σ∗

3

E4 = Σ∗
3 · (21Σ∗

30Σ
∗
312Σ

∗
310Σ

∗
32Σ

∗
301) ·Σ∗

3

E5 = Σ∗
3 · (21Σ∗

30Σ
∗
312Σ

∗
312Σ

∗
30Σ

∗
321) ·Σ∗

3

E6 = Σ∗
3 · (01Σ∗

312Σ
∗
310Σ

∗
321) ·Σ∗

3

E7 = Σ∗
3 · (10Σ∗

321Σ
∗
301Σ

∗
312) ·Σ∗

3

and LR be its reversal language {wR | w ∈ L}.
Then, Lamb = L ∪ LR is the set of all M -ambiguous words over Σ3.

Proof. Let X be the set of all M -ambiguous words over Σ3 and we show that
X = Lamb. We prove that X is equivalent to Lamb.

2 The regular expression is incorrect since it misses some M -unambiguous words il-
lustrated in Figure 4 in Section 4.



12 Hahn et al.

[X ⊆ Lamb]. Suppose that there exists u ∈ X \ Lamb and let v ̸= u be
M -equivalent to u. Since u ≡M v, (u, 0) ∼=∗ (v, 0) and thus, (v, 0) is derived
from (u, 0) by a sequence of ∼= applications from Definition 5. For all the string
patterns in Definition 5, we can easily find them in Lamb. For instance, E2

contains α01u10β as a prefix where α, β, u ∈ Σ3. Likewise, we can find the other
string patterns of Definition 5. This contradicts that there exists u with distinct
patterns that are not in Lamb. Therefore, X ⊆ Lamb.

[Lamb ⊆ X]. Suppose that there exists u ∈ Lamb \ X. This implies that u
is M -unambiguous. Since u ∈ Lamb, we can derive v with s of Definition 5. We
investigate when u is included in one of Ei of Lamb. When u ∈ E1, we first ex-
amine when u contains 02 as a factor. By the first ∼=-relation in Definition 5, u is
M -ambiguous. There is also u ∈ E1 that contains factors that are palindromicly
amicable of a binary alphabet u is M -ambiguous by Theorem 1. Thus, u ∈ E1

is M -ambiguous. Similarly, we can prove in the same way for the reversal of E1.
For u ∈ Ei for 2 ≤ i ≤ 7, we inspect the change of 012 occurrence values by

the second and the third ∼=-relations of Definition 5. We show one of the cases
when u ∈ E6. When u ∈ E6, the following holds for some v ∈ Σ∗

3 :

12β01γ21→21β01γ12︷ ︸︸ ︷
(u, k) ∼=∗ (u′, k − |α12β|2)︸ ︷︷ ︸

01α12β10→10α12β01

∼=∗ (v, k − |α12β|2 + |β01γ|0).

Without loss of generality, let 0 < |α12β|2 ≤ |β01γ|0. Then, k − |α12β|2 <
k ≤ k − |α12β|2 + |β01γ|0 and by Lemma 2, there exists (v′, k) such that
(u, k) ∼=∗ (v′, k) ∼=∗ (v, l) and u ̸= v′. This leads to a contradiction that u is
M -unambiguous because (u, k) ∼=∗ (v′, k) implies that v′ is M -equivalent to u.
We can prove similarly for E2, E3, E4, E5, E7. Thus, Lamb ⊆ X. ⊓⊔

Theorem 4 establishes an identification for M -ambiguous words over a ternary
alphabet. Then, the following result is immediate.

Corollary 2. For Σ3 = {0 < 1 < 2} and u ∈ Σ∗
3 , we have that u is M -

unambiguous if and only if u /∈ Lamb.

Using the regular expression in Theorem 4, we find allM -unambiguous words
that are missing in Şerbănuţă and Şerbănuţă [4]. Figure 4 is the minimal DFA
for such missing M -unambiguous words.

5 Conclusions

We have presented a polished and complete characterization of M -equivalence
and M -unambiguity over a ternary alphabet using ∼=∗-relation. While the prob-
lem was solved for a binary alphabet, the larger-alphabet case has been open. We
have presented key characteristics of M -equivalence and M -unambiguity over a
ternary alphabet based on our substitution rules and ∼=∗-relation. This result
facilitates exploring further combinatorial properties of M -equivalent words.



M -equivalence of Parikh Matrix over a Ternary Alphabet 13

0

86

1

172

2
2580

1

3442

430
0

2

5161

0

687
1

7731

945

1

12032

1547
0

1633

1

1719
0

934

2
1

1891

2

1104

0

16381

1812

1

1

2323
0

1

2328

0

24091

1
2

25811

3015
1

3022

1

0

30891

3186

2

2

0

1

2

1

1
42062

4306
1

49861

1

51700

0
1

56891 59492

2

1

Fig. 4. An FA for M -unambiguous words missing in Şerbănuţă and Şerbănuţă [4].

Our equivalence relation is well-defined for a ternary alphabet but it can also
be developed with further substitution rules for larger alphabets. We plan to
extend ∼=-relation to arbitrary alphabets and continue working towards estab-
lishing equivalent relations to M -equivalence and M -unambiguity. We also aim
to address open problems related to other properties of Parikh matrices, such as
ME-equivalence, strong M -equivalence, and weak M -relation [11, 14].

Acknowledgments

We thank all the reviewers for their valuable comments. We also appreciate Wen
Chean Teh for pointing out an error in the previous manuscript.

This research was supported by the NRF grant funded by MIST (NRF-RS-
2023-00208094). The first two authors contributed equally.

References

1. Atanasiu, A.: Parikh matrix mapping and amiability over a ternary alphabet. In:
Discrete Mathematics and Computer Science. pp. 1–12 (2014)

2. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theo-
retical Computer Science 390(1), 102–109 (2008)

3. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fundamenta Informaticae 49(4), 289–299 (2002)

4. Şerbănuţă, V.N., Şerbănuţă, T.F.: Injectivity of the Parikh matrix mappings re-
visited. Fundamenta Informaticae 73(1–2), 265–283 (2006)

5. Fossé, S., Richomme, G.: Some characterizations of Parikh matrix equivalent bi-
nary words. Information Processing Letters 92(2), 77–82 (2004)

6. Ibarra, O.H., Ravikumar, B.: On the Parikh membership problem for FAs, PDAs,
and CMs. In: Proceedings of the 8th Language and Automata Theory and Appli-
cations. pp. 14–31 (2014)

7. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Information
and Control 47, 155–165 (1980)



14 Hahn et al.

8. Mateescu, A., Salomaa, A.: Matrix indicators for subword occurrences and ambi-
guity. International Journal of Foundations of Computer Science 15(2), 277–292
(2004)

9. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh map-
ping. RAIRO Informatique Theorique et Applications 35(6), 551–564 (2001)

10. Parikh, R.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
11. Poovanandran, G., Teh, W.C.: On M-equivalence and strong M-equivalence for

Parikh matrices. International Journal of Foundations of Computer Science 29(1),
123–138 (2018)

12. Salomaa, A.: On the injectivity of Parikh matrix mappings. Fundamenta Infor-
maticae 64(1–4), 391–404 (2005)

13. Teh, W.C.: On core words and the Parikh matrix mapping. International Journal
of Foundations of Computer Science 26(1), 123–142 (2015)

14. Teh, W.C., Subramanian, K.G., Bera, S.: Order of weak M-relation and Parikh
matrices. Theoretical Computer Science 743, 83–92 (2018)


