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Abstract. We study the state complexity of regular tree languages for
tree matching problem. Given a tree t and a set of pattern trees L, we
can decide whether or not there exists a subtree occurrence of trees in L
from the tree t by considering the new language L′ which accepts all trees
containing trees in L as subtrees. We consider the case when we are given
a set of pattern trees as a regular tree language and investigate the state
complexity. Based on the sequential and parallel tree concatenation, we
define three types of tree languages for deciding the existence of different
types of subtree occurrences. We also study the deterministic top-down
state complexity of path-closed languages for the same problem.

Keywords: tree automata, state complexity, tree pattern matching,
regular tree languages.

1 Introduction

State complexity is one of the most interesting topics in automata and formal
language theory [6,7,18,19]. The state complexity of finite automata has been
studied since the 60’s [8,10,11]. Maslov [9] initiated the problem of finding the
operational state complexity and Yu et al. [19] investigated the state complexity
for basic operations.

Recently, the state complexity problem has been extended to regular tree
languages. Regular tree languages and tree automata theory provide a formal
framework for XML schema languages such as XML DTD, XML Schema, and
Relax NG [12]. XML schema languages can process a set of XML documents
by specifying the structural properties. Piao and Salomaa [14,15] considered the
state complexity between different models of unranked tree automata. They also
investigated the state complexity of concatenation [17] and star [16] for regular
tree languages. Two of the authors studied the state complexity of subtree-free
regular tree languages, which are a proper subclass of regular tree languages [3].

Since a regular tree language is a set of trees, it is suitable for representing a
set of structural documents such as XML documents, web documents, or RNA
secondary structures. This implies that a regular tree language can be used as a
theoretical toolbox for processing of the structured documents. When it comes
to the string case, many researchers often use regular languages to process a
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set of strings efficiently. Consider the case that we have a set of strings which
is a regular language L. Now we want to find any occurrence of strings in L
from a text T . The most common way is to construct an FA A that accepts a
regular language Σ∗L [2]. Then, we read T using A and check whether or not
A reaches a final state. When A reaches a final state, we find that there is an
occurrence of a matching string of L in T. We extend this approach to the tree
matching problem [5]. First, we formally define the tree matching problem to be
the problem of finding subtree occurrences of a tree in L from a set of trees T .
Since a tree can be processed in a bottom-up or a top-down fashion, we need to
consider different types of tree languages for the tree matching problem.

Here we consider three types of tree substructures called a subtree, a topmost
subtree and an internal subtree. Given a tree language L, we construct three
types of tree languages recognizing trees which contain the trees in L as sub-
trees, topmost subtrees and internal subtrees. Note that these tree languages
can be used for the tree matching problem as we have used Σ∗L for the string
pattern matching problem. In particular, we tackle the deterministic state com-
plexity of regular tree languages and path-closed languages. Interestingly, the
tree language consisting of trees that have a subtree belonging to a path-closed
language language need not be path-closed and therefore cannot recognized by
deterministic top-down tree automata (DTTAs).

We give basic notations and definitions in Section 2. We define the three
types of tree languages for tree matching in Section 3. We present the results
on the state complexity of regular tree languages and path-closed languages
in Section 4 and Section 5. In Section 6, we conclude the paper.

2 Preliminaries

We briefly recall definitions and properties of finite tree automata and regular
tree languages. We refer the reader to the books [1,4] for more details on tree
automata. A ranked alphabet Σ is a finite set of characters and we denote the
set of elements of rank m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of
Σ-labeled trees, where a node labeled by σ ∈ Σm always has m children. We
use FΣ to denote a set of trees over Σ that is the smallest set S satisfying the
following condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S.
Let t(u ← s) be the tree obtained from a tree t by replacing the subtree at a
node u of t with a tree s. The notation is extended for a set U of nodes of t and
S ⊆ FΣ : t(U ← S) is the set of trees obtained from t by replacing the subtree
at each node of U by some tree in S.

A nondeterministic bottom-up tree automaton (NBTA) is specified by a tu-
ple A = (Σ,Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states,
Qf ⊆ Q is a set of final states and g associates each σ ∈ Σm to a mapping
σg : Qm −→ 2Q, where m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define
inductively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g,
for 1 ≤ i ≤ m, such that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states
of Q that A may reach by reading t. Thus, the tree language accepted by A is
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defined as follows: L(A) = {t ∈ FΣ | tg ∩Qf 	= ∅}. The automaton A is a deter-
ministic bottom-up tree automaton (DBTA) if, for each σ ∈ Σm, where m ≥ 0,
σg is a partial function Qm −→ Q.

