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Abstract. We introduce subtree-free regular tree languages that often
appear in XML schemas and investigate the state complexity of basic
operations on subtree-free regular tree languages. The state complexity
of an operation for regular tree languages is the number of states that are
sufficient and necessary in the worst-case for the minimal deterministic
ranked tree automaton that accepts the tree language obtained from the
operation. We establish the precise state complexity of (sequential, par-
allel) concatenation, (bottom-up, top-down) star, intersection and union
for subtree-free regular tree languages.
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1 Introduction

State complexity problem is one of the most interesting topics in automata
and formal language theory [2,8,11,12,21,26,27]. These results are mainly on the
descriptional complexity of finite automata and regular languages. For exam-
ple, Maslov [14] obtained the state complexity of catenation and later Yu et
al. [27] investigated the state complexity for basic operations. Later, the state
complexity of combined operations has been initiated by Yu et al. [5,6,24,25]
such as star-of-union, star-of-intersection and so on. Researchers also considered
the state complexity of multiple operations such as several catenations [4,5,23]
or several intersections [5]. Han et al. [9,10] observed the state complexity of
prefix-free and suffix-free regular languages that have unique structural proper-
ties in DFAs, which are crucial to obtain the state complexity. It turned out that
the state complexities of catenation and Kleene-star are both at most linear for
prefix-free regular languages due to the restrictions on the structures of DFAs.

Regular tree languages and tree automata theory provide a formal frame-
work for XML schema languages such as XML DTD, XML Schema, and Re-
lax NG [16]. XML schema languages can process a set of XML documents by
specifying the structural properties formally. Recently, Marten and Niehren [13]
considered the state complexity of tree automata for the purpose of minimiza-
tion of XML schemas and unranked tree automata. Piao and Salomaa [17,18]
also considered the state complexities between different models of unranked tree
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automata. They also investigated the state complexities of concatenation [20]
and star [19] for regular tree languages.

We consider a proper subfamily of regular tree languages, called subtree-free
regular languages. A subtree of a tree t is a tree consisting of a node in t and all
of its descendants in t. We say that a tree t1 is a supertree of a tree t2 if t2 is a
subtree of t1. Subtree-freeness means that a set of trees does not contain a tree
that is a subtree of another tree in the set. This property is useful because many
regular tree languages become subtree-free when they are used as XML schemas
in practice. XML documents should have exactly one unique root element that
is also known as the document element. The document element is, therefore,
the very first element of an XML document and encloses all other elements.
Therefore, all XML documents from a specific XML schema have the same root
element. When viewed as a set of trees, it satisfies the subtree-freeness. We tackle
the state complexities of basic operations for subtree-free regular tree languages.

In Section 2, we define some basic notions. We define the subtree-free regular
tree languages in Section 3 and observe the structural properties of the languages.
We obtain the state complexity for sequential and parallel concatenation in Sec-
tion 4, bottom-up and top-down star in Section 5, and the intersection and union
in Section 6. We conclude the paper in Section 7.

2 Preliminaries

We briefly recall definitions and properties of finite tree automata and regular
tree languages. We refer the reader to the books [3,7] for more details on tree
automata.

For a Cartesian product S = S1×· · ·×Sn, the ith projection, where 1 ≤ i ≤ n,
is the mapping πi : S −→ Si defined by setting πi(s1, . . . , sn) = si. A ranked
alphabet Σ is a finite set of characters and we denote the set of elements of
rank m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of Σ-labeled trees, where
a node labeled by σ ∈ Σm always has m children. We use FΣ to denote a set
of trees over Σ that is the smallest set S satisfying the following condition: if
m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S. Let t(u ← s) be
the tree obtained from a tree t by replacing the subtree at a node u of t with a
tree s. The notation is extended for a set U of nodes of t and S ⊆ FΣ : t(U ← S)
is the set of trees obtained from t by replacing the subtree at each node of U by
some tree in S.

