
The State Complexity of Permutations on Finite
Languages over Binary Alphabets

Alexandros Palioudakis1, Da-Jung Cho1, Daniel Goč2, Yo-Sub Han1,
Sang-Ki Ko1, and Kai Salomaa2(B)

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemum-Gu, Seoul 120–749, Republic of Korea
{alex,dajung,emmous,narame7}@cs.yonsei.ac.kr

2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{goc,ksalomaa}@cs.queensu.ca

Abstract. We investigate the state complexity of the permutation oper-
ation over finite binary languages. We first give an upper bound of the
state complexity of the permutation operation for a restricted case of
these languages. We later present a general upper bound of the state
complexity of permutation over finite binary languages, which is asymp-
totically the same as the previous case. Moreover, we show that there is
a family of languages that the minimal DFA recognizing each of these
languages needs at least as many states as the given upper bound for
the restricted case. Furthermore, we investigate the state complexity of
permutation by focusing on the structure of the minimal DFA.

Keywords: Finite automata · State complexity · Finite languages ·
Permutation · Parikh equivalence

1 Introduction

Finite automata are well studied in the theory of computation. McCulloch and
Pitts [14] first introduced this model of computation. Following on these ideas
Kleene [10] wrote the first paper on finite automata and regular expressions.
Later, Rabin and Scott [18] first studied the nondeterministic version of finite
automata, for which they received the Turing Award, the highest award in com-
puter science.

Since then, much work has been done in the descriptional complexity of
finite automata [12,13,15,16]. The descriptional complexity of finite automata
is usually measured in the number of transitions or the number of states that a
finite automaton requires in order to accept a given language. Most researchers
have focused on the state complexity of finite automata [6,9].

A widely studied topic in the state complexity of finite automata is the
state complexity of language operations. Yu et al. [20] studied the state com-
plexity of some basic operations. Han and Salomaa [7] studied the state com-
plexity of union and intersection of finite languages. Holzer and Kutrib [8]
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 220–230, 2015.
DOI: 10.1007/978-3-319-19225-3 19

The State Complexity of Permutations 221

studied the nondeterministic state complexity of some basic language operations.
Câmpeanu et al. [1] studied the state complexity of basic language operation for
finite languages. Domaratzki [2] studied the state complexity of proportional
removals and recently, Goč et al. [5] studied the nondeterministic state complex-
ity of proportional removals. For more information on the state complexity of
language operations, the reader can consult the recent review by Gao et al. [4].

Here we investigate the operational state complexity of the permutation oper-
ation. The family of regular languages is not closed under permutation and,
hence, in this paper we focus on finite languages. We first compute an upper
bound of the state complexity of the permutation on a restricted case of regular
languages over binary alphabets. We show an upper bound for the state com-
plexity of permutation for general binary finite languages. We mention that the
permutation operation is related to the Parikh mapping, which maps each string
over n letters to an n-dimensional vector whose components give the number of
occurrences of the letters in the string [11,17]. Ellul et al. [3] have given strong
lower bounds for the size of NFAs or regular expressions recognizing permuta-
tions of symbols of a growing alphabet.

In Sect. 2, we briefly present definitions and notation used throughout the
paper. In Sect. 3, we give the state complexity of permutation of binary languages
recognized by DFAs that form a chain, and present a general upper bound of
the state complexity of permutation of binary finite languages. In Sect. 4, we
give an upper bound on the state complexity of permutation for languages that
recognize strings with equal length. Moreover, we give lower bounds that are
tight in the restricted cases and asymptotically tight in the general case.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning finite
automata [19,21] and descriptional complexity [6,9]. Here we just fix some nota-
tion needed in the following.

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is |w|
and ε is the empty string. Moreover, for a letter a ∈ Σ and a string w ∈ Σ∗, we
denote the numbers of occurrences of the letter a in the string w by |w|a. The
set of positive integers is denoted by N. The cardinality of a finite set S is #S.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q is the
transition function (partial function), q0 ∈ Q is the start state and F ⊆ Q is the
set of accepting states. The function δ is extended in the usual way as a function
Q × Σ∗ → Q and the language recognized by A consists of strings w ∈ Σ∗

such that δ(q0, w) ∈ F . By the size of A, we mean the number of states of A,
size(A) = #Q.