A nondeterministic top-down tree automaton (NTTA) is specified by a tu-
ple A = (Σ,Q,Q0, g), where Σ is a ranked alphabet, Q is a finite set of states,
Q0 ⊆ Q is a set of initial states, and g associates each σ ∈ Σm,m ≥ 0, a map-
ping σg : Q −→ 2Q

m

. As a convention, we denote the m-tuples q1, . . . , qm by
[q1, . . . , qm]. A top-down tree automaton A is deterministic if Q0 is a singleton
set and for all q ∈ Q, σ ∈ Σm, and m ≥ 1, σg is a partial function Q −→ Qm.

The nondeterministic (bottom-up or top-down) and deterministic bottom-
up tree automata accept the family of regular tree languages whereas the de-
terministic top-down tree automata accept a proper subfamily of regular tree
languages—path-closed languages [1,4].

3 Tree Languages for Tree Pattern Matching

Pattern matching is the problem of finding occurrences of a pattern in a text.
Given an FA A for the pattern L over Σ, we can solve the problem by building
a new FA for the language Σ∗L. Then, we run the new FA with the text and
report the occurrence when the FA reaches a final state [2]. For tree pattern
matching problem, we consider the case when we are given a set of pattern trees
as a tree automaton. Note that a tree can be processed in a bottom-up way
with a bottom-up TA or a top-down way with a top-down TA. Therefore, we
consider three types of tree languages that can be used for tree pattern matching
problem.

First we introduce our definitions for different tree substructures. We provide
graphical examples for the definitions in Fig. 1.

t

(a) A subtree t

t

(b) A topmost subtree t

t

(c) An internal subtree t

Fig. 1. We define three types of subtrees called a subtree, a topmost subtree and an
internal subtree. These figures depict the examples.

Definition 1. A subtree of a tree t is a tree consisting of a node in t and all of
its descendants in t.
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If a tree t1 is a subtree of t2, then we call t2 is a supertree of t1. Given a tree
t and a regular tree language L, we first compute a new regular tree language
L′ that accepts all possible supertrees of trees in L. Then, we decide whether or
not a given tree t occurs as a subtree of a tree in L by deciding t ∈ L′. Similarly,
we define the topmost subtree and the internal subtree as follows:

Definition 2. A topmost subtree of a tree t is a tree consisting of a set of nodes
in t including the root node such that from any node in the set, there exists a
path to the root node through the nodes in the set.

Definition 3. An internal subtree of a tree t can be defined as a topmost subtree
of a subtree of t.

Recall that we build a new FA that accepts Σ∗L, which is a concatenation
of a universal language Σ∗ and a given language L, for matching a language L
of string patterns. For tree pattern matching problem, we need to consider how
to define the concatenation of trees properly. Recently, Piao and Salomaa [17]
studied the state complexity of the concatenation of regular tree languages. They
defined the sequential σ-concatenation and parallel σ-concatenation where the
substitutions can occur at σ-labeled leaves.

We consider a more generalized operation that allows substitution to occur at
all leaves regardless of labels. We denote the set of leaves of a tree t by leaf(t).
Then, for T1 ⊆ FΣ and t2 ∈ FΣ , we define the sequential concatenation of T1

and t2 to be T1 ·s t2 = {t2(u ← t1) | u ∈ leaf(t2), t1 ∈ T1}. In other words,
T1 ·s t2 is a set of trees obtained from t2 by replacing a leaf with a tree in T1. We
extend the sequential concatenation operation to the tree languages T1, T2 ⊆ FΣ

as follows:
T1 ·s T2 =

⋃

t2∈T2

T1 ·s t2.

The parallel concatenation of T1 and t2 is

T1 ·p t2 = {t2(leaf(t2) ← t1) | t1 ∈ T1}.
Thus, T1 ·p t2 is a set of trees obtained from t2 by replacing all leaves with a
tree in T1. We can also extend the parallel concatenation to tree languages. Note
that Definition 2 can be presented more nicely using the parallel concatenation
operation. A tree t2 is a topmost subtree of t1 if t1 ∈ FΣ ·p t2.

