Fundamenta Informaticae 76 (2007) 113-128 113
I0S Press

Intercode Regular Languages$

Yo-Sub Han'*
System Technology Division, Korea Institute of ScienceTaatinology
P.0.BOX 131, Cheongryang, Seoul, Korea, emmous@kist.re.k

Kai Salomad
School of Computing, Queen’s University, Kingston, Owt&7L 3N6, Canada
ksalomaa@cs.queensu.ca

Derick Wood¥
Department of Computer Science, The Hong Kong UniversiBcince and Technology
Clear Water Bay, Kowloon, Hong Kong SAR, dwood@cs.ust.hk

Abstract. Intercodes are a generalization of comma-free codes. UBengtructural properties of
finite-state automata recognizing an intercode we devepayaomial-time algorithm for determin-
ing whether or not a given regular languafés an intercode. If the answer y&s, our algorithm
yields also the smallest indéxsuch thatl is ak-intercode.

Furthermore, we examine the prime intercode decomposiidntercode regular languages and
design an algorithm for the intercode primality test of ateinode recognized by a finite-state au-
tomaton. We also propose an algorithm that computes theepirtercode decomposition of an
intercode regular language in polynomial time. Finally, desmonstrate that the prime intercode
decomposition need not be unique.

Keywords: regular languages, finite-state automata, intercodes;gtar graphs, prime decompo-
sitions

*Part of this research was carried out while Han and Salomaa were irSAIKU

THan was supported by the Research Grants Council of Hong Kong &itivep Earmarked Research Grant HKUST6197/01E
and the KIST Tangible Space Initiative Grant 2E19020.

tAddress for correspondence: System Technology Division, Kémstitute of Science and Technology, P.O.BOX 131,
Cheongryang, Seoul, Korea

$Salomaa was supported by the Natural Sciences and Engineeringd®eSeancil of Canada Grant OGP0147224.

TWood was supported by the Research Grants Council of Hong Kongp@iiive Earmarked Research Grant
HKUST6197/01E.

114 Y.-S. Han et al./ Intercode Regular Languages

1. Introduction

Finite-state automata (FAs) are the basic model used to represent reggladas in many applications.
FAs are essentially labeled directed graphs and each path from a datbstafinal state spells out an
accepted string. There are two well-known families of FAs in the literaturel loenpson automata [22]

and the position automata [8, 20]. One advantage of using such familiessoEFAat these automata
preserve the structural properties of corresponding regular &sipres. Caron and Ziadi [3] studied
the structural properties of the position automata and Giammarresi et akdijimed the structural

properties of the Thompson automata.

On the other hand, if we manipulate FAs, then these FAs easily lose certaitustfproperties; for
example, if we catenate a position automaton and a Thompson automaton, thesuttieg automaton
does not preserve either the position automaton properties or the Thoaytsomaton properties. Nev-
ertheless, one property remains unchanged in FAs: a path from atatartcsa final state spells out an
accepted string. The use stiate-pair graphselies on this fact. Applications of state-pair graphs have
been investigated by the authors [12], or earlier by Berstel and Péiriwlere this notion is called the
square of an automaton. Each node of a state-pair graph is a pair ofcétatgisen FA and the directed
edges are labeled by alphabet symbols. We recall the formal definitiorciin 8.

Codes play a crucial role in many areas such as information procesatag;@mpression, cryptog-
raphy, information transmission and so on [15]. They are categorizedeggect to different conditions
(for example prefix-free, suffix-free, infix-freer outfix-freecodes) according to the applications. The
theory of codes is closely related to formal languages: a codismgaage The conditions that classify
code types define proper subfamilies of families of formal languageseguolar languages, for example,
prefix-freeness defines the family of prefix-free regular languageish is a proper subfamily of regular
languages. Most of the decision problems related to code propertieecdalble for regular languages
whereas they often become undecidable for context-free languagjesij&cidability of general code
properties is also investigated in the literature [6, 17].

While comma-free languages have not been studied to the extent of fregfilanguages in the
literature, the comma-free property was already introduced in 1958 {#ih&more, Shyr and Yu [21]
introducedntercodesas a generalization of comma-free codes, see also Yu [23]. Commesfiles are
the intercodes of index onelii@ensen et al. [16] have studied the decidability of the intercode piyoper
Fernau et al. [6] mentioned in the conclusion of their paper that “it woultideeto know more about the
(time or space) complexities of the decidable code properties”. Complexistigne have been raised
also by Berstel and Perrin [2].

Note that if an index is given, then we can fairly easily check whether or ha an intercode
of index k. However, if no index is given, then the problem is not as straightfatwalirgensen et
al. [16] established that it is decidable whether or not a given regulguege is an intercode (of any
index). There the complexity of the decision algorithm is not discussed @kplimit it is easy to verify
that an algorithm derived from the construction of the decidability proobtsarpolynomial-time algo-
rithm in the general case where the input language is specified by ateamd@stic finite-state automa-
ton (NFA).

