
Computing the Edit-Distance between a Regular

Language and a Context-Free Language�

Yo-Sub Han1, Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University
{emmous,narame7}@cs.yonsei.ac.kr

2 School of Computing, Queen’s University
ksalomaa@cs.queensu.ca

Abstract. The edit-distance between two strings is the smallest num-
ber of operations required to transform one string into the other. The
edit-distance problem for two languages is to find a pair of strings, each
of which is from different language, with the minimum edit-distance. We
consider the edit-distance problem for a regular language and a context-
free language and present an efficient algorithm that finds an optimal
alignment of two strings, each of which is from different language. More-
over, we design a faster algorithm for the edit-distance problem that only
finds the minimum number of operations of the optimal alignment.

Keywords: Edit-distance, Levenshtein distance, Regular language,
Context-free language.

1 Introduction

The edit-distance between two strings is the smallest number of operations re-
quired to transform one string into the other [7]. We can use the edit-distance
as a similarity measure between two strings; the shorter distance implies that
the two strings are more similar. We can compute this by using the bottom-
up dynamic programming algorithm [14]. The edit-distance problem arises in
many areas such as computational biology, text processing and speech recogni-
tion [9,10,12]. This problem can be extended to measure the similarity between
languages [3,6,9].

For instance, the error-correction problem is based on the edit-distance prob-
lem: Given a set S of correct strings and an input string x, we find the most
similar string y ∈ S to x using the edit-distance computation. If y = x ∈ S, we
say that x has no error. We compute the edit-distance between all strings in S
and x. However, we can also use a finite-state automaton (FA) for S, which is
finite, and obtain the most similar string in S with respect to x [13]. Allauzen
and Mohri [1] designed a linear-space algorithm that computes the edit-distance

� Han and Ko were supported by the Basic Science Research Program through NRF
funded by MEST (2010-0009168). Salomaa was supported by the Natural Sciences
and Engineering Research Council of Canada Grant OGP0147224.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 Y.-S. Han, S.-K. Ko, and K. Salomaa

between a string and an FA. Pighizzini [11] considered the case when the lan-
guage is not regular. The error-detection capability problem is related to the
self-distance of a language L [6]. The self-distance or inner distance is the min-
imum edit-distance between any pair of distinct strings in L. We can use the
minimum edit-distance as the maximum number of errors that L (code) can
identify.

We examine the problem of computing the edit-distance between a regular
language and a context-free language. This was an open problem and the edit-
distance problem between two context-free languages is already known as unde-
cidable [9]. We rely on the structural properties of FAs and pushdown automata
for both languages and design an efficient algorithm that finds the edit-distance.

In Section 2, we define some basic notions. We formally define the edit-distance
and the edit-distance problem in Section 3. Then, we present an efficient algo-
rithm for computing the edit-distance and the optimal alignments between a
context-free language and a regular language in Section 4. We also present a
faster algorithm that only computes the optimal cost based on the unary homo-
morphism in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is any subset of Σ∗. Given a set X , 2X denotes the power set of X .

The symbol ∅ denotes the empty language and the symbol λ denotes the null
string. A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is
a multi-valued transition function, s ∈ Q is the start state and F ⊆ Q is a
set of final states. If F consists of a single state f , we use f instead of {f} for
simplicity. For a transition q ∈ δ(p, a) in A, we say that p has an out-transition
and q has an in-transition. Furthermore, p is a source state of q and q is a target
state of p. The transition function δ can be extended to a function Q×Σ∗ → 2Q

that reflects sequences of inputs. A string x over Σ is accepted by A if there is
a labeled path from s to a state in F such that this path spells out the string x.
Namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F .

A pushdown automaton (PDA)P is specified by a 7-tuple (Q,Σ, Γ, δ, q0, Z0, F),
whereQ is a finite set of states,Σ is a finite set of input symbols, Γ is a finite stack
alphabet, δ : Q× (Σ ∪ {λ})×Γ → 2Q×Γ∗

is the transition function, q0 ∈ Q is the
start state, Z0 is the initial stack symbol and F ⊆ Q is a set of final states. We use
|Q| to denote the number of states inQ and |δ| to denote the number of transitions
in δ. Here, we assume that each transition in P has at most two stack symbols;
namely, each transition can push or pop at most one symbol. In other words, when
some symbolX is on the top of the stack, then either λ or a string of the form Y X
for some stack symbol Y can stand on the right side of the production. Then, the
size |P | of P is |Q|+ |δ|.