Relying on the sequential and parallel tree concatenations, we construct three
types of tree languages from a regular tree language L for the tree pattern
matching problem. See Fig. 2. Given a tree language L,

(i) L ·s FΣ is a set of trees where each element contains a subtree occurrence
of a tree in L,

(ii) FΣ ·p L is a set of trees where each element contains a topmost subtree
occurrence of a tree in L, and

(iii) FΣ ·p L ·s FΣ contains trees having an internal subtree occurrence of a tree
of L.

Notice that a leaf node of a tree can be replaced with any other nodes for the
topmost subtree occurrence and the internal subtree occurrence.
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LFΣFΣ FΣ FΣ

FΣ

(a) L ·s FΣ

L

FΣFΣ FΣ FΣFΣ

(b) FΣ ·p L

LFΣFΣ FΣ FΣ

FΣ

FΣFΣ FΣ FΣFΣ

(c) FΣ ·p L ·s FΣ

Fig. 2. Three types of tree languages for tree pattern matching problem

4 State Complexity of DBTAs

First we study the state complexity of FΣ ·p L which can be used for finding
subtree occurrences of a tree in L.

Lemma 1. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−k states are sufficient for recognizing FΣ ·pL if |{σg | σ ∈ Σ0}|=k.

Proof. Without loss of generality, we assume QF ∩ {σg | σ ∈ Σ0} = ∅ because
otherwise FΣ ·pL(A) = FΣ . We present an upper bound construction of a DBTA
B for FΣ ·p L(A). Namely, L(B) = FΣ ·p L(A). We define B = (Σ,Q′, Q′

F , g
′),

where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\{σg |σ∈Σ0}}, Q′
F = {q ∈ Q′ | q ∩QF 	= ∅},

and the transitions of g′ are defined as follows:
For τ ∈ Σ0, we define

τg′ = {σg | σ ∈ Σ0}.
For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′, we define

τg′ (P1, P2, . . . , Pm) = τg(P1, P2, . . . , Pm) ∪ {σg | σ ∈ Σ0}.

Now we explain how B recognizes the tree language FΣ ·pL. Note that we define
every target state of g′ to be the union of the set of states reachable by g and
the set of states reachable by reading leaf nodes. Since every target state of g′ is
not empty, a new DBTA B is complete although A may not be complete. This
implies that a state of B contains at least the states in {σg | σ ∈ Σ0} that are
the set of states by reading leaf nodes in A. After reading any tree in FΣ , the
state of B contains {σg | σ ∈ Σ0}, and thus can simulate the trees in L(A). �

The upper bound in Lemma 1 is reachable when a DBTA accepts a set of unary
trees. If a DBTA accepts a set of unary trees, then we can regard the DBTA as



State Complexity of Regular Tree Languages for Tree Pattern Matching 251

a DFA with multiple initial states. Since the upper bound reaches the maximum
when k = 1, we consider the state complexity of catenation of L and Σ∗. Let L
be a regular language whose state complexity is n. Then, the state complexity
of Σ∗L is 2n−1 [19] which is the same as the bound in Lemma 1. Furthermore,
we show that the upper bound is tight for any 1 ≤ k ≤ n.

Choose Σ = Σ0∪Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b}. We define
a DBTA C1 = (Σ,QC1 , QC1,F , gC1), where QC1 = {0, 1, . . . , n − 1}, QC1,F =
{n− 1} and the transition function gC1 is defined by setting:

– (σi)gC1
= i− 1 (1 ≤ i ≤ k),

– agC1
(i) = i+ 1 mod n,

– bgC1
(i) = i (0 ≤ i < k),

– bgC1
(i) = i+ 1 mod n (k ≤ i < n).

Based on the construction of the proof of Lemma 1, we construct a DBTA D1 =
(Σ,QD1 , QD1,F , gD1) recognizing FΣ ·p L(C1), where QD1 = {P | {0, 1, . . . , k −
1} ⊆ P, P ⊆ QC1}, QD1,F = {P | P ∈ QD1 , P ∩QC1,F 	= ∅}, and the transition
function gD1 is defined as follows:

– (σi)gD1
= {0, 1, . . . , k − 1} (0 ≤ i ≤ k),

– agD1
(P ) = agC1

(P ) ∪ {0, 1, . . . , k − 1},
– bgD1

(P ) = bgC1
(P ) ∪ {0, 1, . . . , k − 1}.

