
February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

International Journal of Foundations of Computer Science
Vol. 24, No. 7 (2013) 1067–1082
c© World Scientific Publishing Company
DOI: 10.1142/S0129054113400315

THE EDIT-DISTANCE BETWEEN A REGULAR LANGUAGE

AND A CONTEXT-FREE LANGUAGE

YO-SUB HAN∗ and SANG-KI KO†

Department of Computer Science, Yonsei University

50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea
∗emmous@cs.yonsei.ac.kr
†narame7@cs.yonsei.ac.kr

KAI SALOMAA

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Received 14 December 2012
Accepted 4 May 2013

Communicated by Oscar H. Ibarra and Hsu-Chun Yen

The edit-distance between two strings is the smallest number of operations required to
transform one string into the other. The distance between languages L1 and L2 is the
smallest edit-distance between string wi ∈ Li, i = 1, 2. We consider the problem of com-
puting the edit-distance of a given regular language and a given context-free language.
First, we present an algorithm that finds for the languages an optimal alignment, that
is, a sequence of edit operations that transforms a string in one language to a string in
the other. The length of the optimal alignment, in the worst case, is exponential in the
size of the given grammar and finite automaton. Then, we investigate the problem of
computing only the edit-distance of the languages without explicitly producing an opti-
mal alignment. We design a polynomial time algorithm that calculates the edit-distance
based on unary homomorphisms.

Keywords: Edit-distance; Levenshtein distance; regular languages; context-free
languages.

1. Introduction

The edit-distance between two strings is the smallest number of operations required

to transform one string into the other [10, 18]. The edit-distance is often used as a

natural measure of string similarity. The problem of finding the edit-distance arises

in many areas, such as, computational biology, text processing and speech recog-

nition [13, 14, 16]. Edit-distance can be extended to a similarity measure between

∗Corresponding author.

1067

http://dx.doi.org/10.1142/S0129054113400315

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1068 Y.-S. Han, S.-K. Ko & K. Salomaa

languages [2, 3, 7, 13]. Kari and Konstantinidis [6] introduced error or edit systems

(e-systems, for short), which are formal languages over an alphabet of edit opera-

tions, which typically consist of deletions, insertions and substitutions. They also

studied the descriptional complexity of e-systems.

Different variants of the edit-distance problem have been considered in connec-

tion with various applications. For instance, in the the error-correction problem we

are given a set S of correct strings and an input string x, and the task is to find

the most similar string y ∈ S, that is, the string that minimizes the edit-distance

between y and x. If x = y ∈ S, then x has no error. If S is regular, we can use

a finite-state automaton (FA) for S to identify the most similar string in S with

respect to x [17]. Allauzen and Mohri [1] designed a linear-space algorithm that com-

putes the edit-distance between a string and an FA. Pighizzini [15] considered the

edit-distance between a string and a one-way nondeterministic auxiliary pushdown

automaton. The problem of calculating the error-detection capability is related to

the self-distance of a language L [7]. The self-distance, or inner distance, is the

minimum edit-distance between any pair of distinct strings in L. We can use the

self-distance as the maximum number of errors that L can identify. Based on this

observation, Konstantinidis and Silva [8, 9] introduced the maximal error-detecting

capability of a formal language and showed how to compute the maximal error-

detecting capability of a regular language for channels involving any types of edit

operations as errors.

We investigate the problem of computing the edit-distance between a regular

language and a context-free language; namely, the problem of finding a closest pair

of strings in the languages based on the edit-distance model. This was an open

problem and it can be noted that the edit-distance problem between two context-

free languages is known to be undecidable [13]. Based on structural properties of the

FA and the pushdown automaton for the given languages, we design an algorithm

to compute the edit-distance and the optimal alignment between the languages. We

note that the optimal alignment, that is, the optimal sequence of edit operations

transforming a string of one language to a string of the other may be exponential

in the size of the given FA and pushdown automaton. Also, we design a polynomial

time algorithm that computes the edit-distance between a context-free language and

a regular language but does not give the optimal alignment between the languages.

In Sec. 2, we define some basic notions. We recall the definition of the edit-

distance and the associated algorithmic problems in Sec. 3. Then, we present an

efficient algorithm for computing the edit-distance and an optimal alignment be-

tween a context-free language and a regular language in Sec. 4. We present a faster

algorithm that only computes the optimal cost using unary homomorphisms in

Sec. 5.