It is already shown that state-pair graphs are useful to solve decisaatems for subfamilies of
regular languages [11, 12, 13]. Based on state-pair graphs, leedesign an algorithm that determines
whether or not a given regular languadeis an intercode (of any index). The algorithm works in
polynomial time in the general case whdrés given as an NFA. Besides having better time complexity,

Y.-S. Han et al./ Intercode Regular Languages 115

the algorithm is conceptually easier to understand and implement compared evalytinithm derived
from Jirgensen et al. [16].

In Section 2, we define some basic notions. In Section 3, we investigate ¢tstodeproblem of
intercodes and design a polynomial-time algorithm that, given an NFé#etermines whether or not the
languageL(A) is an intercode of any index. The algorithm relies on the structural piiepesf A via
state-pair graphs. In Section 4, we develoggm%) time algorithm to compute a prime decomposition
of an intercode regular languagewherem is the number of states of the minimal deterministic finite-
state automaton (DFA) fofL. Note that it remains an open question whether prime decompositions
of general regular languages can be found efficiently [10, 19]. A& demonstrate that the prime
decomposition of an intercode is not, in general, unique. In comparisonkribign that prefix codes
always have a unique decomposition where the components are primecoads [5].

2. Preliminaries

Let X denote a finite alphabet artdt denote the set of all strings ov&r. A language ovel is any
subset of2*. The symbol) denotes the empty language and the charactEmotes the null string. The
cardinality of a finite sef is denoted byS|.

An FA Ais specified by a tuplé?), ¥, 6, s, F'), whereQ is afinite set of stateg] is an input alphabet,
0 C Q x X x @ is aset of transitions; € (is the start state anfl C () is a set of final states. When
F has only a single statg, we write this FA ag@Q, X, 4, s, f) instead of(Q, X, 6, s, { f}) for simplicity.
An FA as defined above is, in general, nondeterministic (an NFA). AmiRa deterministic (a DFA) if
forall (q,a) € ¥ x Q, [{(¢,a,¢) €d| ¢ € Q}] < 1.

Then, the sizeA| of A is |Q| + |J|. A transition(p,a,q) in §, wherep,q € Q anda € X, is an
out-transitionof p and anin-transitionof ¢q. Furthermore, in this case we say thpat asource statef
g andq is atarget stateof p. A stringx overX. is accepted by if there is a labeled path fromto a
state inF' such that the labeled path spells out the stiindhus, the languagg(A) of an FA A is the
set of all strings that are spelled out by paths froto a final state inf". We say thatd is non-returning
if the start state ofA does not have any in-transitions adds non-exitingif the final state ofA does
not have any out-transitions. Note that if all final stateglafo not have out-transitions, without loss of
generality, we can assume théathas only one final state by merging them. In the following, we always
assume tha#l has onlyusefulstates; that is, each state éfappears on some path from the start state to
some final state.

3. State-pair graphs and intercode regular languages

We first recall the definition of state-pair graphs and the definition of inthrs. Given a fixed indek, it
is easy to determine whether a given regular languaigean intercode of indek, basically using closure
properties of regular languages. On the other hand, if an index is rofifiggl, the decision problem
becomes more involved. In this section we design a polynomial-time algorithmiggoribblem.

Given an FAA = (Q, %, 4, s, F'), we assign a unique number for each statd iinom 1 to m, where
m is the number of states iA.

116 Y.-S. Han et al./ Intercode Regular Languages

Definition 3.1. (Han et al. [12])
Given an FAA = (@, %, 0, s, F'), we define the state-pair graphy = (V, E¢), whereV; is a set of
nodes andE is a set of labeled edges, as follows:

Vo =A{(i,j) |i,j € @} and
Eq = {((iaj)vav (.’E,y)) | (i,a,x), (], a, y) € §d anda € Z}

The crucial property of state-pair graphs is that if there is a strisgelled out by two distinct paths
in A, for example, one path is fromto x and the other path is fromto y, then, there is a path from
(i,7) to (z,y) in G 4 that also spells out the same strimgNote that state-pair graphs do not require the
given FAs to be deterministic.

Definition 3.2. (Jirgensen et al. [15])
A languagelL is an intercode of indek (or ak-intercode) if L1 N £+ LFY+ = (). Generally,L is an
intercode ifL is an intercode of indek, for somek.

First we consider the problem to determine whether or not a given rdgonguage. is ak-intercode,
for givenk > 1. We assume that is bifix-free!. Otherwise, we know immediately thatis not an
intercode. We can check bifix-freeness of regular languages afficj{@2]. Note that an FAA must be
non-exiting and non-returning fat(A) to be bifix-free and, thus, there is one start state and only one
final state. Furthermore, is notin L(A). If we want to construct an FA? for the languagé.(A)L(A),
we can merge the final state of the first copy4oéind the start state of the second copylofThe FA A?
has2|Q| — 1 states an@|d| transitions; namely,A?| < 2|A|. We can repeat this procedure to construct
an FA for the catenation of severdk. We used* to denote the FA for the catenation lotopies ofA
andA; to denote théth component in AF for1<i<k.