A nondeterministic bottom-up tree automaton (NTA) is specified by a tu-
ple A = (Σ,Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states,
Qf ⊆ Q is a set of final states and g associates each σ ∈ Σm to a mapping
σg : Qm −→ 2Q, where m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define
inductively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g,
for 1 ≤ i ≤ m, such that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states
of Q that A may reach by reading the tree t. Thus, the tree language accepted
by A is defined as follows: L(A) = {t ∈ FΣ | tg ∩Qf 	= ∅}.

The intermediate states of a computation, or configurations, of A are trees
where some leaves may be labeled by states of A. Thus the set of configurations
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of A consists of Σ′-trees, where Σ′
0 = Σ0 ∪ {Q} and Σ′

m = Σ when m ≥ 1. The
set of configurations is denoted as FΣ [Q]. The automaton A is a deterministic
bottom-up tree automaton (DTA) if, for each σ ∈ Σm, where m ≥ 0, σg is a
partial function Qm −→ Q.

For tree languages, there are two types of concatenations and two types of
Kleene-star: sequential concatenation, parallel concatenation, bottom-up Kleene-
star and top-down Kleene-star. We follow the definitions and notations of the
operations from the prior work [19,20]. We denote the set of leaves of a tree
t labeled σ by leaf(t, σ). For σ ∈ Σ0, T1 ⊆ FΣ and t2 ∈ FΣ , we define the
sequential σ-concatenation of T1 and t2 as follows: T1 ·sσ t2 = {t2(u ← t1) |
u ∈ leaf(t2, σ), t1 ∈ T1}. Therefore, T1 ·sσ t2 is the set of trees obtained from
t2 by replacing a leaf labeled by σ with a tree in T1. We extend the sequential
σ-concatenation operation to the tree languages T1, T2 ⊆ FΣ as follows: T1 ·sσ
T2 =

⋃
t2∈T2

T1 ·sσ t2. The parallel σ-concatenation of T1 and t2 is defined as
T1 ·pσ t2 = t2(leaf(t2, σ) ← T1). Thus, T1 ·pσ t2 is the set of trees obtained from
t2 by replacing all leaves labeled by σ with a tree in T1. Note that the parallel
σ-concatenation also can be extended to the tree languages.

We observe that the sequential σ-concatenation is associative whereas the
parallel version is not associative. Due to the non-associativity of the sequen-
tial concatenation, we have two variants of iterated sequential concatenations:
sequential top-down σ-star and sequential bottom-up σ-star. We only consider
the sequential σ-star operations since the iterated parallel concatenation does
not preserve regularity [19]. For σ ∈ Σ0 and T ⊆ FΣ , we define the sequential
top-down σ-star of T to be T s,t,∗

σ =
⋃

k≥0 T
s,t,k
σ by setting T s,t,0

σ = {σ} and

T s,t,k
σ = T ·sσ T s,t,k−1

σ for k ≥ 1. Similarly, we define the sequential bottom-
up σ-star of T to be T s,b,∗

σ =
⋃

k≥0 T
s,b,k
σ by setting T s,b,0

σ = {σ}, T s,b,1
σ = T

and T s,b,k
σ = T s,b,k−1

σ ·sσ T for k ≥ 2. Since we only consider the sequential
σ-star operations, we call the sequential top-down (bottom-up, respectively) σ-
star the top-down (bottom-up, respectively) σ-star and denote by T t,∗

σ (T b,∗
σ ,

respectively) instead of T s,t,∗
σ (T s,b,∗

σ , respectively) in the remaining sections.

3 Subtree-Free Regular Tree Language

There are several subfamilies of (regular) languages such as prefix-free, suffix-free
and infix-free (regular) languages. For regular languages, some of these subfam-
ilies have unique structural properties in their minimal DFAs and these proper-
ties often make the state complexity of the considered subfamilies different from
that of general regular languages. For regular tree languages, we can similarly
define proper subfamilies by adding some restrictions on the structure of minimal
DTAs. We consider subtree-freeness in a tree language and define a subtree-free
tree language as follows:

Definition 1. A tree language L is subtree-free if, for any two trees t1 and t2
from L, t1 is not a proper subtree of t2.
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We can extend the subtree-freeness to the family of regular tree languages and
define subtree-free regular tree languages. Then, the minimal DTAs recognizing
the family have the following structural properties. It is interesting to note that
the subtree-freeness of the tree language corresponds to the prefix-freeness of
the string language since tree automata operate in the bottom-up direction.