2. Preliminaries

Here we recall some basic definition and fix notation. For complete background

knowledge in automata theory, the reader may refer to textbooks [5, 19].

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1069

The size of a finite set S is |S|. Let Σ denote a finite alphabet and Σ∗ denote

the set of all finite strings over Σ. For m ∈ N, Σ≤m is the set of strings over Σ

having length at most m. A language over Σ is a subset of Σ∗. The symbol λ

denotes the null string. A (nondeterministic) finite automaton (FA) is specified by

a tuple A = (Q,Σ, δ, s, F), where Q is a finite set of states, Σ is an input alphabet,

δ : Q × Σ → 2Q is a multi-valued transition function, s ∈ Q is the start state and

F ⊆ Q is a set of final states. If F consists of a single state f , we use f instead of {f}

for simplicity. When q ∈ δ(p, a), we say that state p has an out-transition to state q

(p is a source state of q) and q has an in-transition from p (q is a target state of p).

The transition function δ is extended in the natural way to a function Q×Σ∗ → 2Q.

A string x ∈ Σ∗ is accepted by A if there is a labeled path from s to a state in F such

that this path spells out the string x, namely, δ(s, x) ∩ F 6= ∅. The language L(A)

recognized by A is the set of strings accepted by A.

A (nondeterministic) pushdown automaton (PDA) is specified by a tuple P =

(Q,Σ,Γ, δ, q0, Z0, F), where Q is a finite set of states, Σ is a finite input alphabet,

Γ is a finite stack alphabet, δ : Q× (Σ∪{λ})×Γ → 2Q×Γ≤2

is a transition function,

q0 ∈ Q is the start state, Z0 is the initial stack symbol and F ⊆ Q is the set of

final states. Our definition restricts that each transition of P has at most two stack

symbols, that is, each transition can push or pop at most one symbol. We use |δ|

to denote the number of transitions in δ, that is, the sum of the cardinalities of

the sets δ(q, a, γ) (q ∈ Q, a ∈ Σ ∪ {λ}, γ ∈ Γ). We define that the size |P | of P is

|Q|+ |δ|. The language L(P) recognized by P is the set of strings accepted by P .

A context-free grammar (CFG) G is a four-tuple G = (V,Σ, R, S), where V is a

set of variables, Σ is a set of terminals, R ⊆ V ×(V ∪Σ)∗ is a finite set of productions

and S ∈ V is the start variable. Let αAβ be a string over V ∪ Σ, where A ∈ V

and A → γ ∈ R. Then, we say that A can be rewritten as γ and the corresponding

derivation step is denoted αAβ ⇒ αγβ. A production A → t ∈ R is a terminating

production if t ∈ Σ∗. The reflexive, transitive closure of ⇒ is denoted by
∗
⇒ and the

context-free language generated by G is L(G) = {w ∈ Σ∗ | S
∗
⇒ w}. We say that a

variable A ∈ V is nullable if A
∗
⇒ λ.

3. Edit-Distance

The edit-distance between strings x and y is the smallest number of basic operations

that transform x to y. Here we use three basic operations: deletion, insertion and

substitution of single letters. Given an alphabet Σ, an operation that deletes a ∈

Σ (respectively, inserts b ∈ Σ and substitutes b for a) is denoted as (a → λ)

(respectively, (λ → b) and (a → b)). Corresponding to an alphabet Σ, we define

the alphabet of edit-operations as ΩΣ = {(a → b) | a, b ∈ Σ ∪ {λ}}. When Σ is

known from the context we denote ΩΣ simply as Ω. We call a string ω ∈ Ω∗ an edit

string [6] or an alignment [13].

Let h be the mapping Ω∗ → Σ∗ × Σ∗ defined by setting h((a1 → b1) · · · (an →

bn)) = (a1 · · · an, b1 · · · bn). The mapping h is a morphism if catenation of elements

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1070 Y.-S. Han, S.-K. Ko & K. Salomaa

of Σ∗×Σ∗ is defined componentwise. We say that an edit string ω ∈ Ω∗ transforms

a string x into a string y if and only if h(ω) = (x, y).

Example 1. Choose Σ = {a, b, c}. The edit string ω = (a → λ)(b → b)(λ → c)(c →

c) is an alignment between abc and bcc. Note that h(ω) = (abc, bcc).