Computing the Edit-Distance between a RL and a CFL 87

A context-free grammar G is specified by a tuple G = (V,Σ,R, S), where V
is a set of variables, R ⊆ V × (V ∪Σ)∗ is a finite set of productions and S ∈ V
is the start symbol. Let αAβ be a string over V ∪ Σ with A a variable and
A → γ be a production of G. Then, we say that αAβ ⇒ αγβ. The reflexive,
transitive closure of ⇒ is

∗⇒. Then the context-free language defined by G is
L(G) = {w ∈ Σ∗ | S ∗⇒ w}. We say that a variable A ∈ V is nullable if A

∗⇒ λ.
For complete background knowledge in automata theory, the reader may refer

to textbooks [4,15].

3 Edit-Distance

The edit-distance between two strings is the smallest number of operations that
transform a string to the other. People use different edit operations depend-
ing on the applications. We consider three operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let

Ω = {(a → b) | a, b ∈ Σ ∪ {λ}}
be a set of edit operations. Namely, Ω is an alphabet of all edit operations for
deletions (a → λ), insertions (λ → a) and substitutions (a → b). We call a
string w ∈ Ω∗ an edit string [5] or an alignment [9].

Let the morphism h between Ω∗ and Σ∗ ×Σ∗ be

h((a1 → b1) · · · (an → bn)) = (a1 · · ·an, b1 · · · bn).
Example 1. The following is an alignment example w = (a → λ)(b → b)(λ →
c)(c → c) for abc and bcc. Note that h(w) = (abc, bcc).

a b λ c
↓ ↓ ↓ ↓
λ b c c

Definition 1. An edit string w is a sequence of edit-operations transforming
a string x into a string y, also called an alignment for x and y if and only if
h(w) = (x, y).

We associate a non-negative edit cost to each edit operation wi ∈ Ω as a function
C : Ω → R+. We can extend the function to the cost C(w) of an alignment w =
w1 · · ·wn as follows:

C(w) =
n∑

i=1

C(wi).

Definition 2. The edit-distance d(x, y) of two strings x and y over Σ is the
minimal cost of an alignment w between x and y:

d(x, y) = min{C(w) | h(w) = (x, y)}.
We say that w is optimal if d(x, y) = C(w).

88 Y.-S. Han, S.-K. Ko, and K. Salomaa

We can extend the edit-distance definition to languages.

Definition 3. The edit-distance d(L,R) between two languages L,R ⊆ Σ∗ is
the minimum edit-distance of two strings, one is from L and the other is from
R:

d(L,R) = inf{d(x, y) | x ∈ L and y ∈ R}.
Konstantinidis [6] considered the edit-distance within a regular language L and
proposed a polynomial runtime algorithm. Mohri [9] studied the edit-distance of
two string distributions given by two weighted automata. Mohri [9] also proved
that the edit-distance problem is undecidable for two context-free languages.
We consider the case in between: L is regular and R is context-free. In other
words, given an FA A and a PDA P , we develop an algorithm that computes
the edit-distance of two languages L(A) and L(P).

Since we use the Levenshtein distance [7] for edit-distance, we assign one to
all edit operations; namely, C(a, a) = 0 and C(a, λ) = C(λ, a) = C(a, b) = 1 for all
a �= b ∈ Σ.

4 The Edit-Distance between an RL and a CFL

We present algorithms that compute the edit-distance d(R,L) between a regular
language R and a context-free language L and find an optimal alignment w such
that C(w) = d(R,L).

Let A = (QA, Σ, δA, sA, FA) be an FA forR and P = (QP , Σ, Γ, δP , sP , Z0, FP)
be a PDA for L. Let m1 = |QA|,m2 = |QP |, n1 = |δA| and n2 = |δP |. We assume
that A has no λ-transitions. We also assume that each transition in P has at
most two stack symbols; namely, each transition can push or pop at most one
symbol. Note that any context-free language can be recognized by a PDA that
pushes or pops at most one symbol in one transition [4].