We now design an algorithm based on state-pair graphs that determing®wwbrenot the language
of a given FAA = (Q, %, 0, s, f) is ak-intercode, for a giverk. We, first, catenaté+1 As as shown
in Fig. 1 and, thus, we havie+1 copies of states il. We use(z, j) to denote the statein A;. For
example,(m, 1) in Fig. 1 is the final state afi; in A*T!, wherem = |Q]; in fact, (m, 1) and(1,2) are
the same state.

S OREONED WD o S R
D D) (m k) (k1)

Figure 1. An example of an FA for the catenationgefl As.

Lemma 3.1. Given an FAA = (Q,X%,4,s, f), L(A) is ak-intercode if and only if there is no path
from ((¢,1),(1,1)) to ((4,9), (m,k)) such thatl < i < m and(j,g9) # (m,k+1) in the state-pair
graphG 4.+ for A1,

A language isifix-freeif it is prefix-free and suffix-free.

Y.-S. Han et al./ Intercode Regular Languages 117

Proof:

Given stringsu andv, we say that is astrict infix of v if « is an infix of v but not a prefix or a suffix
of v. By the definition,(A) is ak-intercode if and only if there is no stringe L(A*) such that: is a
strict infix of a stringu € L(A*+1).

= Assume that there is a path fraifi, 1), (1, 1)) to ((4,), (m, k)) in G 4x+1 that spells out a string.
Thus, there exist two distinct paths, one of which is frain) to (4, g) and the other is fronfl, 1) to
(m, k) and both spell outy in A*+1. Note thatw € L(A*). SinceA*+! has only useful states, there
should be a transition sequence fr@gin1) to (i, 1) that spells out a string that is not\ since A is
non-returning, and a transition sequence frojyy) to (m, k+1) that spells out a string, which is
not A since(j,g) # (m,k+1). This implies that4*+! acceptsrwy, andz andy are not\. Then,
L(AFY) N2+ L(AF)ST #£ () — a contradiction.

<= Assume thafl.(A) is not ak-intercode. Then, there are two stringss L(A*) andv € L(A*+1)
such thatu is a strict infix ofv; namelyv = zuy, wherex andy are noth. Note thatu = uqus - - - ug
and eachyy,, for 1 < h < k, is spelled out by;, in A**1 and, thus, there is a path frofh, 1) to (m, k)
that spells out, in A**1. SinceA**! acceptsy = zuy, we reach some staigafter reading the prefix
of v. Note thaty cannot be(1, 1) sinceA is non-returning.

(m,k) _ (m,k+1)
o O DL DB
S o D.CO_ W 3

k) (m,k+1)

Figure 2. Ifgis notin Ay, then we can choose anoth€rsuch that’ = z’uy’ hasu as a strict infix. Therefore,
we can always guarantee that there exists a gtateh thay = (¢,1) for 1 < i < m.

It might be possible thag is not in A; but, say, inAy; namely,q = (i, h). However, ifg is in
Ap, # Ay, then we can choose anothérthat is spelled out by a path fro(i,) to (i, k) in A;, such
thatv’ = 2’uy/ as illustrated in Fig. 2.

Now we know that; = (i, 1) and we show that # m. If i = m, then this implies thaL(A) is not
prefix-free and, therefore, not an intercode since we need to gutell foom A, and, eventually, there
are two strings accepted by, and one of them is a prefix of the other as illustrated in Fig. 3.

(1,1) (i,1) (m,k) (m,k+1)
e @ O 3. DO

Figure 3. A case wheh= m. Then, later we must reach a state, which is not a final stamwading each
up, of u from ¢ and it follows thatLL(A) is not prefix-free. This contradicts our assumption tha#l) bifix-free.
Therefore; < m.

Sinceu € L(A*) andv € L(A¥!), there should be two distinct sequences of transitions, one
of which is from(1,1) to (m, k) and the other is fronfi, 1) from (4, ¢g), and both spell out the same

118 Y.-S. Han et al./ Intercode Regular Languages

stringu. Now we prove that we are not &tn, k+1) after readingu from (¢,1). Sincey # X and
AF+1is non-exiting, we must arrive at some statesuch thaty’ # (m, k+1). It follows that there is a
path from((i,1), (1,1)) to ((4,9), (m, k)) in G 4x+1 such thatl < i < m and(j,g) # (m,k+1) —a
contradiction. 0

Based on Lemma 3.1, we design an algorithm for checking timercode property as follows:

k-intercode (A, k)
/* Ais an input FA and: is a fixed index. */

Constructd*+1 by catenating:+1 As

constructG gr1 = (Vig, Eg) from A+

for each nodé€(i, 1), (1,1)) in Vi, wherel < i <m
DFS(((i,1),(1,1))) in G g4x+1
if we meet a nodé(j, g), (m, k)) forany(j,g) # (m, k+1)

then outputL(A) is not a k-intercode

outputL(A) is a k-intercode

Figure 4. Ak-intercode checking algorithm for a given FA.

A sub-function DFS((, j), (¢, 7'))) in Fig. 4 is a depth-first search (DFS) that starts at a node
((,7),(',7")) in G 4x+1. Although DFS((i,7), (i, j"))) is executed several times inside toe loop
in the algorithm, each node 1@ 4x+: is visited at most twice and thus, the total time complexity of ex-
ploring G 4 is linear in the size of7 4. For details on DFS, we refer the reader to Cormen et al. [4]. Since
|AFY = (k+1) - O(|Q| + |6]), the construction off = (V, E¢) from A¥+1 takesk? - O(|Q|? + |5]?)
time in the worst-case. Therefore, the total running time of the algorithm in Fsgk% O(|Q|? + |9]?)
and we obtain the following result.