A cost function C : ωi → R+ associates a non-negative cost to each edit oper-

ation ωi ∈ Ω. In the natural way, the cost C(ω) of an alignment ω = ω1 · · ·ωn is

then:

C(ω) =

n
∑

i=1

C(ωi).

Definition 1. The edit-distance d(x, y) of two strings x and y over Σ is the mini-

mal cost of an alignment between x and y: d(x, y) = min{C(ω) | h(ω) = (x, y)}. We

say that an alignment ω is optimal if d(x, y) = C(ω).

Next the definition of edit-distance is extended for languages as follows.

Definition 2. The edit-distance d(L,R) between two non-empty languages L,R ⊆

Σ∗ is the minimum edit-distance between a string in L and a string in R:

d(L,R) = min{d(x, y) | x ∈ L and y ∈ R}.

Mohri [13] proved that the edit-distance between two context-free languages is

uncomputable and gave an algorithm to compute the edit-distance between two

regular languages. We consider the intermediate case where one of the languages

is context-free and the other is regular. We use the Levenshtein distance [10] for

edit-distance and, thus, assign cost 1 to all edit operations; namely, C(a, a) = 0 and

C(a, λ) = C(λ, a) = C(a, b) = 1 for all a 6= b ∈ Σ. Using different constant values for

the costs would not change our algorithm significantly.

4. The Edit-Distance Between a Regular Language and a

Context-Free Language

We present algorithms that compute the edit-distance between a regular lan-

guage L and a context-free language R and find an optimal alignment ω such

that C(ω) = d(L,R). Let A = (QA,Σ, δA, sA, FA) be an FA for L and P =

(QP ,Σ,Γ, δP , sP , Z0, FP) be a PDA for R. Let

m1 = |QA|, m2 = |QP |, n1 = |δA| and n2 = |δP |. (1)

Recall that in our definition each transition of a PDA has at most two stack symbols;

namely, each transition can push or pop at most one symbol. It is well known that

any context-free language can be recognized by such a PDA [5].

Our algorithm first constructs a new PDA A(A,P) (called alignment PDA) that

recognizes the set of all possible alignments of two strings belonging, respectively,

to L and R.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1071

4.1. Alignment PDA

Given an FA A = (QA,Σ, δA, sA, FA) and a PDA P = (QP ,Σ,Γ, δP , sP , Z0, FP),

we construct the alignment PDA A(A,P) = (QE ,Ω,Γ, δE, sE , Z0, FE), where QE =

QA × QP is the set of states, Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} is the alphabet of

edit operations, sE = (sA, sP) is the start state, and FE = FA × FP is the set

of final states. The transition function δE consists of three types of transitions

corresponding to the type of edit-operations; deletion, insertion and substitution,

and additionally transitions that simulate λ-transitions of the PDA P . For p′ ∈

δA(p, a) and (q′,M ′) ∈ δP (q, b,M), where p, p′ ∈ QA, q, q
′ ∈ QP , a, b ∈ Σ, M ∈ Γ,

M ′ ∈ Γ∗, N ∈ Γ, we define δE to have the following transitions:

- ((p′, q), N) ∈ δE((p, q), (a → λ), N), [deletion operation]

- ((p, q′),M ′) ∈ δE((p, q), (λ → b),M), [insertion operation]

- ((p′, q′),M ′) ∈ δE((p, q), (a → b),M), [substitution operation]

- ((p, q′),M ′) ∈ δE((p, q), λ,M), if (q′,M ′) ∈ δP (q, λ,M).

Note that we have defined deletion operations for all stack symbols N in Γ.

Then, in a deletion operation, the transition does not change the stack. For δE ,

we make n1m2 transitions for deletions and n2m1 transitions for insertions. For

substitutions, we consider all pairs of transitions between A and P and, thus, add

n1n2 transitions. Therefore, the size of δE is |δE | = n1m2+n2m1+n1n2 = O(n1n2).

Intuitively, an alignment PDA A(A,P) was constructed to accept sequences of

edit operations that transform a string accepted by the FA A to a string accepted by

the PDA P . In light of this, the result of the following lemma is not very surprising,

however, for the sake of completeness we include a proof to verify the correctness

of the construction.

Lemma 3. The alignment PDA A(A,P) accepts an edit string ω if and only if

h(ω) = (x, y), where x ∈ L(A) and y ∈ L(P).

Proof.