Lemma 1. A regular tree language L is subtree-free if and only if its minimal
DTA A for L has only one final state and there is no transitions whose left-hand
sides contain the final state.

Recall that a regular language is prefix-free if and only if the unique final state of
its minimal DFA does not have any out-transitions [1]. The properties of subtree-
free regular tree languages in Lemma 1 are similar to that of prefix-free regular
languages. This leads us to the following question: Are the state complexities
for subtree-free regular tree languages similar to those for prefix-free regular
languages considered by Han et al. [10]?

4 State Complexity of Concatenation

There are two types of concatenation operations when we consider the state com-
plexity of regular tree languages. Piao and Salomaa [20] gave formal definitions
of sequence and parallel concatenations and established two state complexities
of regular tree languages for the operations. Note that the state complexity of
regular tree languages considers incomplete minimal DTAs [19,20].

4.1 Sequential Concatenation

We first consider the state complexity of the sequential concatenation operation
for subtree-free regular tree languages. We note that the state complexity of
sequential concatenation obtained here differs from the state complexity of string
concatenation since we need to remember the node where the σ-substitution has
occurred.

Lemma 2. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2 states,
respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + n2 + 1)− 1 states are
sufficient for the minimal DTA of L(A1) ·sσ L(A2).

For the tight bound, we define subtree-free DTAs A and B such that state
complexity of L(A) ·sσ L(B) reaches the upper bound in Lemma 2. We choose
Σ = Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = {d}, Σ1 = {a, b, c} and Σ2 = {a2, b2}. Let
A = (Σ,QA, qA,F , gA), where QA = {0, 1, . . . , n1 − 1}, qA,F = n1 − 1 and the
transition function gA is defined as follows:

– dgA = 0,
– agA(i) = (a2)gA(i, i) = i+ 1, 0 ≤ i ≤ n1 − 2,
– bgA(i) = (b2)gA(i, i) = i, 0 ≤ i ≤ n1 − 2,
– cgA(i) = i, 0 ≤ i ≤ n1 − 2.
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Similarly, we defineB = (Σ,QB, qB,F , gB), whereQB = {0, 1, . . . , n2−1}, qB,F =
n2 − 1 and the transition function gB is defined as follows:

– dgB = 0,
– agB (i) = (a2)gB (i, i) = i, 0 ≤ i ≤ n2 − 2,
– bgB (i) = (b2)gB (i, i) = i+ 1, 0 ≤ i ≤ n2 − 2,
– cgB (i) = i+ 1, 0 ≤ i ≤ n2 − 3 and cgB (n2 − 2) = (c2)gB (n2 − 2, n2 − 2) = 0.

Note that both the final states of A and B do not have any out-transitions, thus,
L(A) and L(B) are subtree-free regular tree languages. Now we show that the
upper bound in Lemma 2 is reachable. Let C = (Σ,QC , QC,F , gC) be a new
DTA constructed from A and B as in the proof of Lemma 2.

Lemma 3. All states of C are reachable and pairwise inequivalent.

From Lemma 2 and Lemma 3, we establish the following result.

Theorem 1. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2

states, respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + n2 + 1) −
1 states are sufficient and necessary in the worst-case for the minimal DTA
of L(A1) ·sσ L(A2).

4.2 Parallel Concatenation

The parallel concatenation L1 ·pσL2 is called the σ-product of L1 and L2 [7]. Piao
and Salomaa obtained the state complexity of parallel concatenation [20], which
is similar to that of catenation for regular string languages The state complexity
of subtree-free regular tree languages for parallel concatenation turns out to be
similar to the DFA state complexity for prefix-free regular languages [10].

Theorem 2. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2

states, respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, n1+n2−1 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ·pσ L(A2).