Lemma 3.2. Given an FAA = (Q, X, 4, s, f) and an index, we can determine whether or nbtA) is
ak-intercode ink? - O(|Q|? + |6|?) worst-case time.

If a regular language is given by a regular expresdigrthen we can use the Thompson construc-
tion [22] that gives &2 - O(| E|?) runtime algorithm since the number of states and the number of transi-
tions of the Thompson automata are of the o@éF|). Note that if a given languagk is context-free,
then it is undecidable whether or nbtis an intercode [16].

Next we continue with the question of deciding whether a given regulaubageyis an intercode
when the index is not specified.

Y.-S. Han et al./ Intercode Regular Languages 119

Lemma 3.3. Given an FAA = (Q,%,0,s, f), L(A) is not an intercode for any index if there is a
stringw that is spelled out by a path frofa, 1) to (i, p) in A*+! and a path fron{1, 1) to (m, k) in A*
for somek, wherei # 1,7 #mandl <p < k + 1.

Proof:

If a languagel is an intercode of indek, thenL is an intercode of index+1 [21]. Because ofv,
L(A) is not ak-intercode and, thud,(A) is not an intercode for any index less thlanWe now show
thatL(A) is not a2k-intercode.

Sincew is spelled out by a path froffi, 1) to (i, p) in A*+1, there is a path fronfi, 1) to (4, 2p—1)
for ww in A%%*1, Sinceww is also accepted byi?*, it follows that L(A) is not a2k-intercode. Using
this argument inductively, it follows thdi(A) is not an intercode of any, arbitrarily large, index. O

Lemma 3.3 suggests that if we can find a strin@s in the lemma, then we can show ttigtd) is
not an intercode.

Lemma 3.4. Given an FAA = (Q, 2,4, s, f), L(A) is not an intercode for any indexif L(A) is not a
(|Q|+1)-intercode.

Proof:
First, we show that if.(A) is not an intercode of indeix)|+1, then there is: > 0 such thatL(A) is not
an intercode of indejQ|+1+c.

Lett = |Q|+1. SinceL(A) is not at-intercode, there are two stringse L(A?) andv € L(A!1)
such thatu is a strict infix ofv; namely,v = zuy, andx andy are not\.

p
At Es) o o) LX)

A e
U2 us Uy Us

U = uy Ut—1 Uy

Figure 5. An illustration of two strings andv, whereu is a strict infix ofv.

Once we read in A1, we reach a statg, which is not the start state sineeis non-returning. We
now start reading frompin A,, » > 1, of A**! as shown in Fig. 5. Note that= u;upus - - - u;, where
u; is spelled out by4; in A* for 1 < i < t. Further, note that; # \, 1 < i < t, sinceL(A) is bifix-free.
When we have completed reading eaghl < i < t, we keep a record of the states 4ft! that we
reach at that point. Since we have= |Q|+1 such states, two of them must be the same gtafed as
shown in Fig. 6. Let: be the “distance” between the tye in A**! in terms of the different components
A, that is, if the first occurrence gfis a state ofd,., the second is a state df., ,. Letb be the number
of infixesu; that the path between this spells out, fod < i < ¢. Note thata > 0 andb > 0. We use
u” = wzu;vq - - - ;41 to denote the string spelled out by the path between theswo

120 Y.-S. Han et al./ Intercode Regular Languages

Ui Uj41Ui42U;4+-3
DS e e

| | | | |
(17} Ui+1 Ui4+2 Ui43

Figure 6. An example of a case when stappears twice while readingin A**! from z shown in Fig. 5. In
this caseq = 6 andb = 4.

Since the statg appears twice, we can define new strings= uqus - - - u”v” - - -y andv’ = zu'y,
whereu’ € L(A"?) andv’ € L(A*1+2). Note thatu' is a strict infix ofv’. This implies that

L(At+1+a) N EJrL(AHb)EJr # 0. (1)

Based on (1), we show that(A) is not an intercode of indetc, for somec > 0.

1. a=0:If a =0, thenu” is spelled out by revisiting the same statie A;. From (1), we have

L(At—i-l) N Z+L(At+b)2+ + 0
= LAWY ASTLATY)ST £, (b > 0).

Therefore,L(A) is not an intercode of indek+b and recall thab > 0. Thus,L(A) is not an
intercode of index+c¢ when we choose = b.

2. a,b > 0: There are two cases to consider separately.