The minimal size of a DFA recognizing a regular language L is called the
state complexity of L and denoted by sc(L). Note that we allow DFAs to be
incomplete and, consequently, the deterministic state complexity of L may differ
by one from the definition using complete DFAs.

222 A. Palioudakis et al.

An important relation of languages is the Myhill-Nerode relation RL of a
language L. The relation RL contains pairs of strings x and y if and only if for
every z ∈ Σ∗ both strings x · z and y · z belong in L or both strings x · z and
y · z do not belong in L. It is well known that the MyhillNerode relation of the
language L has finite number of equivalence classes if and only if the language
L is regular. Moreover, the unique minimal DFA for L has the same number of
states as the number of equivalence classes of RL. Hence, when we want to find
a lower bound on the state complexity of a regular language L, it is sufficient
to find a set of strings S such that, for every strings w,w′ ∈ S, there is a string
u ∈ Σ∗ with w · u ∈ L and w′ · u /∈ L, or w · u /∈ L and w′ · u ∈ L. Then, we have
that sc(L) ≥ #S.

We consider the state complexity of the operation of permutation on finite
languages. We now define the permutation per(L) of a regular language L over
the alphabet Σ as follows: A string w belongs in per(L) if and only if there is a
string u ∈ L such that the strings w and u have the same number of occurrences
of every letter of Σ. Formally, we define

per(L) = {w ∈ Σ∗ | (∃u ∈ L)(∀a ∈ Σ)(|u|a = |w|a)}.

Remark that the family of regular languages is not closed under permutation.
For example, for the language (a · b)∗, the permutation of this language contains
all the strings w such that |w|a = |w|b, which is not a regular language.

Given an alphabet Σ = {a1, a2, . . . , ak}, let Ψ : Σ∗ → [N0]k be a map-
ping defined by Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak

). This function is called a Parikh
mapping and Ψ(w) is called the Parikh vector of w. The Parikh mapping is
extended for a set of strings, with Ψ : 2Σ∗ → 2[N0]

k

be a mapping defined by
Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1, L2 are Parikh equivalent, denoted
by L1 ≡Parikh L2, if Ψ(L1) = Ψ(L2). Similarly, we say that two DFAs A,B are
Parikh equivalent if Ψ(L(A)) = Ψ(L(B)) and denote it by A ≡Parikh B.

3 Permutation Operation for Chain DFAs

We consider the problem of finding the state complexity of the permutation of a
binary language L. We start with giving an upper bound for the restricted case
of the language L where each string of L has length sc(L) − 1.

Lemma 1. Let n be a positive integer and L ⊆ {a, b}n−1 be a finite language
such that sc(L) = n. Then, we have the following inequality for the state com-
plexity of the permutation of L:

sc(per(L)) ≤ n2 + n + 1
3

.

Proof. Let A be the minimal DFA recognizing L over the alphabet {a, b}. Since
we have that L ⊆ {a, b}n−1, we know that each string w of L is of length n − 1.
Hence, the DFA A forms a chain, that is, we can enumerate the states of A such
that for all 1 ≤ h ≤ n − 1 at least one of the following is true; δ(h, a) = h + 1

The State Complexity of Permutations 223

or δ(h, b) = h + 1. Additionally, each state h has only one target state h + 1 for
1 ≤ h ≤ n − 1 and the transition function for h is one the the following three
cases:

1. δ(h, a) = h + 1 (a-transition)
2. δ(h, b) = h + 1 (b-transition)
3. δ(h, a) = h + 1, δ(h, b) = h + 1 (a&b-transition)

By the definition of the language per(L), we have all the possible permuta-
tions of the strings of L. The order of the different types of transitions (a, b,
or a&b) of A does not affect per(L). Hence, we can assume that, without loss
of generality, we start with a-transitions, followed by b-transitions, followed by
a&b-transitions. From this assumption, we have that L is of the form aibj(a+b)k

for some non-negative integers i, j, k such that i+j +k = n−1. It is not difficult
to construct a DFA with (i+1) · (j +1)+k ·j +k · i+k states recognizing per(L).
Since we search for an upper bound of the state complexity of per(L), we can
find for which values of i, j, k the function f(i, j, k) = (i+1)·(j+1)+k ·j+k ·i+k,
and i+j+k = n−1, has a maximal value. It is easy to verify that f is maximized
when i, j, k are i = j = k = n−1

3 . Thus, for integer values of i, j, k

max f(i, j, k) =

{
n2+n+1

3 , ifn ≡ 1 (mod 3);
n2+n

3 , otherwise.