(=⇒) SinceA(A,P) accepts ω, there exists an accepting computationXω ofA(A,P)

on ω ending in a state (fA, fP) where fA ∈ FA, fP ∈ FP . We assume that ω =

ω1 · · ·ωk, ωi ∈ Ω, 1 ≤ i ≤ k. Denote the sequence of states of A(A,P) appearing

in the computation Xω just before reading the kth symbol of ω as C0, . . . , Ck−1,

and denote the state (fA, fP) where the computation ends as Ck. (Note that the

computation Xω may contain also λ-transitions simulating the λ-transitions of P .)

Consider the first component (qi ∈ QA) of the state Ci ∈ QE, for 0 ≤ i ≤ k, and the

first component aj ∈ Σ∪{λ} of the edit operation ωj , for 1 ≤ j ≤ k. Because of the

construction of A(A,P), it follows that, when ai+1 ∈ Σ, we have qi+1 = δA(qi, ai+1)

and, when ai+1 = λ, we have qi+1 = qi, for 0 ≤ i ≤ k−1. Note that the transitions of

δE reading an “insertion symbol” (λ → b) do not change the first components of the

states and, similarly, transitions of δE simulating a λ-transition of P do not change

the first component. Thus, the first components of the states C0, . . . , Ck spell out an

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1072 Y.-S. Han, S.-K. Ko & K. Salomaa

accepting computation of A on the string x = a1 · · · ak obtained by concatenating

the first components of the edit operations of ω, and we have x ∈ L(A). Using a

similar argument for the string y obtained by concatenating the second components

of ω, we can show that the computation Xω yields an accepting computation of P

on y.

(⇐=) Let ω = (ωL(1) → ωR(1))(ωL(2) → ωR(2)) · · · (ωL(k) → ωR(k)) be an align-

ment of length k for two strings x = ωL(1)ωL(2) · · ·ωL(k) ∈ L(A) and y =

ωR(1)ωR(2) · · ·ωR(k) ∈ L(P). Let

C0, C1, . . . , Cm, m ∈ N, (2)

be a sequence of configurations of the PDA P that traces an accepting computation

CP,y on the input y. Assuming the state (respectively, topmost stack symbol) of Ci

is qi (respectively, γi), the configuration Ci+1 is obtained from Ci by applying a

rule (qi+1, γi+1) ∈ δP (qi, b, γi), where b ∈ Σ ∪ {λ}.

Based on the computation CP,y we want to construct a computation of A(A,P)

on the edit-string ω. Roughly speaking, the second component of A(A,P) simulates

the computation of the PDA P , however, this does not directly yield a computation

of A(A,P) because some of the symbols ωR(j) may be the empty string that would

be ignored in a computation of P . For this reason we modify the computation CP,y

as follows.

Suppose that the computation step Ci → Ci+1 consumes input symbol ωR(j),

and ωR(j+1) = · · ·ωR(j+h) = λ, ωR(j+h+1) 6= λ. Then in the sequence (2) we add,

after the configuration Ci, h identical copies of Ci. We denote the modified config-

uration sequence as

D0, D1, . . . , Dr, r ∈ N. (3)

For any 0 ≤ i ≤ r − 1, either Di+1 = Di or Di+1 is obtained from Di in one

computation step of P .

From the sequence (3) and an accepting computation of A on x, we obtain a

sequence of configurations of A(A,P) describing an accepting computation on ω by

adding the first component states that simulate a finite-state computation of A. For

the deletion operations (ωR(j) = λ) the state change is simulated just in the first

component and the configuration of P remains unchanged. (These are the identical

copies of P -configurations that were added in (3).) When A(A,P) processes an edit-

symbol (ωL(j) → ωR(j)) corresponding to a substitution operation, the computation

step simulates both a state transition of A on ωL(j) and the computation step of P

on input ωR(j). Finally, the transitions of A(A,P) on edit-symbols corresponding to

an insertion symbol or the transition simulating a λ-move in the second component

do not change the state of A appearing in the first component. This means that a

sequence of states of A spelling out an accepting computation on x can be combined

with the sequence (3) to yield an accepting computation of A(A,P) on ω.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1073

4.2. Computing an optimal alignment from A(A, P)

Based on Lemma 3, we know that computing the edit-distance between a regular

language L(A) and a context-free language L(P) can be solved by finding an op-

timal alignment in L(A(A,P)). We tackle the problem of searching for an optimal

alignment using the PDA A(A,P). The problem seems similar to the problem of

finding the shortest string accepted by a PDA, however, it is not necessarily the

case that a shortest string over Ω accepted by A(A,P) is an optimal alignment even

under the Levenshtein distance. This is illustrated by the below example.