(@) a <b:If LAHIH)NSHL(AT)SF £ (), then, L(AT1H0) N ST L(A™) S+ must be not
empty since: < b. We can chooseto beb, and nowL(A) is not an intercode of indeixt-c.
(b) a > b: Because of (1), we have two stringsandv’ as shown in Fig. 7.
Now we removev; andv; ., from v’ = vjvh---v; . ,, wherev; is an infix of v’ that is
spelled out byA; of AtT+¢ for1 <i < t+ 1+ a. Letv” be the resulting string. Then?
becomes a strict infix of’ as illustrated in Fig. 8.
We now have
L(At—i-b) N E+L(At+a—1)2+ 7& 0
= L(At+1+(b71)) N0 E+L(At+(a71))2+ 7& (Z)

Sincea—1 > b—1, this case is analogous to the previous case wherb. Therefore,L(A)
is not an intercode of index-(a—1). Note that(a—1) > 1 and, thus, we can take—1) as
the valuec. Then,L(A) is not an intercode of indext-c.

To summarize, we have shown thafifA) is not an intercode of index t > |Q| + 1, thenL(A) is
not an intercode of indextc, for somec > 0. Consequently, if.(A) is not an intercode of inde)X)|+1,
thenL(A) is not an intercode of any index. O

Y.-S. Han et al./ Intercode Regular Languages 121

>t o P Nt
— ! ! ! ! = A

| |
[I I I I I I I | | At—|—1+a

Figure 7. An example for the proof: Two stringsandv’ suchu’ € L(A!*?),v' € L(A1+4) andv’ is a strict
infix of v/, anda > b. A gray part is spelled out by ™.

| | | | | | AT

| I I I 1 At—‘ra—l
>+ v’ »t

Figure 8. An example for the proof: After we removgandv; ., from«’, v becomes a strict infix of’.

Based on Lemmas 3.2 and 3.4, we obtain the following result.

Theorem 3.1. Given an FAA = (Q, %, 9, s, f), we can determine whether or nbfA) is an intercode
of indexk, for somek, in O(|Q|* + |Q|?|6|?) worst-case time.

Proof:

Using the algorithm in Fig. 4, we can check whether orh@t) is a(|Q|+1)-intercode. The runtime is
O(|Q|* + 1QJ?16|?) from Lemma 3.2. IfL(A) is not a(|Q|+1)-intercode, therd.(A) is not an intercode
at all by Lemma 3.4. O

Note that Theorem 3.1 gives a polynomial-time algorithm to decide the gentaiade property,
and the input automatoA can be nondeterministic. The previously known decidability result [16$ doe
not yield a polynomial-time algorithm when the input automaton is nondeterministiccedver, as
an extension of Theorem 3.1, we can compute the smallest ibhdech thatZ(A) is a k-intercode.
Assume thatL(A) is a (|Q|+1)-intercode for an FAA = (Q,X,4, s, f) from Theorem 3.1. Since
intercodes form a proper hierarchy with respect to their index [15Lamerepeat the checking procedure
forindices|Q|, |Q|—1, .. ., until we find the smallest index. However, instead of going down lineardy, w
can search the smallest index using a binary technique as follows. We jun®italéx|Q|/2. If L(A)
is a(|Q|/2)-intercode, then we jump to indeég)| /4. Otherwise, we jump back to ind&Q|/4. Based
on this technique, we establish the following result.

Theorem 3.2. Given an FAA = (Q, %, 4, s, f), in O(log |Q| - (|Q|* + |Q|?|5]?)) worst-case time, we
can determine whether or né(A) is an intercode for some indéx> 0, and if the answer is positive
we can find the smallest indéxsuch thatl.(A) is ani-intercode but not afi—1)-intercode.

122 Y.-S. Han et al./ Intercode Regular Languages

4. Prime intercode regular languages and decomposition

Decomposition can be viewed as the reverse operation for catenatior., Letand L, be languages.
If L has a decompositioh = L, - Ly, we call L, and L, factorsof L. Note that every language has
trivial decompositionsl. = {\} - L = L - {\}. We call{\} atrivial language. We define a languabe
to beprimeif L # L, - Ly, for any non-trivial languages; and L,. A prime decompositionf L is a
decomposition. = Ly Ly - -- Ly, whereLy, Lo, - - - , Lj, are prime languages aid> 1.

Mateescu et al. [18, 19] showed that the primality of regular languagescidable and the prime
decomposition of a regular language is not unique even for finite langu@ggzowicz et al. [5] consid-
ered prefix-free regular languages and showed that the prime nefixlecomposition for a prefix-free
regular languagé is always unique and the unique prime decompositiotifoan be computed i@ (m)
worst-case time, whern is the size of the minimal DFA fof.. Recently, Han et al. [12] investigated the
prime infix-free decomposition of infix-free regular languages and dstrated that the prime infix-free
decomposition is not unique. On the other hand, it turns out that the primg-&retti decomposition of
outfix-free regular languages is unique [14].

4.1. Prime intercode regular languages

In this section we examine prime intercode regular languages and decomposttimtercode regular
languages.

Definition 4.1. We define a regular languadeto be aprime intercoddanguage ifL # L, - Lo, for any
non-trivial intercode regular languagés and L.

We define structural properties of DFAs that are useful in finding priee®chpositions of intercodes.
Recall that since an intercode is necessarily bifix-free, we can, withssitof generality, assume that a
DFA accepting an intercode is non-exiting and has only one final state.