We first construct a new PDA A(A,P) (called alignment PDA) whose transi-
tions denote all possible edit operations of all pairs of strings between R and L.
Then, we compute the shortest string accepted by the alignment PDA, which is
the optimal alignment.

4.1 Alignment PDA

Given an FA A = (QA, Σ, δA, sA, FA) and a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP),
we construct the alignment PDA A(A,P) = (QE , Ω, Γ, δE , sE , Z0, FE), where

- QE = QA ×QP is a set of states,
- Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} is an alphabet of edit operations,
- sE = (sA, sP) is the start state,
- FE = FA × FP is a set of final states.

The transition function δE consists of three types of transitions, each of which
performs deletion, insertion and substitution, respectively.

For p′ ∈ δA(p, a) and (q′,M ′) ∈ δP (q, b,M), where p, p′ ∈ QA, q, q
′ ∈ QP ,

a, b ∈ Σ, M ∈ Γ , M ′ ∈ Γ ∗, N ∈ Γ , we define δE to be

Computing the Edit-Distance between a RL and a CFL 89

- ((p′, q), N) ∈ δE((p, q), (a → λ), N), [deletion operation]
- ((p, q′),M ′) ∈ δE((p, q), (λ → b),M), [insertion operation]
- ((p′, q′),M ′) ∈ δE((p, q), (a → b),M), [substitution operation]
- ((p, q′),M ′) ∈ δE((p, q), (λ → λ),M).

The last type of transitions simulate λ-moves of the original PDA P. Note that we
have defined deletion operations for all stack symbols N in Γ . Then, in a deletion
operation, the transition does not change the stack. For the complexity of δE , we
generate n1m2 transitions for deletions and n2m1 transitions for insertions. For
substitutions, we consider all pairs of transitions between A and P and, thus,
add n1n2 transitions. Therefore, the size of δE is

|δE | = n1m2 + n2m1 + n1n2 = O(n1n2).

Theorem 1. The alignment PDA A(A,P) accepts an edit string w if and only
if h(w) = (x, y), where x ∈ L(A) and y ∈ L(P).

It follows from Theorem 1 that the edit-distance problem is now to find an
optimal alignment in L(A(A,P)). In the next section, we discuss how to find an
optimal alignment from an alignment PDA efficiently.

4.2 Computing an Optimal Alignment from A(A, P)

An optimal alignment w between two languages is an alignment with the mini-
mum cost among all possible alignments between any pair of strings from each
language. We tackle the problem of searching for an optimal alignment from
A(A,P). The problem seems similar to the problem of finding the shortest string
in a PDA. However, it is not necessarily true that a shortest string over Ω in
A(A,P) is an optimal alignment even under the Levenshtein distance. See Ex-
ample 2.

Example 2
a b c λ a b c
↓ ↓ ↓ ↓ ↓ ↓ ↓
λ b c d b c d

wX wY

The two edit strings wX and wY are alignments between abc and bcd. Under the
Levenshtein distance, C(wX) = 2 and C(wY) = 3 while the lengths of wX and wY

over Ω are four and three, respectively. Namely, the longer alignment string wX

is a better alignment than the shorter alignment string w. Therefore, the shortest
string from A(A,P) is not necessarily an optimal alignment between L(A) and
L(P).

As shown in Example 2, we should consider the edit cost of each edit operation
to find an optimal alignment. If we regard the zero cost edit operations ((a → a)
for all a ∈ Σ) as λ in w, then w′

X = (a → λ)(λ → d), which is shorter than wY .
This leads us to the following observation.

90 Y.-S. Han, S.-K. Ko, and K. Salomaa

Observation 1. Let s be a substitution of Ω∗ → Ω∗ as follows:

s(a → b) =

{
λ a = b,

(a → b) otherwise.

An optimal alignmentw ∈ Ω∗ in L(A(A,P)) is a shortest string in s(L(A(A,P))).

Observation 1 shows that the problem of finding an optimal alignment inA(A,P)
becomes the problem of identifying a shortest string after the substitution op-
eration s.