Proof. Let A1 and A2 be two subtree-free DTAs Ai = (Σ,Qi, qi,F , gi), for i =
1, 2. We denote the set containing the undefined state (qsink) with Qi by Q′

i;
Q′

i = Qi ∪ {qsink}. We construct a new DTA B = (Σ,QB, qD,F , gB), where
QB = Q′

2 ×Q′
1, QB,F = {q ∈ QB | π1(q) = q2,F }, and gB is defined as follows:

For τ ∈ Σ0, we define

τgB =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σg2 , τg1) if τg1 = q1,F ,

(qsink, τg1) if τg1 is defined and τg1 	= q1,F ,

(τg2 , qsink) if τg2 is defined,

undefined, if τg2 and τg1 are both undefined.

For τ ∈ Σm and (pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB ((p1, q1), . . . , (pm, qm)) to be
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(i) (σg2 , τg1(q1, . . . , qm)) if τg1(q1, . . . , qm) = q1,F .
(ii) (τg2(p1, . . . , pm), qsink) if τg2(p1, . . . , pm) is defined.
(iii) undefined, otherwise.

Now we consider the computation of the new DTA B. The first component of a
state in QB simulates A2 assuming that every leaf node labeled by σ is substi-
tuted with a tree in L(A1). The second component of a state in QB simulates
A1 and changes the first component into σg2 when it becomes the final state of
A1. Since each state of B is a pair of states from A2 and A1, the total number of
states is (n1+1)(n2+1). However, the states of D consist of two states from Q1

and Q2, respectively, are unreachable by the construction except (σg2 , q1,F ) that
can be merged with (σg2 , qsink). We have one more unreachable state (qsink , q1,F )
since the first component should be σg2 when the second component is the final
state of A1. Furthermore, we remove the undefined state (qsink,qsink). Therefore,
the upper bound is n1 + n2 − 1. The lower bound example for parallel concate-
nation can be given by unary tree languages. Let word(t) denote the sequence of
symbols labeling the nodes of a unary tree t in a bottom-up way. For instance,
word(t) for a unary tree t = b(a1(. . . an(x) . . .)) is anan−1 · · ·a1b. Note that the
label of the leaf (which is x in t) is not included. Let L1 and L2 be subtree-free
regular tree languages accepting unary trees t1 and t2 such that word(t1) = an1−1

and word(t2) = an2−1, respectively. It is easy to verify that n1 (respectively, n2)
states are necessary for recognizing L1 (respectively, L2). By parallel concate-
nation, L1 ·pσ L2 recognizes a tree t′ such that word(t′) = an1+n2−2. It is easy to
observe that n1 + n2 − 1 states are necessary for L1 ·pσ L2. Thus, we know that
n1 + n2 − 1 is a tight bound for the parallel concatenation operation. �


5 State Complexity of Kleene-Star

Piao and Salomaa [19] gave definitions of two types of Kleene-star operations:
bottom-up star and top-down star operations and obtained the tight state com-
plexities for the operations. Note that they only considered the sequential vari-
ants of iterated concatenation as Kleene-star operation on trees since the parallel
version does not preserve regularity [19]. We also observe that the same holds
for subtree-free regular tree languages.

5.1 Bottom-Up Star

First we give an upper bound for the state complexity of subtree-free regular
tree languages for bottom-up Kleene-star operation.

Lemma 4. Let A = (Σ,Q, qF , g) be a subtree-free minimal DTA with n states,
where n ≥ 2. For σ ∈ Σ0, 2n + 1 states are sufficient for the minimal DTA
of L(A)b,∗σ .

Proof. Let Q′ = Q ∪ {qsink}. We construct a new DTA B = (Σ,QB, QB,F , gB)
recognizingL(A)b,∗σ , whereQB = Q′×Q′∪{qnew} andQB,F = {(qF , qsink), qnew}.
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We reach qnew by reading a single node tree labeled by σ. Therefore, we define
the transitions of qnew to be equal to those of (qsink , σg) except that qnew is a final
state and (qsink, σg) is not necessarily a final state. We assume that σg is well de-
fined without loss of generality because otherwise, L(A)b,∗τ = L(A)b,0τ ∪L(A)b,1τ =
{σ} ∪ L(A). For τ ∈ Σ0 \ {σ}, we define

τgB =

⎧
⎪⎨

⎪⎩

(σg, τg) if τg = qF ,

(qsink, τg), if τg is defined and τg 	= qF ,

undefined, if τg is undefined.