Notice that L(D1) = FΣ ·p L(C1) by Lemma 1. In the following lemma, we
establish that D1 is a minimal DBTA by showing that all states of D1 are
reachable and pairwise inequivalent.

Lemma 2. All states of D1 are reachable and pairwise inequivalent.

Proof. First, we prove the reachability of all states of D1. Note that each state
of D1 is a set of states in C1. By the construction, the size of a state P in QD1

satisfies k ≤ |P | ≤ n since {0, 1, . . . , k−1} ⊆ P . Using induction on |P |, we show
that all states of D1 are reachable. For the basis, we have a state {0, 1, . . . , k−1}
of size k that is reachable by reading a leaf node. Assuming that all states P are
reachable for |P | ≤ x, we will show that any state P ′ is reachable when |P ′| =
x+1. Let P ′ = {0, 1, . . . , k−1, qk, qk+1, . . . , qx} be a state of size x+1. The state
P ′ is reachable from a state {0, 1, . . . , k−1, qk+1−qk+k−1, . . . , qx−qk+k−1} by
reading a sequence of unary symbols abqk−k. Therefore, all states are reachable
by induction.

Next we prove that all states of D1 are pairwise inequivalent. Pick any two
distinct states P1 and P2. Assume p ∈ P1\P2. (The other possibility is completely
symmetric.) After reading a sequence of unary symbols an−p−1, a final state is
reached from state P1 whereas P2 reaches a non-final state. Therefore, all states
of D1 are pairwise inequivalent. �


Since we have shown that there exists a corresponding lower bound for the upper
bound, the bound is tight.
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Theorem 1. Given a DBTA A with n states for a regular tree language L,
2n−k states are necessary and sufficient in the worst-case for the minimal DBTA
of FΣ ·p L if |{σg | σ ∈ Σ0}| = k.

Now we consider L·sFΣ—a tree language consists of all trees that have trees in
L as subtrees. In other words, for any tree t in L, we have all possible supertrees
of t in L′. Given a regular tree language L, it is known that L ·s FΣ is also a
regular tree language [17]. We study the state complexity of L ·s FΣ .

Lemma 3. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, n+ 1 states are sufficient for recognizing L ·s FΣ .

Proof. We construct a new DBTA B = (Σ,Q′, Q′
F , g

′) for L ·s FΣ , where Q′ =
Q ∪ {qnew}, Q′

F = QF , and the transition function g′ is defined as follows:
For τ ∈ Σ0, we define

τg′ =

{
τg if τg is defined,
qnew otherwise.

For τ ∈ Σm,m ≥ 1, q1, q2, . . . , qm ∈ Q′, and qf ∈ Q′
F , we define

τg′ (q1, q2, . . . , qm) =

⎧
⎪⎪⎨

⎪⎪⎩

τg(q1, q2, . . . , qm) if τg(q1, q2, . . . , qm) is defined and
{q1, q2, . . . , qm} ∩Qf = ∅,

qf if {q1, q2, . . . , qm} ∩Qf 	= ∅,
qnew otherwise.

Now we explain how B accepts a set of all trees that are supertrees of trees in L.
We define the transition function g′ to be complete by setting the target state
of the undefined transition as the new state qnew. Then, B moves to qnew by
reading trees in L while moving to one of its final states by reading trees in L.
Assume that B accepts a tree in L and arrives at the final state qf . After then,
B stays in qf by reading any sequence of states including the final state qf . �

We cannot reach the upper bound n+1 with any DFA in this case since the state
complexity of LΣ∗ is n which is the same as that of L, even for the incomplete
DFAs. Thus, we show that there exists a lower bound DBTA of n+ 1 states for
accepting L ·s FΣ where the state complexity of L is n to prove the tightness of
the upper bound.

Choose Σ = Σ0∪Σ1∪Σ2, where Σ0 = {c}, Σ1 = {a} and Σ2 = {b}. We define
a DBTA C2 = (Σ,QC2 , QC2,F , gC2), where QC2 = {0, 1, . . . , n − 1}, QC2,F =
{n− 1}, and the transition function gC2 is defined by setting:

– cgC2
= 0,

– agC2
(i) = bgC2

(i, i) = i+ 1 mod n.