For an FA A with m1 states and n1 transitions, we can find the shortest string
that A accepts by computing the shortest path from the start state to a final
state based on the single-source shortest-path algorithm in O((n1 +m1) logm1)
time [8]. However, we cannot obtain the shortest string from a PDA P directly
as we have done for an FA before because of the stack operations. Therefore,
instead of computing a shortest path in P , we convert P into a context-free
grammar and compute a shortest string from the grammar. Recently, Alpoget
et al. [2] solved the emptiness test of a PDA by converting a PDA to an equivalent
CFG using the standard construction in Proposition 1. We also, first, convert
A(A,P) to an equivalent CFG and, then, obtain an optimal alignment from the
grammar. Note that if we apply the substitution function s in Observation 1
directly on transitions of A(A,P), then the problem becomes to find a shortest
string in s(L(A(A,P))). However, since the s function replaces all zero cost edit
operations with λ, we cannot retrieve an optimal alignment between two strings.
Instead, we only have the optimal edit cost. Therefore, the s function is useful
for computing the edit-distance only. We revisit the problem of computing the
edit-distance in Section 5. Here we focus on finding an optimal alignment.

Given an alignment PDA A(A,P), let GA(A,P) be the corresponding CFG
that we compute using the following standard construction [4].

Proposition 1 (Hopcroft and Ullman [4]). Given a PDA P =
(Q,Σ, Γ, δ, s, Z0), the triple construction computes an equivalent CFG G =
(V,Σ,R, S), where the set V of variables consists of

1. The special symbol S, which is the start symbol.

2. All symbols of the form [pXq], where p, q ∈ Q and X ∈ Γ . The productions
of G are as follows:

(a) For all states p, G has the production S → [sZ0p] and

(b) Let δ(q, a,X) contain the pair (r, Y1Y2 · · ·Yk), where

i. a is either a symbol in Σ or a = λ.
ii. k can be any non-negative number, including zero, in which case the

pair is (r, λ).

Then for all lists of states r1, r2, . . . , rk, G has the production

[qXrk] → a[rY1r1][r1Y2r2] · · · [rk−1Ykrk].

Computing the Edit-Distance between a RL and a CFL 91

Note that G has |Q|2 · |Γ | + 1 variables and |Q|2 · |δ| production rules. Now
we study how to compute an optimal alignment in the alignment PDA A(A,P)
= (QE , Ω, Γ, δE , sE , Z0, FE) for an FA A and a PDA P , where |QE | = m1m2 and
|δE | = n1n2. Note that since we assume that each transition in P has at most two
stack symbols, a transition in A(A,P) has also at most two stack symbols. Let
GA(A,P) = (V,Σ,R, S) be the CFG computed by the triple construction. Then,
GA(A,P) has O((m1m2)

2 · |Γ |) variables and O((m1m2)
2 · (n1n2)) production

rules. Moreover, each product rule is in the form of A → σBC, A → σB, A → σ
or A → λ, where σ ∈ Σ and B,C ∈ V . Remark that GA(A,P) is similar to a
Greibach normal form grammar but has λ-productions and each production rule
has at most three symbols starting with a terminal symbol followed by variables
in its right-hand side.

We run a preprocessing step before finding an optimal alignment from
A(A,P), which speeds up the computation in practice by reducing the size
of an input. This step eliminates nullable variables from GA(A,P). The elimi-
nation of nullable variables is similar to the elimination of λ-productions. The
λ-production elimination is to remove all λ-productions from a CFG G and
obtain a new CFG G′ without λ-productions where L(G) \ {λ} = L(G′) [4].
However, this procedure may introduce new productions in G′. We notice that
the new productions generated from removing λ-productions do not help to find
an optimal alignment in A(A,P) and, thus, design a procedure that removes all
nullable variables and their appearances in A(A,P) without adding new pro-
duction rules. Note that the modified grammar is not equivalent to the original
grammar, however, as will be seen in Lemma 1, the modified grammar generates
an optimal alignment between L(A) and L(P).

Procedure 1. Elimination of Nullable Variable (ENV)

Input: GA(A,P) = (V,Σ,R, S)
1: let VN be a set of all nullable variables in GA(A,P)

2: if S ∈ VN then
3: V = {S}
4: R = {S → λ}
5: else
6: for B ∈ VN do
7: remove all occurrences of B in R // replace B with λ
8: remove all productions of B from R
9: remove B from V
10: end for
11: end if

The ENV (Elimination of Nullable Variable) procedure just eliminates nullable
symbols and their occurrences from the grammar. Example 3 gives an example
of ENV.