For τ ∈ Σm and (pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB ((p1, q1), . . . , (pm, qm)) to be

(i) (σg, τg(q1, . . . , qm)) if τg(q1, . . . , qm) = qF .
(ii) (qsink, τg(q1, . . . , qm)) if τg(q1, . . . , qm) 	= qF is defined.
(iii) (x, qsink) if τg(q1, . . . , qm) is undefined. Here, x is

– τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) if τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) is de-
fined and pj is undefined for 1 ≤ j ≤ m and i 	= j.

– qsink, otherwise.
(iv) undefined, otherwise.

The second component of a state in QB simply simulates A while the first com-
ponent of the state in QB simulates A under the assumption that at least a leaf
labeled by σ has been replaced by a tree in L(A)b,kσ , where k ≥ 0. Note that the
total number of states in QB is (n+1)2+1. When the second component reaches
the final state qF , we should have σg in the first state. After we reach (σg, qF ),
the second component should be qsink, since there is no transition defined for
the final state. Thus, a state pair in QB cannot be in a form of (pi, qi) ∈ Q×Q
except (σg , qF ). Therefore, we have n2 − 1 unreachable states. We can merge
two final states into one since (qF , qsink) has no out transitions. After we merge
two states, the resulting state has the transitions of (qsink, σg) and, thus, the
resulting automaton is still deterministic. Furthermore, we remove one more
state (qsink, qsink), which is undefined. Therefore, the sufficient number of states
for L(A)b,∗σ is 2n+ 1. �

We show a lower bound example whose state complexity corresponds to the
upper bound in Lemma 4. Let Σ = Σ0 ∪Σ1 ∪Σ2, where Σ0 = {e}, Σ1 = {a, b}
and Σ2 = {a2, b2}. We define a subtree-free DTA D = (Σ,QD, qD,F , gD), where
QD = {0, 1, . . . , n − 1}, qD,F = n − 1 and the transition function gD is defined
as follows:

– egD = 0,
– agD (i) = (a2)gD (i, i) = i+1, 0 ≤ i ≤ n−3, agD(n−2) = (a2)gD (n−2, n−2) =

0,
– bgD (n− 2) = (b2)gD (n− 2, n− 2) = n− 1.

All transitions of gD not defined above are undefined. Using D and the upper
bound construction of the proof of Lemma 4, we construct a new DTA E =
(Σ,QE, QE,F , gE) accepting L(D)b,∗e , namely L(D)b,∗e = L(E).
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Lemma 5. All states of E are reachable and pairwise inequivalent.

Theorem 3. Let A be a subtree-free minimal DTA with n states, where n ≥ 2.
For σ ∈ Σ0, 2n+ 1 states are sufficient and necessary in the worst-case for the
minimal DTA of L(A)b,∗σ .

5.2 Top-Down Star

Now we investigate the state complexity for top-down star of subtree-free regular
tree languages. Note that the state complexity of regular tree languages for top-
down star coincides with the state complexity of regular string languages for
star [19]. We show that the state complexity of subtree-free regular tree languages
for top-down star also coincides with that of prefix-free regular string languages
for star.

Theorem 4. Let A = (Σ,Q, qF , g) be a subtree-free minimal DTA with n states,
where n ≥ 2. For σ ∈ Σ0, n states are sufficient and necessary in the worst-case
for the minimal DTA of L(A)t,∗σ .

Proof. The upper bound construction for the top-down star operation is straight-
forward since it is similar to the construction of the Kleene-star operation for
prefix-free languages [10]. We define B = (Σ,QB, QB,F , gB), where QB = Q ∪
{qnew} and QB,F = {qnew, qF }. As in the proof of Lemma 4, qnew is defined as
a state that is reached by reading a single node tree labeled by σ. Therefore, we
define the transitions of qnew to be equal to those of σg except that qnew is a
final state and σg is not necessarily a final state.