All transitions of gC2 not listed above are undefined. Based on the construction
of the proof of Lemma 3, we construct a DBTA D2 = (Σ,QD2 , QD2,F , gD2)
recognizing L(C2) ·s FΣ , where QD2 = QC2 ∪ {n}, QD2,F = QC2,F and the
transition function gD2 is defined as follows:
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– cgD2
= 0,

– agD2
(i) = bgD2

(i, i) = i+ 1 (0 ≤ i ≤ n− 2),
– agD2

(n− 1) = bgD2
(n− 1, i) = bgD2

(i, n− 1) = n− 1 (0 ≤ i ≤ n− 1),
– agD2

(n) = bgD2
(i, j) = n (i 	= j, i 	= n− 1, j 	= n− 1).

Notice that L(D2) = L(C2) ·s FΣ by Lemma 3. In the following lemma, we
establish that D2 is a minimal DBTA by showing that all states in QD2 are
reachable and pairwise inequivalent.

Lemma 4. All states of D2 are reachable and pairwise inequivalent.

From two lemmas, we establish the following theorem.

Theorem 2. Given a DBTA A with n states for a regular tree languages L,
n+1 states are necessary and sufficient in the worst-case for the minimal DBTA
of L ·s FΣ .

We lastly consider the state complexity of FΣ ·p L ·s FΣ . Note that the se-
quential catenation of trees is not associative whereas the parallel catenation
of trees is associative. That means that there exist trees t1, t2 and t3 such that
(t1 ·s t2) ·s t3 and t1 ·s (t2 ·s t3) do not coincide. This also applies to the catena-
tion of tree languages and thus, leads to (L1 ·s L2) ·s L3 	= L1 ·s (L2 ·s L3) for
some regular tree languages L1, L2, and L3. However, we consider a special tree
language FΣ for L1 and L3 that makes (FΣ ·sL2) ·s FΣ = FΣ ·s (L2 ·s FΣ). Thus,
we simply denote the language by FΣ ·p L ·s FΣ instead of (FΣ ·s L2) ·s FΣ or
FΣ ·s (L2 ·s FΣ).

Now we tackle the state complexity of FΣ ·p L ·s FΣ .

Lemma 5. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−t−k+1 states are sufficient for recognizing FΣ ·pL·sFΣ if |QF | = t
and |{σg | σ ∈ Σ0}| = k.

Proof. Without loss of generality, we assume that QF ∩ {σg | σ ∈ Σ0} = ∅
because otherwise FΣ ·p L(A) ·s FΣ = FΣ . We give an upper bound construction
of DBTA B that recognizes FΣ ·p L(A) ·s FΣ . Namely, L(B) = FΣ ·p L(A) ·s FΣ .
We define B = (Σ,Q′, Q′

F , g
′), where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\(QF∪{σg |σ∈Σ0})} ∪ {QF}, Q′
F = {QF},

and the transitions of g′ are defined as follows:
For τ ∈ Σ0, we define τg′ = {σg | σ ∈ Σ0}.
For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′, we define

τg′ (P1, P2, . . . , Pm) =

⎧
⎪⎨

⎪⎩
τg(P1, P2, . . . , Pm) ∪ {σg | σ ∈ Σ0} if

m⋃

i=1

Pi ∩QF = ∅,
QF otherwise.

Here we do not explain how B accepts FΣ ·p L ·s FΣ because the construction
can be explained as a simple combination of two constructions given in Lemma 1
and Lemma 3. �
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We give a lower bound example that reaches the upper bound 2n−t−k + 1.
Choose Σ = Σ0 ∪Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b, c}. We de-

fine a DBTA C3 = (Σ,QC3, QC3,F , gC3), where QC3 = {0, 1, . . . , n−1}, QC3,F =
{n− t, n− t+1, . . . , n− 1} and the transition function gC3 is defined by setting:

– (σi)gC3
= i− 1 (1 ≤ i ≤ k),

– agC3
(i) = i+ 1 mod n,

– bgC3
(i) = i (0 ≤ i ≤ k),

– bgC3
(i) = i+ 1 mod n (k ≤ i < n),

– cgC3
(i) = i+ 1 mod n if i 	= n− t− 1, cgC3

(n− t− 1) = 0.