Definition 4.2. Let A be a DFA such that(A) is an intercode. We define a statef A to be abridge
stateif the following conditions hold:

1. The staté is neither a start nor the final state.

N

For any stringuv € L(A), its path inA must pass throughat least once.

w

The staté does not belong to any cycle df.

If we construct DFAs4; and A, as described in Definition 4.3, the languadés!;) and L(As)
are intercodes.

»

We say that a stateof a DFA A is acandidate bridge stati it satisfies conditions 1., 2. and 3. of
Definition 4.2.

Definition 4.3. Given an intercode DFA = (Q, X, 4, s, f) with a candidate bridge stabes @, we can
partition A into two subautomata; and A,, that share only the stabeas follows:

° Al == (Q172751787b)1

()1 is the set of states that appear on some path fréorb in A including boths andb.

Y.-S. Han et al./ Intercode Regular Languages 123

41 is the set of transitions that appear on some path frood in A.

o Ay =(Q2,%,02,b, f),
Q- is the set of states that appear on some path trtorf in A including bothb and f.
& is the set of transitions that appear on some path troonf in A.

Note that ifA does not satisfy the third condition in Definition 4.2, thenfgrand A, as constructed
in Definition 4.3,L(A;) andL(A2) may not be intercodes since FAs for intercode regular languages must
be non-returning and non-exiting. Thus, condition 3. of Definition 4.2 ¥adldrom condition 4. We
include condition 3. in the definition for clarity.

The following result is crucial for finding efficiently prime decompositionsndércode regular lan-
guages.

Theorem 4.1. An intercode regular languagdeis prime if and only if the minimal DFAA for L does
not have any bridge states.

Proof:

Let s denote the start state arfddenote the final state id. Note that since an intercode is always
bifix-free, the minimal DFA forL has only one final state.

— Assume thatd has a bridge statg Then, we can construct from two automatad; and A, as in
Definition 4.3 such that is the start state anglis the final state ofi; andg is the start state anflis the
final state ofd,. Then,L = L(A;) - L(As), whereL(A;) andL(A3) are intercodes — a contradiction.
<= Assume that. is not prime. Then[can be represented &s - Lo, whereL, and L, are intercodes;
namely,. = L, - L. Czyzowicz et al. [5] showed that given prefix-free languageB andC' such that
A= B-C, Aisregular if and only ifB andC are regular. Thus, if. is regular, therl,; and L, must be
regular since all intercodes are prefix-free. Ugtand A, be minimal DFAs forl; and L., respectively.
SinceA; and A, are non-returning and non-exiting, there is only one start state andralestiate for
A; andAs. We catenated; and A, by merging the final state of; and the start state of; as a single
stateg. Then, itis easy to verify that the catenated automaton is the minimal DEA(fér) - L(As2) = L
and it has a bridge state— a contradiction. O

4.2. Prime decomposition of intercode regular languages

Here we develop an algorithm to find the prime decomposition of an intercgdéardanguage. The
prime decomposition of an intercode regular languagepresentd. as a catenation of prime intercode
regular languages, and the rough idea is as follows.i$f prime, thenl itself is a prime decomposition.
Thus, givenL, we first check whether or ndi is prime and decomposkif it is not prime. If L is not
prime, by Theorem 4.1, we can decompdsi@ato L(A;) andL(Ay) at some bridge state. If both(A4;)
andL(Az) are prime, a prime decomposition bfis L(A;) - L(A2). Otherwise, we repeat the preceding
procedure for a non-prime language.

Let B denote the set of bridge states for a given minimal DEAThe number of states iB is at
mostm, wherem is the number of states iA. Note that once we partitiod atb € B into A; and
A, then only states iB \ {b} can be bridge states of; and A,. Therefore, we can determine the
primality of L(A) by checking whether has bridge states and can compute a prime decomposition of

124 Y.-S. Han et al./ Intercode Regular Languages

L(A) using these bridge states. Since there are at madstidge states in an intercode FA we can
compute a prime decomposition bf A) after a finite number of decompositions at bridge states.

Recall that if a state in A satisfies the first three conditions of Definition 4.2, we ga#l candi-
date bridge state. We can compute the set of candidate bridge states fieem angnimal DFAA =
(Q,3%,0,s, f) for an intercode regular languadg A) in linear time using the DFS [12].

Once we compute a sétof candidate bridge states fromy we check for each statg € C whether
or not two subautomatd; and A, that are partitioned &t are intercodes using the algorithm in Fig. 4. If
both A; and A, are intercodes, thehis not prime and we decomposgento L(A;)- L(A2) and continue
to check and decompose each of the “subautomatadind A,, respectively, using the remaining states

The correctness of the recursive procedure relies on the “if andifirdpndition given by Theo-
rem 4.1 that in turn relies on the minimality of the DFA's in question. Hence we stitine verify the
following technical property.

Lemma4.l. Let A = (Q, %, 9, s, f) be a DFA with a candidate bridge stdte (). Let A; and A be
the subautomata of that share the stateand are constructed as in Definition 4.3 4lfs minimal, then
both A; and A5 are minimal DFAs.