For τ ∈ Σ0 \ {σ}, we define τgB to be equal to σgB if τg = qF . Otherwise, we
set τgB = τg. For τ ∈ Σm and qi ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB (q1, . . . , qm) to be

(i) σg if τg(q1, . . . , qm) = qF .

(ii) τg(q1, . . . , qm) if τg(q1, . . . , qm) 	= qF is defined.

(iii) undefined, otherwise.

There are now n+1 states in QB and we merge two states qF and qnew into one
state while maintaining determinism since qF does not have any out-transitions.
Thus, the sufficient number of states for L(A)t,∗σ is n.

Now we show that n states are necessary for recognizing L(A)t,∗σ by a simple
lower bound. Let L be the following unary tree language:

L(A) = {t | word(t) = an−1}.

It is easy to verify that a DTA A needs at least n states for recognizing L. Then,
we construct a DTA B as described in the upper bound construction. Note that
B accepts L(A)t,∗σ and has n states. Therefore, n is a tight bound for the minimal
DTA of L(A)t,∗σ . �
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6 Intersection and Union

For regular languages, the state complexities of intersection and union are quite
trivial. The upper bound construction is based on the Cartesian product of states
and yields n1n2 states. Yu et al. [27] showed that n1n2 is tight. For regular
tree languages, the tight bounds of intersection and union are similar to the
string case. Since we consider incomplete DTAs, it is easy to verify that the
state complexities for intersection and union are n1n2 + n1 + n2. The state
complexities of subtree-free regular tree languages for intersection and union
operations are the same as those of prefix-free regular string languages [10].
The exact complexities are slightly different since we consider incomplete DTAs.
First, we establish the tight bound of intersection for subtree-free regular tree
languages as follows.

Theorem 5. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2

states, respectively, where n1, n2 ≥ 2. Then, n1n2−n1−n2+2 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ∩ L(A2).

Proof. Let A1 and A2 be two subtree-free DTAs, where Ai = (Σ,Qi, qi,F , gi) for
i = 1, 2. We construct a new DTA B = (Σ,QB, QB,F , gB), where QB = Q1 ×
Q2, QB,F = {q ∈ QB | π1(q) = q1,F and π2(q) = q2,F }, and gB is defined as
follows. For τ ∈ Σ0, we define τgB = τg1 × τg2 . For τ ∈ Σm and (pi, qi) ∈ QB,
where m ≥ 1 and 1 ≤ i ≤ m, we define τgB ((p1, q1), . . . , (pm, qm)) to be

(i) (τg1(p1, . . . , pm), τg2(q1, . . . , qm)) if τg1(p1, . . . , pm) and τg2(q1, . . . , qm) are
both defined.

(ii) undefined, otherwise.

Now B has n1n2 states. We assume that a state in QB contains q1,F or q2,F ,
which is the final state of A1 or A2, respectively. Since A1 and A2 have no
transitions defined for their final states, there are no transitions defined for the
corresponding states in B, either. Note that the number of states containing q1,F
or q2,F is n1+n2− 1. Among these states, (q1,F , q2,F ) is the final state while the
others are non-final. We remove n1 + n2 − 2 non-final states, which are the sink
states. Then, the sufficient number of states for intersection is n1n2−n1−n2+2.
We give lower bound examples whose state complexity meets the upper bound.
Let L1 and L2 be subtree-free unary tree languages as follows:

L1 = {t | word(t) = (an1−1)∗} and L2 = {t | word(t) = (an2−1)∗},
Then, two DTAs A1 and A2 need at least n1 and n2 states for recognizing L1 and
L2, respectively. Assume n1−1 and n2−1 are relatively prime. Then, L1∩L2 =
{t | word(t) = (a(n1−1)(n2−1))∗} and thus, requires at least n1n2 − n1 − n2 + 2
states. �

Next, we examine the state complexity of union.