�

In Lemma 1, we assume that every string w in L has a specific length—|w| =
sc(L) − 1. This restriction ensures that the states of the minimal DFA recogniz-
ing L form a chain. Now, we move one step further and show an upper bound
of the state complexity of the permutation of L without such restrictions.

Lemma 2. Let L be a binary finite language and m = max{|w| | w ∈ L} for
some positive integer m. Then, we have

sc(per(L)) ≤ m2 + m + 2
2

.

Proof. We construct a DFA A that recognizes per(L) over the binary alpha-
bet {a, b}. We keep track at each state of A what is the number of occurrences
of a’s and what is the number of occurrences of b’s that we have already read.
Then A has states of the form (i, j), for 0 ≤ i, j ≤ m, where i (and j) keeps
track of the occurrences of a’s (and b’s, respectively). Since m is the length of the
longest string in L, we know that there is no computation path in A with more
than m + 1 states. Thus, for all states (i, j) of A we have i + j ≤ m. Moreover,
it is immediate that all states (i, j) with i + j = m are final and equivalent—we
can merge them to one final state.

Now we counter the number of states. The total number of states of the
resulting DFA is 1 + 2 + · · · + m + 1(the merged final state) = m·(m+1)

2 + 1. The
final states of A are all states (i, j) such that there is a string w ∈ L with |w|a = i
and |w|b = j. �

224 A. Palioudakis et al.

We notice that the maximum length of all the strings of the language L can be at
most the state complexity of L minus one; in other words, we have 1+max{|w| |
w ∈ L} ≤ sc(L). By this observation and Lemma 2, we have the following
corollary.

Corollary 1. Let L be a binary finite language and sc(L) = n for some positive
integer n. Then we have

sc(per(L)) ≤ n2 − n + 2
2

.

In the following theorem, we give a lower bound on the state complexity of the
permutation of a language. This bound is asymptotically tight with the general
upper bound in Corollary 1.

Theorem 1. For any n0 ∈ N, there exists a regular language L with sc(L) = n,
for n ≥ n0, such that

sc(per(L)) ≥ n2 + n + 1
3

.

Proof. Let n = 3k + 1 ≥ n0, k ∈ N and Ln = L(akbk(a + b)k). In Fig. 1, for
k = 3 and n = 10, we see that Ln can be accepted by an incomplete DFA with
n states.

b b, aa b b, a b, aaa b

Fig. 1. The state minimal DFA recognizing the language L10.

We prove a lower bound for the state complexity of per(Ln).

per(Ln) = {w ∈ Σ3·k | |w|a, |w|b ≥ k, n = 3 · k + 1}.

Let X and Y be the sets of strings as follows:

X = {aibj : 0 ≤ i ≤ 2k, 0 ≤ j ≤ k} and Y = {aibj : 0 ≤ i < k, k < j ≤ 2k}.

We show that all strings of X ∪ Y are pairwise inequivalent with respect to
the Myhill-Nerode congruence of per(Ln). Let u = aibj and u′ = ai′

bj′
be two

arbitrary distinct strings from X ∪Y . We consider first the case where |u| �= |u′|
and later we consider three separate cases u, u′ ∈ X, u, u′ ∈ Y , and, u ∈ X and
u′ ∈ Y (same case as u′ ∈ X and u ∈ Y):

1. We have that |u| �= |u′|. It is straightforward to verify that u and u′ are
inequivalent since one can easily find a string z such that uz ∈ per(Ln) and
|u′z| �= 3 · k—u′z /∈ per(Ln).