Based on the construction in the proof of Lemma 5, we construct a DBTA
D3 = (Σ,QD3 , QD3,F , gD3) recognizing FΣ ·p L(C3) ·s FΣ , where QD3 = {P |
{0, 1, . . . , k − 1} ⊆ P, P ⊆ QC3 \QC3,F }, QD3,F = {QC3,F }, and the transition
function gD3 is defined as follows:

– (σi)gD3
= {0, 1, . . . , k − 1},

– agD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if agC3

(P ) ∩QC3,F = ∅,
– agD3

(P ) = {QC3,F } if agC3
(P ) ∩QC3,F 	= ∅,

– bgD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if bgC3

(P ) ∩QC3,F = ∅,
– bgD3

(P ) = {QC3,F } if bgC3
(P ) ∩QC3,F 	= ∅,

– cgD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if cgC3

(P ) ∩QC3,F = ∅,
– agD3

({QC3,F}) = bgD3
({QC3,F }) = cgD3

({QC3,F }) = {QC3,F }.
Notice that L(D3) = FΣ ·p L(C3) ·s FΣ by Lemma 5. In the following lemma,
we establish that D3 is a minimal DBTA by showing that all states in QD3 are
reachable and pairwise inequivalent.

Lemma 6. All states of D3 are reachable and pairwise inequivalent.

Proof. We prove the reachability of all non-final states of D3 using induction on
the size of P . Note that any non-final state P ∈ QD3 satisfies k ≤ |P | ≤ m− t
because QC3,F ∩ P = ∅ and {σc | σ ∈ Σ0} ⊆ P by the construction. A state
{0, 1, . . . , k − 1} of size k is reachable by reading a leaf node. Assume that all
states P is reachable for |P | ≤ x. Then, we show that any state P ′ of size x+1 is
reachable. Let P ′ = {0, 1, . . . , k−1, qk, qk+1, . . . , qx} be a state of size x+1. Then,
the state P ′ is reached from a state {0, 1, . . . , k−1, qk+1−qk+k−1, . . . , qx−qk+1+
k − 1} after reading a sequence of unary symbols abqk−k. From the induction,
it is easy to verify that all states except QC3,F are reachable. Furthermore, the
only final state QC3,F is reachable from a non-final state {0, 1, . . . , n− t− 1} by
reading a unary symbol a.

Next we prove that all states of D3 are pairwise inequivalent. Pick any two
distinct states P1 and P2. Assume p ∈ P1 \P2. (The other possibility is symmet-
ric.) From P1, a final state is reached by reading a sequence of unary symbols
cn−t−1−pa whereas P2 does not reach the final state. Therefore, any two states
in QD3 are pairwise inequivalent. �

Theorem 3. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−t−k + 1 states are necessary and sufficient in the worst-case for
the minimal DBTA of FΣ ·p L ·s FΣ if |QF | = t and |{σg | σ ∈ Σ0}| = k.
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5 State Complexity of DTTAs

It is well known that every NBTA can be converted into an equivalent NTTA [1,4].
However, it does not mean that there always exists a DTTA for every regular tree
language. This implies that a class of regular tree languages accepted by DTTAs
is a proper subclass of regular tree languages accepted by NBTAs and NTTAs. It
is known that DTTAs recognize exactly the class of path-closed languages which
is a proper subclass of regular tree languages [1,4].

We study the state complexity of path-closed languages for tree matching.
Following the previous results, we consider three types of tree languages FΣ ·p
L, L ·s FΣ , and FΣ ·p L ·s FΣ , where L is a tree language. However, two tree
languages L ·s FΣ and FΣ ·p L ·s FΣ appear to be not path-closed languages.
Nivat and Podelski [13] argued that path-closed languages can be characterized
by a property called the subtree exchange property as follows:

Corollary 1 (Nivat and Podelski [13]). A regular tree language L is path-
closed if and only if, for every t ∈ L and every node u ∈ t, if t(u ← a(t1, . . . , tm))
∈ L and t(u ← a(s1, . . . , sm)) ∈ L, then t(u ← a(t1, . . . , si, . . . , tm)) ∈ L for each
i = 1, . . . ,m.

Using the subtree exchange property, we prove that given a tree language L,
L ·s FΣ and FΣ ·p L ·s FΣ are not path-closed languages.

Lemma 7. There exists a path-closed language L such that L ·s FΣ is not a
path-closed language.