Theorem 6. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2

states, respectively, where n1, n2 ≥ 2. Then, n1n2+n1+n2−2 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ∪ L(A2).
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Proof. Let A1 and A2 be two subtree-free DTAs Ai = (Σ,Qi, qi,F , gi) for i = 1, 2.
Let Q′

i = Qi ∪ {qsink}. We construct a new DTA B = (Σ,QB, QB,F , gB), where
QB = Q′

1 × Q′
2, QB,F = {q ∈ QB | π1(q) = q1,F or π2(q) = q2,F }, and gB is

defined as follows. For τ ∈ Σ0, we define τgB = τg1 × τg2 . For τ ∈ Σm and
(pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define τgB ((p1, q1), . . . , (pm, qm))
to be

(i) (τg1(p1, . . . , pm), τg2(q1, . . . , qm)) if either τg1(p1, . . . , pm) or τg2(q1, . . . , qm)
is defined.

(ii) undefined, otherwise.

Note that we have (n1 + 1)(n2 + 1) states. First, we remove the sink state
(qsink, qsink) and merge three final states (qsink, q2,F ), (q1,F , qsink) and (q1,F , q2,F )
into one final state since they are all equivalent. Thus, the cardinality of B is
n1n2 + n1 + n2 − 2. Now we consider a lower bound example for the claimed
upper bound. We choose Σ = Σ0 ∪Σ1, where Σ0 = {e} and Σ1 = {a, b}. Let L1

and L2 be subtree-free unary tree languages as follows:

L1 = {t1 | word(t1) = w1a and |w1|a = n1 − 2},
L2 = {t2 | word(t2) = w2b and |w2|b = n2 − 2}.

Note that there are the minimal DTAs of size n1 and n2 for L1 and L2, respec-
tively. Let M be a new DTA recognizing L1 ∪ L2. Then, M should count both
a’s and b’s simultaneously. Since the number of a’s can be from 0 to n1 − 2 and
the number of b’s can be from 0 to n2 − 2, M requires (n1 − 1)(n2 − 1) states.
Assume that M reads (n1 − 1)’th a, then M should be in one of n2 − 1 final
states depending on the number of b’s that we have read. Similarly, M reaches
n2 − 1 non-final states by reading more a’s from the final states. Analogously,
M reaches n1 − 1 final states and n1 − 1 non-final states by reading (n2 − 1)’th
and n2’th b. Now the number of necessary states is n1n2 + n1 + n2 − 3. We
have one more final state that is reached by reading a unary tree such that
word(t) = an1−1bn2−1. Therefore, it follows that n1n2 + n1 + n2 − 2 states are
necessary for union. �


Table 1. Comparison table among the state complexity of basic operations for subtree-
free, general regular tree languages and prefix-free regular string languages

operations subtree-free general prefix-free (string)

L1 ·sσ L2 (n+ 1)(m+ n+ 1) − 1 (n+ 1)(m · 2n + 2n−1)− 1
m+ n− 2

L1 ·pσ L2 m+ n− 1 m · 2n + 2n−1 − 1

Lb,∗
σ 2n+ 1 (n+ 1)2n−1 + 2n−2

n
Lt,∗

σ n 2n−1 + 2n−2

L1 ∩ L2 mn−m− n+ 2 mn+m+ n mn− 2(m+ n) + 6

L1 ∪ L2 mn+m+ n− 2 mn+m+ n mn− 2
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7 Conclusions

Regular tree languages often appear to be subtree-free in practice. For instance,
all XML documents from a specific XML schema have a unique root element and,
thus, the set of such documents is a subtree-free tree language. We have defined
the family of subtree-free regular tree languages, which is a proper subfamily
of regular tree languages. Then, we have investigated the state complexity of
subtree-free regular tree languages and obtained the tight bounds.

We have summarized the tight bounds and compared with that of general
regular tree languages in Table 1. We have shown that the tight bounds of basic
operations for subtree-free regular tree languages are linear (parallel concate-
nation, bottom-up star and top-down star) or at most quadratic (sequential
concatenation, intersection and union) with respect to the sizes of input DTAs.
We also have compared with the state complexity prefix-free regular string lan-
guages. Interestingly, the state complexity of subtree-free regular tree languages
coincides with the state complexity of the incomplete DFAs for prefix-free regular
string languages.
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