Proof:

Assume thatd is minimal. We use ford; and A, the notations as in Definition 4.3. Since all states
of A; are clearly reachable from the start state, it is sufficient to show that ostates in4; can be
equivalent, fori = 1, 2.

First consider distinct stateg and ¢, of As. Since A is minimal there existay € X* that dis-
tinguishes between the staigsandq,. Without loss of generality, we assume thét;, w) = f and
d(q2,w) # f since the other possibility is symmetric. Above it is possible #ifat, w) is undefined.
Sinceb is a candidate bridge state df A; cannot have any out-transitions framThis means that the
computations along starting fromg; andg., respectively, are the same.y asinA. Henceg; andg,
are not equivalent ims.

Second consider distinct statesandp, of A;. Again, sinceA is minimal there exists, € ¥* such
that

6(p1,u) = f andd(pa,u) # f 2)

(or vice versa). By condition 2. of Definition 4.2, some prefixof u takesp, to the staté. Now (2)
implies thatd(ps2, u1) # b. We note thab; (p1,u1) = 6(p1,u1) = b. If the computation ofd starting
from po on inputu; does not pass through the stateve haved; (p2, u1) = d(p2,u1), and otherwise
91(p2, u1) is undefined. In both cases andp, are inequivalent im; . O

Theorem 4.2. Given a minimal DFAA = (Q, %, 4, s, f) for an intercode regular languadg A), we
can determine primality of (A4) in O(m?) worst-case time and compute a prime decompositidiy df)
in O(mY) worst-case time, where is the number of states iA.

Proof:

First, we compute the sétof candidate bridge states in linear time in the sizeldfi2]. Note that the
number of states id is at mostmn by definition, wheren = |@Q|. For each state i@, we check whether
or not L(A;) and L(A3) are intercodes it (m?) time. Note that a state of A4;, 1 < i < 2, can be

Y.-S. Han et al./ Intercode Regular Languages 125

a candidate bridge state onlydfwas a candidate bridge state of the original DRA Thus, the total
running time for determining primality af(A) is O(m) x O(m*) = O(m?) in the worst-case.

Once we find a bridge statg, we partitionA into A; and A, atb; and repeat the procedure for
L(A;) andL(A>), respectively, using the remaining candidate stat€s\i{b;}. By Lemma 4.1, is
a minimal DFA andL(A,) is an intercode sinck; was a bridge state, = 1,2. Thus, by Theorem 4.1,
L(A,) is prime if and only ifA,. does not have any bridge statess 1, 2.

We continue this partitioning until the component languages are prime intexcdderefore, the
total time complexity for computing a prime decomposition¢f4) is O(m?) in the worst-case. O

The algorithm for computing a prime decomposition fard) in Theorem 4.2 looks similar to the
algorithm [12] for the infix-free regular language case. Howevergtieeone crucial difference between
these two algorithms because of the different closure properties of th&atities. Many classes of
codes are closed under catenation; examples include the prefixifiedrd®, infix-free and outfix-free
codes. Based on this observation, Han et al. [12] speeded up théhalyfor the infix-free case by a
linear factor. In contrast, intercodes are not closed under catenation.

Theorem 4.3. The family of intercodes is closed under intersection but not closed wadenation,
union, complement or star.

Proof:
We consider here only the case of catenation. The other cases caovbd ptraightforwardly.

Assume thatL is an intercode and lety be the the square df; namely,Ly = LL. If Ly is an
intercode, therngJrl N S+ LEST must be)) for some integek > 1. However, we observe that for any
k>1,

Ly NSTLEST = LI LN ST LT £ 0.

Therefore,Lj is not an intercode (of any index) and the class of intercodes is notdlmgker catenation.
O

In the proof of Theorem 4.2 we observed that all bridge states of the moemp automatal;, 1 <
1 < 2, must be bridge states also in the original DBA However, the implication does not hold in the
converse direction and sometimes a bridge state C of a minimal DFA A is no longer a bridge state
after a decomposition at some other bridge siatef A. Fig. 9 illustrates this situation.

The example of Fig. 9 hints at the possibility that the prime intercode decompositigri not be
unigue. Czyzowicz et al. [5] demonstrated that the prime prefix-freerdposition for a prefix-free
regular language is unique; this can be extended for the suffix-filebifir-free cases. Since intercodes
are a subfamily of bifix-free languages, it is natural to investigate the anigs of prime intercode
decompositions.

Example 4.1. The following example shows that the prime intercode decomposition neeeé naidue.

Ll(a(bcb + C)) . LQ(CL).

L(a(bch + c)a) = { Lo(a) - Ls((beb + c)a).

The languagd. is an intercode but not prime and it has two different prime decompositidme,ew
Ly, Ly and L3 are prime intercodes.

126 Y.-S. Han et al./ Intercode Regular Languages

Figure 9. States; andb, are bridge states fod. However, once we decompogeat b,, thenb; is no longer a
bridge state iMd; sinceb; now violates the fourth condition in Definition 4.2. Similgrif we decomposed atb,
thenbs is not a bridge state.

In Example 4.1, Ly, L, and L3 are all 1-intercodes. Howevel, = (bcb + ¢) is not an intercode
for any index by Lemma 3.3 sineécb € L(A?) is spelled out by a path froif2, 1) to (2, 3) in A3; see
Fig. 10 for an example. Therefore, the prime intercode decomposition isiie.