Proof. Let Σ = Σ2∪Σ0, where Σ2 = {b}, and Σ0 = {a, c}. A singleton language
L contains a single-node tree c, namely L = {c}. It is straightforward to verify
that FΣ contains every binary tree where leaf nodes are labeled by a or c, and
non-leaf nodes are labeled by b. Then, L ·s FΣ is a set of binary trees where
every tree contains at least one leaf labeled by c. Therefore, b(a, c) ∈ L ·s FΣ ,
b(c, a) ∈ L ·s FΣ , and b(a, a) /∈ L ·s FΣ hold. However, if L ·s FΣ is path-closed,
b(a, a) should exist in L ·s FΣ by the subtree exchange property. This implies
that L ·s FΣ is not a path-closed language. �

Lemma 8. There exists a path-closed language L such that FΣ ·p L ·s FΣ is not
a path-closed language.

Proof. Let Σ = Σ2∪Σ0, where Σ2 = {a, b}, and Σ0 = {c}. A singleton language
L contains a tree a(c, c), namely L = {a(c, c)}. It is easy to verify that FΣ

contains every binary tree where all leaf nodes are labeled by c and non-leaf
nodes are labeled by a or b.

Then, FΣ ·pL·sFΣ is a set of binary trees where every tree contains at least one
non-leaf node labeled by a. Therefore, b(a(c, c), c) ∈ FΣ ·p L ·s FΣ , b(c, a(c, c)) ∈
FΣ ·p L ·s FΣ , and b(c, c) /∈ FΣ ·p L ·s FΣ . However, due to the subtree exchange
property, b(c, c) should be in FΣ ·p L ·s FΣ if the language FΣ ·p L ·s FΣ is path-
closed. This means that FΣ ·p L ·s FΣ is not a path-closed language. �
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We define the deterministic top-down state complexity of a path-closed language
L to be the number of states that are necessary and sufficient in the worst-case
for the minimal DTTA recognizing L.

Theorem 4. Given a DTTA A = (Σ,Q,Q0, g) with n states for a path-closed
language L, n states are necessary and sufficient in the worst-case for the min-
imal DTTA of FΣ ·p L.
Proof. We construct a new DTTA B = (Σ,Q′, Q′

0, g
′) for FΣ ·pL, where Q′ = Q,

Q′
0 = Q0, and the transition function g′ is defined as follows:
For τ ∈ Σm,m ≥ 0 and q ∈ Q′, we define

τg′ (q) =

⎧
⎨

⎩

τg(q) if σg(q) 	= λ for any σ ∈ Σ0,
[q, q, . . . , q]︸ ︷︷ ︸
m times

otherwise.

Now we explain how B simulates FΣ ·pL with n states. Since trees in FΣ ·pL have
the same topmost parts with trees in L and leaves can be substituted with any
tree in FΣ , B simulates from the same initial state with A. Let us assume that
a state q ∈ Q′ may end the top-down computation with generating a leaf node
since σg(q) = λ. Once B arrives at q, the new transition function g′ continues
the computation by reading a non-leaf label of rankm and generating a sequence
[q, q, . . . , q] of states whose length is m. This makes a new DTTA B to generate
any subtree in FΣ at the point where the computation may end with generating
leaves and, thus, recognize the language FΣ ·p L.

It is easy to verify that n states are necessary to recognize FΣ ·pL. Consider a
path-closed language of unary trees whose state complexity correspond to that
of regular string languages. Since the state complexity of LΣ∗ is n if the state
complexity of L is n, this case can be a lower bound for the path-closed language
FΣ ·p L. �


6 Conclusions

We have considered three tree languages FΣ ·p L, L ·s FΣ , and FΣ ·p L ·s FΣ

motivated from the tree pattern matching problem and have established the
state complexity of these languages described by DBTAs and DTTAs. We have
also shown that L ·s FΣ and FΣ ·p L ·s FΣ are not recognizable by DTTAs even
when L is a path-closed language since they are not necessarily path-closed
languages. In addition, we have demonstrated that L ·s FΣ and FΣ ·p L ·s FΣ

need not be path-closed and therefore cannot recognized by DTTAs. In future,
we aim to investigate the descriptional complexity of unranked tree automata,
which are a more generalized model than tree automata over ranked alphabet,
for recognizing L ·s FΣ and FΣ ·p L ·s FΣ .
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