92 Y.-S. Han, S.-K. Ko, and K. Salomaa

Example 3. Given a grammar G with the following set P1 of production rules,

S → AB|a S → B|a
A → aAA|λ A → aAA|λ
B → bBA|a B → bB|a

P1 P2

we obtain P2 after ENV. Note that we only remove nullable variable A and its
appearances from G and do not increase the size of G.

The following statement guarantees that ENV preserves the optimal alignment of
L(A(A,P)).

Lemma 1. Given a context-free grammar GA(A,P) = (V,Ω,R, S), let G′
A(A,P)

be the resulting CFG from GA(A,P) by ENV. Then, G′
A(A,P) still produces an

optimal alignment between L(A) and L(P).

Algorithm 2. Computing an optimal alignment in L(GA(A,P))

Input: GA(A,P) = (V,Ω,R, S)
1: eliminate all nullable variables by ENV

2: for B → t ∈ R, where t ∈ Ω∗ and C(t) is minimum among all such t in R do
3: if B = S then
4: return t
5: else
6: replace all occurrences of B in R with t
7: remove B from V and its productions from R
8: end if
9: end for

Algorithm 2 describes how to find an optimal alignment in GA(A,P). We first
eliminate nullable variables, which do not derive an optimal alignment, from
GA(A,P) as described in line 1 in Algorithm 2. The ENV procedure generally takes
quadratic time in the size of an input grammar. For GA(A,P), all production rules
in GA(A,P) have at either λ or one terminal symbol over Ω followed by at most
two variables. Therefore, we can identify all nullable variables of GA(A,P) by
scanning R only once. (Only a variable that has a λ-production in its production
rule is nullable variable in GA(A,P).) Thus, the ENV procedure takes linear time
for GA(A,P).

Lemma 2. Let GA(A,P) = (V,Ω,R, S) be a context-free grammar with no λ-
productions. Let B → t be a terminating production where B ∈ V , t ∈ Ω∗ and
C(t) is minimal among all right sides of terminating productions of GA(A,P). Let
G′

A(A,P) be the grammar obtained from GA(A,P) by removing all productions for
B from R and replacing all occurrences of B in right sides of productions by t.
Then the smallest cost terminal string generated by G′ has the same cost as the
smallest cost terminal string generated by GA(A,P).

Computing the Edit-Distance between a RL and a CFL 93

Once we have finished the ENV procedure, in the main part, we pick a variable
that has an edit string with the smallest cost as a production, say v → t, and
replace all occurrences of v with t in R and remove v from V . We repeat this
step until the start symbol S of GA(A,P) has an edit string as its production
rule. We notice that the length of the optimal alignment can be exponential in
the size of an input grammar as shown in Example 4.

Example 4. Given a CFG G = (S,A1, . . . An}, {(a → b)}, R, S), where R is

S → A1A1

A1 → A2A2

...
An−1 → AnAn

An → (a → b)

G generates (a → b)2
n

, where |G| = O(n).

In Example 4, once we eliminate one variable v and update the grammar by the
single for loop in Algorithm 2, the length of an edit string with the smallest
cost can be doubled. Now we consider the cost for replacing the occurrences of
variables. Since there are no λ-productions, the length of an edit string with the
smallest cost starts from one. Note that a production rule can have at most one
terminal followed by two variables. Therefore, we have an edit string of length
at most 2t − 1. Next, we consider the average number of variable occurrences
that are eventually replaced with the edit string. Since there are at most 2|R|
occurrences of variables in the production rules and |V | variables, we replace
2|R|
|V | occurrences on average.