Figure 10. Given a minimal DFAL for L’ = (bcb + ¢), we construct4® as a catenation of thre¢s. The dotted
line represents a path frof@, 1) to (2, 3) that spells outbecb € L(A?).

5. Conclusion

There has been much research on formal languages aspects of &vidkghis viewpoint, we have
investigated regular intercodes, their decision properties and prime desiiops.

Given a regular languagk and a fixed index, it is not difficult to determine whether or ndt
is an intercode of indek. On the other hand, if no index is given, then the decision problem is not
as straightforward. We have given an algorithm that determines in polyhttm&whether or not the
languageL(A) of a given NFA A is an intercode (of any index). The algorithm relies, via state-pair
graphs, on the structural properties of a given NFA. Furthermorehave shown that in the positive
case we can compute, in polynomial time as well, the smallest index for whiglkan intercode. If is
defined by a regular expressi@h then we can use the Thompson construction [22] that guarantees that
the size of the corresponding automaton is linear in the siZe of

We have provided an algorithm for determining the primality of an intercodelae¢anguage and
also provided an efficient algorithm for computing a prime intercode decsitipo. Finally, we have
presented an example that shows the non-uniqueness of prime inteemmhepbsitions.

Y.-S. Han et al./ Intercode Regular Languages 127

Acknowledgements

We thank the anonymous referees for useful suggestions.

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Berstel, J., Perrin, D.Theory of CodesAcademic Press, Inc., 1985.
Berstel, J., Perrin, D.: Trends in the theory of codeATCSBulletin, 29, 1986, 84—-95.

Caron, P,, Ziadi, D.: Characterization of Glushkov au#ta, Theoretical Computer Scien@331-2), 2000,
75-90.

Cormen, T.H., Leiserson, C.E., Rivest, R.L.,Stein, ntroduction to Algorithms, McGraw-Hill Higher
Education, 2001.

Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.. Lindgmne prime decomposition of regular prefix codes,
International Journal of Foundations of Computer Scierieg,2003, 1019-1032.

Fernau, H., Reinhardt, K., Staiger, L.: Decidabilityarfde propertiesProc. 4th International Conference
Developments in Language Theof®. Rozenberg, W. Thomas, Eds.) World Scientific, Singap2@€0,
153-160.

Giammarresi, D., Ponty, J.-L., Wood, D., Ziadi, D.: A chaterization of Thompson digraph®)iscrete
Applied Mathematigsl34, 2004, 317-337.

Glushkov, V.: The abstract theory of automaRyssian Mathematical Surveys, 1961, 1-53.

Golomb, S., Gordon, B.,Welch, L.: Comma-free codé&se Canadian Journal of MathematicH), 1958,
202-2009.

Han, Y.-S., Salomaa, K., Wood, D.: Prime decomposgiohregular languages?roceedings of DLT'06,
LNCS 4036, Springer-Verlag, 2006, 145-155.

Han, Y.-S., Wang, Y., Wood, D.: Prefix-free regular-eagsion matchingProceedings of CPM'05LNCS
3537, Springer-Verlag, 2005, 298-309.

Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular exps@®ns and languagednternational Journal of
Foundations of Computer Sciendg(2), 2006, 379-393.

Han, Y.-S., Wood, D.: Overlap-free regular languadge®ceedings of COCOON'0GNCS 4112, Springer-
Verlag, 2006, 469-478.

Han, Y.-S., Wood, D.: Outfix-free regular languages ariche outfix-free decompositionrProceedings of
ICTAC’05 LNCS 3722, Springer-Verlag, 2005, 96-109.

Jurgensen, H., Konstantinidis, S.: Codes, \ord, Language, Grammavolume 1 ofHandbook of Formal
Languageg4G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, 199%5-607.

Jurgensen, H., Salomaa, K., Yu, S.: Decidability of the iobele propertyElektronische Informationsverar-
beitung und Kybernetik9(6), 1993, 375-380.

Jurgensen, H., Salomaa, K., Yu, S.: Transducers and the atglitg of independence in free monoids,
Theoretical Computer ScienckE34, 1994, 107-117.

Mateescu, A., Salomaa, A., Yu, S.: On the decompositidimite languages, Technical Report 222, TUCS,
1998.

128 Y.-S. Han et al./ Intercode Regular Languages

[19] Mateescu, A., Salomaa, A., Yu, S.: Factorizations afjlaages and commutativity condition&¢ta Cyber-
netica,15(3), 2002, 339-351.

[20] McNaughton, R., Yamada, H.: Regular expressions aai gfraphs for automatdEEE Transactions on
Electronic Computers, 1960, 39-47.

[21] Shyr, H., Yu, S.S.: Intercodes and some related pr@gsi$oochow J. Math16(1), 1990, 95-107.
[22] Thompson, K.: Regular expression search algorit@mmmunications of the ACM], 1968, 419-422.
[23] Yu, S.S.: A characterization of intercodésternational Journal of Computer Mathemati&§, 1990, 39-45.