2. We have |u| = |u′| and u, u′ ∈ X. Since u �= u′, either |u|a < |u′|a or
|u′|a < |u|a. Without loss of generality, we assume that |u|a < |u′|a. For
z = a2·k−ibk−j , we have uz ∈ per(Ln). However, for the string u′z, we have
|u′z|a > 2 · k, which means, since |uz| = |u′z| = 3 · k, that |u′z|b < k and
u′z /∈ per(Ln).

The State Complexity of Permutations 225

3. We have |u| = |u′| and u, u′ ∈ Y . Similar with the second case above, we
assume that, without loss of generality, |u|b < |u′|b. For z = ak−ib2·k−j ,
we have uz ∈ per(Ln). However, we have |u′z|b > 2 · k, which implies that
u′z /∈ per(Ln).

4. We have that u ∈ X and u′ ∈ Y and |u| = |u′|. Since u′ ∈ Y and u ∈ X,
we know that |u′|b > k and |u|b ≤ k. This implies that |u|a > |u′|a because
|u| = |u′|. Now for the string z = ak−ib2·k−j , we have uz ∈ per(Ln). However,
for the string u′z, we have that |u′z|a < k and, thus, u′z /∈ per(Ln).

An example of the minimal DFA recognizing the language per(L10) is presented
in Fig. 2.

a

b

a

b

a

b

b

b

a, b
a

b

b

aa

b

a

a

a

b

a

a a, b

b

b

a

b

a

a

a

a

b

a

b

a

b

b

b

a

b

a

a

a

b

b

a

a, b

a

b

b

a

a

b b

b

b

a

a

b

a

bb

a

b

Fig. 2. The minimal DFA recognizing the language per(L10)).

Hence, the number of states of the minimal DFA recognizing the language
per(Ln) has at least (2 · k + 1) · (k + 1) + k2 = 3 · k2 + 3 · k + 1 states. We know
that n = 3 · k + 1 (namely, k = n−1

3) and, thus, the minimal DFA for per(Ln)
has at least

3 ·
(

n − 1
3

)2

+ 3 ·
(

n − 1
3

)
+ 1 =

n2 − 2 · n + 1
3

+ (n − 1) + 1 =
n2 + n + 1

3

states. �

From the simple case studied in Lemma 1 and Theorem 1, we have the following
corollary.

226 A. Palioudakis et al.

Corollary 2. Let n be a positive integer and L ⊆ {a, b}n−1 be a finite language
such that sc(L) = n. Then the state complexity of the permutation of L is bounded
by the inequality,

sc(per(L)) ≤ n2 + n + 1
3

.

Moreover, sometimes n2+n+1
3 states are necessary for the minimal DFA recog-

nizing per(L).

4 Upper Bound for Sets of Equal Length Strings

We prove an upper bound for the state complexity of permutation of sets of
equal length strings. The upper bound coincides with the lower bound from
Theorem 1, which also uses sets of equal length strings.

We begin by introducing some terminology for DFAs that recognize sets of
equal length strings. In the following, we consider a DFA A = (Q,Σ, δ, q0, {qf})
recognizing a subset of Σ�, Σ = {a, b}. Without loss of generality A has one
final state and has no useless states. The number of states of A is n.

The level of a state q ∈ Q is the length of a string w such that δ(q0, w) = q. The
level of a state is a unique integer in {0, 1, . . . , �}. The set of level z states is Q[z]
for 0 ≤ z ≤ �. We say that level z is singular if |Q[z]| = 1, 0 ≤ z ≤ �. Levels 0 and �
are always singular. A linear transition is a transition between two singular levels.
A linear transition can be labeled by a, b or a&b. (A linear transition labeled by
a&b is strictly speaking two transitions.) The number of linear transitions labeled
by a (respectively, by b, a&b) is denoted iA (respectively, jA, kA).

The length of the nonlinear part of A is

hA = � − (iA + jA + kA). (1)

Thus hA denotes the number of pairs (z, z + 1), for 0 ≤ z < �, such that at least
one of the levels z or z + 1 is not singular.

Consider 0 ≤ x ≤ �, 0 ≤ y ≤ �, and x+1 < y, where levels x and y are singular
and all levels strictly between x and y are non-singular. A nonlinear block Bx,y

of A between the levels x and y is a subautomaton of A consisting of all states
of ∪x≤z≤yQ[z] and the transitions between them. The initial (respectively, final)
state of the subautomaton is the state having level x (respectively, y). The length
of the nonlinear block Bx,y is y −x. The length of a block is always at least two.