Now, the worst-case time complexity for finding an optimal alignment is

|V |∑

t=1

(|R|+ (2t − 1) · 2|R|
|V |) = O(

2|R|
|V | 2

|V |),

where |R| is the number of production rules and |V | is the number of variables.
Since |V | = O((m1m2)

2 · |Γ |) and |R| = O((m1m2)
2 · (n1n2)) in GA(A,P), we

establish the time complexity of Algorithm 2 with respect to m1,m2, n1 and n2

as follows:

O((m1m2)
4 · |Γ | · (n1n2) +

n1n2

|Γ | · 2(m1m2)
2·|Γ |) = O(

n1n2

|Γ | · 2(m1m2)
2·|Γ |), (1)

where |Γ | is the number of stack symbols.

Theorem 2. Given a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP) and an FA A =
(QA, Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P)

in O((n1n2) · 2(m1m2)
2

) worst-case time, where m1 = |QA|,m2 = |QP |, n1 = |δA|
and n2 = |δP |. Moreover, we can also identity two strings x ∈ L(A) and y ∈ L(P)
and their alignment with each other in the same runtime.

94 Y.-S. Han, S.-K. Ko, and K. Salomaa

5 Edit-Distance and Unary Homomorphism

In the previous section, we have designed an algorithm for computing the edit-
distance and an optimal alignment between a regular language and a context-free
language at the same time. As we have noticed in Theorem 2, the algorithm runs
in exponential time since the length of an optimal alignment may be exponential
in the size of input FA and PDA. Now we examine how to calculate the edit-
distance without computing the corresponding optimal alignment and present a
polynomial runtime algorithm for the edit-distance problem.

Let ΣU be a unary alphabet, say ΣU = {u}. We often use non-negative
integers Z+ for the cost function in the edit-distance problem. For example,
the Levenshtein distance uses one for all operation costs. This motives us to
investigate the edit-distance problem and unary context-free grammars. From
now on, we assume that the cost function is defined over Z+.

We use a unary homomorphism the alignment PDA A(A,P) obtained from an
FA A and a PDA P and convert it into the context-free grammar. Let H : {(a →
b) | a, b ∈ Σ ∪ {λ}} → ΣU

∗ be a homomorphism between the edit operations
and a unary alphabet {u}. Let cI, cD and cS be the costs of insertion, deletion
and substitution, respectively. Then, we define H to be

H(λ → a) = ucI , [insertion]
H(a → λ) = ucD , [deletion]

H(a → b) =
{
ucS , if a �= b;
λ, otherwise.

[substitution]

If follows from the morphism function that given an alignment w

C(w) = |H(w)|.

By Theorem 1, we know that A(A,P) accepts all edit strings (alignments) be-
tween two strings x ∈ L(A) and y ∈ L(P). Note that the cost of an optimal
alignment is the edit-distance between L(A) and L(P). We apply the homomor-
phism H to A(A,P) by replacing all edit strings w with unary strings ui, where
i = C(w). In this step, we can reduce the number of transitions in A(A,P) by
applying the homomorphism. For example, when there are multiple transitions
like δE(qE , (a → b),M) = (q′E ,M

′), where (a → b) ∈ Ω, the unary homomor-
phism results in only one transition in new A(A,P), say, H(A(A,P)). Since
the number of production rules in GH(A(A,P)) is proportional to the number of
transitions in H(A(A,P)) by the triple construction, we can reduce the size of
the grammar GH(A(A,P)), compared to GA(A,P). Then an optimal alignment in
L(GA(A,P)) becomes the shortest string in L(GH(A(A,P))) and its length is the
edit-distance between L(A) and L(P). We establish the following statement.

Corollary 1. The edit-distance d(L(A), L(P)) of an FA A and a PDA P is the
length of the shortest string in L(GH(A(A,P))).

d(A,P) = inf{|L(GH(A(A,P)))|}.

Computing the Edit-Distance between a RL and a CFL 95

Corollary 1 shows that the edit-distance problem is now to find the shortest string
in L(GH(A(A,P))). Before searching for the shortest string in L(GH(A(A,P))),
we run a preprocessing step, which is similar to that in Algorithm 2, to im-
prove the algorithm runtime in practice. The preprocessing step is eliminating
λ-productions from the grammar. We establish a lemma for justifying this step.

Lemma 3. Given a context-free grammar G = (V,Σ,R, S), let G′ be a CFG
constructed from G by eliminating all nullable variables and their occurrences
except for the start symbol. If the start symbol is nullable, V and R become {S}
and {S → λ}, respectively. Then, the shortest string in L(G′) is same as the
shortest string in L(G).

Algorithm 3. Computing the length of the shortest string in L(GH(A(A,P)))

Input: GH(A(A,P)) = (V,ΣU , R, S)
1: eliminate all nullable variables by ENV

2: encode all right-hand productions by the number of u occurrences in binary repre-
sentation followed by the remaining variables in order
// e.g. from A → uuuBCuu to A → 101BC and now ΣU = {0, 1} instead of {u}

3: for A → t ∈ R, where t is the smallest binary number in R do
4: if A = S then
5: return t
6: else
7: for each production rule B → wxAy in R, where w is the binary number part

and x, y ∈ V ∗ do
8: w′ = w + t in binary representation
9: update the production rule as B → w′xy
10: end for
11: remove A from V and all A’s production rules from R
12: end if
13: end for

Algorithm 3 describes how to compute the length of the shortest string in
L(GH(A(A,P))). This algorithm is similar to Algorithm 2. However, the main
difference is that we use a binary encoding to remove the exponential factor in
the running time. The complexity of Algorithm 2 is exponential since the length
of the shortest string can be exponential. Since we only look for the length
(the edit-distance) of the shortest string instead of the string itself (an optimal
alignment), we encode string lengths as binary representation. This helps to keep
an exponential length as a linear length of binary number. For example, we use
100000 to denote u32.

Now we consider the complexity of Algorithm 3. In the worst-case, we need to
eliminate all variables from the grammar, that means we need to repeat at most
|V | = (m1m2)

2 · |Γ | times for finding the variable generating the shortest string.
We scan the whole grammar to find the variable in O(|R|) time. Therefore,

96 Y.-S. Han, S.-K. Ko, and K. Salomaa

to eliminate the variables, we need O((m1m2)
4 · (n1n2) · |Γ |). Then, now we

consider the time for replacing the occurrence of variables with encoded numbers
in binary. We should replace all occurrences of variables in the worst-case. The
number of occurrences will be at most O((m1m2)

2 ·(n1n2)) and the size of binary
numbers will be at mostO((m1m2)

2 ·|Γ |). Then, we need O((m1m2)
4 ·(n1n2)·|Γ |)

again. Thus, the worst-case time complexity of Algorithm 3 is O((m1m2)
4 ·

(n1n2) · |Γ |).
Theorem 3. Given a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP) and an FA A =
(QA, Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P)
in O((m1m2)

4 · (n1n2)) worst-case time, where m1 = |QA|,m2 = |QP |, n1 = |δA|
and n2 = |δP |.

References

1. Allauzen, C., Mohri, M.: Linear-space computation of the edit-distance between a
string and a finite automaton. In: London Algorithmics 2008: Theory and Practice.
College Publications (2009)

2. Alpoge, L., Ang, T., Schaeffer, L., Shallit, J.: Decidability and Shortest Strings in
Formal Languages. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 55–67.
Springer, Heidelberg (2011)

3. Bunke, H.: Edit distance of regular languages. In: Proceedings of 5th Annual Sym-
posium on Document Analysis and Information Retrieval, pp. 113–124 (1996)

4. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation, 2nd edn. Addison-Wesley, Reading (1979)

5. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal
of Automata, Languages and Combinatorics 9, 293–309 (2004)

6. Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205, 1307–1316 (2007)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

8. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics 7, 321–350 (2002)

9. Mohri, M.: Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science 14(6), 957–982 (2003)

10. Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach (Com-
putational Molecular Biology). The MIT Press (2000)

11. Pighizzini, G.: How hard is computing the edit distance? Information and Compu-
tation 165(1), 1–13 (2001)

12. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11, 419–422 (1968)

13. Wagner, R.A.: Order-n correction for regular languages. Communications of the
ACM 17, 265–268 (1974)

14. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21, 168–173 (1974)

15. Wood, D.: Theory of Computation. Harper & Row (1987)

	Computing the Edit-Distance between a Regular Language and a Context-Free Language
	Introduction
	Preliminaries
	Edit-Distance
	The Edit-Distance between an RL and a CFL
	Alignment PDA
	Computing an Optimal Alignment from A(A,P)

	Edit-Distance and Unary Homomorphism
	References