Note that a nonlinear block begins and ends in a singular level and all levels
between these are non-singular. In the following, nonlinear blocks are called
simply blocks. Examples of blocks are illustrated in Fig. 3.

The sum of the lengths of the blocks of A equals to hA. The estimation of
the length of accepted strings � in terms of the number of states n depends on
the types of blocks that A has.

Assume that the total length hA of the blocks of A is fixed. Then the maximal
value of � can be reached if all blocks have length two (and hA is even). Note
that a block of length two has always exactly 4 states. Thus, we have

The State Complexity of Permutations 227

Fig. 3. A DFA with a block of length 2 and a block of length 4.

� ≤ n − 1 − 1
2
hA. (2)

Example of the worst-case situation where � = n−1− 1
2hA is illustrated in Fig. 4.

Fig. 4. n = 13 and hA = 8, � = 8.

4.1 Estimate for DFAs Having Blocks of Length Two

We begin by providing an upper bound in the case where a DFA A includes
blocks of length two and none of bigger length. As observed in the following
subsection the same upper bound holds for arbitrary DFAs recognizing sets of
equal length strings. The proof of the general case is based on similar ideas but
is considerably more complicated. In this extended abstract we include the proof
only for the case where the DFA has blocks of length at most two.

A block of length two that recognizes the language {aa, bb} is called a dia-
mond (see Fig. 5). There are a total of 9 different blocks of length two and it is
easy to see that any block of length two that is not a diamond is “redundant”
in the sense that it can be replaced by linear transitions and the modified DFA
is Parikh-equivalent to A. This is stated in the following lemma.

Lemma 3. Assume that A has a block of length two that is not a diamond.
Then there exists a DFA A1 having n − 1 states such that L(A1) ≡Parikh L(A).

Next we observe that if A has one or more diamonds, then without loss of
generality A can be assumed to have no linear transitions with label a&b.

Lemma 4. Assume that A has r ≥ 1 diamonds and kA ≥ 1. Then there exists
a DFA A2 with n − r states such that L(A2) ≡Parikh L(A).

228 A. Palioudakis et al.

b

a

b

a

Fig. 5. A diamond.

Proof. This follows from the observation that when kA ≥ 1,

(aa + bb)r(a + b)kA ≡Parikh (a + b)2r+kA .

�

By Lemmas 3 and 4, when computing an upper bound estimate for the state
complexity of per(L(A)), in the case where A has blocks of length two, we can
assume that all blocks of length two are all diamonds and, furthermore, that
kA = 0 (i.e., A has no linear transitions labeled with a&b).

With the above assumptions combining with (1) and (2), we have

3
2

· hA + iA + jA ≤ n − 1.

We construct a DFA B recognizing per(L(A)). Note that it is sufficient for B
to count a’s up to iA+hA and count b’s up to jA+hA with the further restriction
that the sum of the counts is at most iA + jA + hA. The states of B consist of
pairs (x, y), where x is the a-count and y is the b-count. The states can be listed
as follows:

– (iA + 1) · (jA + 1) pairs, where a-count is at most iA and b-count is at most jA.
– When a-count is iA + z, for 1 ≤ z ≤ hA, b-count can be between 0 and

jA + hA − z. This results in 1
2hA(2jA + hA + 1) states. (The number of states

comes from calculating, for some positive integers m and n, the cardinality
of the following set {(i0, j0) | 1 ≤ i0 ≤ m, 0 ≤ j0 ≤ n + m − i}. After some
calculations we conclude that the set has 1

2m(2n + m + 1) elements.)
– Additionally, for each b-count greater than jA, we need to count up to iA

a’s, which results in hA · (iA + 1) added states. (The situation where also the
a-count is above iA was included already in states listed above.)

In total, B has

iAjA + hAiA + hAjA +
1
2
h2

A + iA + jA +
3
2
hA + 1

states.
This number is maximized whenever iA = 2

7 (n − 1), jA = 2
7 (n − 1), and

hA = 2
7 (n−1) leading to a value of 2

7 (n−1)2+n (in these cases 3
2 ·hA+iA+jA =

n − 1). (This maximization can be easily checked by mathematics software such
as Maple.) This polynomial is bounded by n2+n+1

3 and only reaches that bound
in the trivial case where iA = 0, jA = 0, hA = 0, and n = 1.

The State Complexity of Permutations 229

Above we have verified the following:

Proposition 1. If A is a DFA with n states that recognizes a set of equal length
strings over {a, b} and the nonlinear part of A has only blocks of length two, then

sc(per(L(A)) ≤ n2 + n + 1
3

.

4.2 Estimate for General DFAs for Equal Length Languages

The result of the following theorem extends the result of Proposition 1 to all
DFAs recognizing sets of equal length strings. Due to the limit on the number
of pages the proof of Theorem 2 is omitted in this extended abstract.

Theorem 2. Let A be an n-state DFA accepting a language L ⊆ Σ�. Then there
exists a DFA C accepting per(L) with no more than n2+n+1

3 states.

From Theorem 1, we already know that the upper bound of Theorem 2 can
be reached.

Corollary 3. For every n0 ∈ N, there is a positive integer � and a regular
language L ⊆ Σ�, with sc(L) = n, for n ≥ n0, such that every DFA accepting
per(L) needs at least n2+n+1

3 states.

5 Conclusions

We have studied the deterministic state complexity of permutation of finite lan-
guages over binary alphabets. More specifically, we have presented asymptotically
tight upper and lower bounds for the general case. We have also established the
matching upper and lower bound on the restricted cases when the given language
recognizes strings with equal length. Matching bounds of the general case remain
open. Moreover, the state complexity of permutation over non-binary languages
remains open, as well as, the nondeterministic state complexity of finite languages.

Acknowledgment. This research was supported by the Basic Science Research Pro-
gram through NRF funded by MEST (2012R1A1A2044562), the International Coop-
eration Program managed by NRF of Korea (2014K2A1A2048512) and the Natural
Sciences and Engineering Research Council of Canada Grant OGP0147224.

References

1. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001)

2. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang.
Comb. 7(4), 455–468 (2002)

3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and
open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

230 A. Palioudakis et al.

4. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review of state complexity of individ-
ual operations. Technical report, Universidade do Porto, Technical Report Series
DCC-2011-08, Version 1.1, September (2012). www.dcc.fc.up.pt/Pubs (To appear
in Computer Science Review, 2015)

5. Goč, D., Palioudakis, A., Salomaa, K.: Nondeterministic state complexity of pro-
portional removals. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031,
pp. 102–111. Springer, Heidelberg (2013)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

7. Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. Int. J. Found. Comput. Sci. 19(03), 581–595 (2008)

8. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic
finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata – a survey. Inf. Comput. 209(3), 456–470 (2011)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. Technical
report, DTIC Document (1951)

11. Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under Parikh
equivalence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014.
LNCS, vol. 8614, pp. 294–305. Springer, Heidelberg (2014)

12. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9,
328–335 (1963)

13. Maslov, A.: Estimates of the number of states of finite automata. In: Soviet Math-
ematics Doklady, Translation from Doklady Akademii Nauk SSSR 194, vol. 11, pp.
1266–1268, 1373–1375 (1970)

14. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

16. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. C–20(10), 1211–1214 (1971)

17. Parikh, R.J.: On context-free languages. J. ACM (JACM) 13(4), 570–581 (1966)
18. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.

Res. Dev. 3(2), 114–125 (1959)
19. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-

bridge University Press, Cambridge (2008)
20. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)
21. Yu, S.: Handbook of Formal Languages, Volume 1, Chap. Regular Languages, pp.

41–110. Springer, Heidelberg (1998)

www.dcc.fc.up.pt/Pubs

	The State Complexity of Permutations on Finite Languages over Binary Alphabets
	1 Introduction
	2 Preliminaries
	3 Permutation Operation for Chain DFAs
	4 Upper Bound for Sets of Equal Length Strings
	4.1 Estimate for DFAs Having Blocks of Length Two
	4.2 Estimate for General DFAs for Equal Length Languages

	5 Conclusions
	References