Example 2.
a b c λ a b c

↓ ↓ ↓ ↓ ↓ ↓ ↓

λ b c d b c d

ωX ωY .

The two edit strings ωX and ωY are alignments between abc and bcd. Under the

Levenshtein distance, C(ωX) = 2 and C(ωY) = 3 while the lengths of ωX and ωY

over Ω are four and three, respectively. Thus, the longer alignment string ωX is a

better alignment than the shorter alignment ωY .

We should consider the edit cost of each edit operation to find an optimal align-

ment. If we replace the zero cost edit operations ((a → a) for all a ∈ Σ) by λ in an

edit-string, then in Example 2 the string ωX becomes ω′
X = (a → λ)(λ → d), which

is shorter than ωY . This leads us to the following observation.

Observation 1. Let s be a morphism Ω∗ → Ω∗ defined by setting:

s(a → b) =

{

λ if a = b;

(a → b) otherwise.

Then ω ∈ Ω∗ is an optimal alignment in L = L(A(A,P)) if and only if s(ω) is a

shortest string in s(L).

Observation 1 shows that the problem of finding an optimal alignment in

L(A(A,P)) becomes the problem of identifying a shortest string after the sub-

stitution s.

For an FA A with m1 states and n1 transitions, we can find the shortest string in

L(A) by computing the shortest path from the start state to a final state based on

the single-source shortest-path algorithm in O((n1+m1) logm1) time [12]. However,

we cannot obtain the shortest string accepted by a PDA similarly because of the

stack operations. Therefore, it turns out to be useful to convert the PDA into

a CFG and compute a shortest string generated by the grammar. We also, first,

convert A(A,P) to an equivalent CFG and, then, obtain an optimal alignment

from the resulting grammar. Note that if we apply the substitution function s in

Observation 1 directly to the transitions of A(A,P), then the problem becomes to

find a shortest string in s(L(A(A,P))). However, since the s function replaces all

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1074 Y.-S. Han, S.-K. Ko & K. Salomaa

zero cost edit operations with λ, we cannot, in general, retrieve an optimal alignment

between two strings. Instead, we only have the optimal edit cost. Therefore, the

s function is useful for computing the edit-distance only and not for finding an

optimal alignment. We revisit the problem of efficiently computing the edit-distance

only in Sec. 5. Here we focus on finding an optimal alignment and which, in the

worst-case, need not be polynomial in length. First we recall the following.

Proposition 4 (Hopcroft and Ullman [5]).

Given a PDA P = (Q,Σ,Γ, δ, s, Z0), the triple construction computes an equivalent

CFG G = (V,Σ, R, S), where the set V of variables consists of the special symbol S,

which is the start symbol, and all symbols of the form [pXq], where p, q ∈ Q and

X ∈ Γ. The productions of G are as follows:

(1) For all states p, G has the production S → [sZ0p] and

(2) Let δ(q, a,X) contain the pair (r, Y1Y2 · · ·Yk), where

(a) a is either a symbol in Σ or a = λ.

(b) k can be any non-negative number, including zero, in which case the pair

is (r, λ).

Then for all lists of states r1, r2, . . . , rk, G has the production

[qXrk] → a[rY1r1][r1Y2r2] · · · [rk−1Ykrk].

Note that G has |Q|2 · |Γ| + 1 variables and |Q|2 · |δ| productions. Now

we examine how to compute an optimal alignment from the PDA A(A,P) =

(QE ,Ω,Γ, δE , sE, Z0, FE) for an FA A and a PDA P , where |QE | = m1m2 and

|δE | = n1n2. Note that since we assume that each transition in P has at most two

stack symbols, a transition in A(A,P) has also at most two stack symbols. Let

GA(A,P) = (V,Σ, R, S) be the CFG computed by the triple construction of Proposi-

tion 4. Then, GA(A,P) has O((m1m2)
2 · |Γ|) variables and O((m1m2)

2 · (n1n2)) pro-

ductions. Moreover, each production of GA(A,P) is of the form A → σBC, A → σB,

A → σ or A → λ, where σ ∈ Σ and B,C ∈ V . We note that GA(A,P) is similar to

a Greibach normal form grammar but has λ-productions and each production has

at most three symbols starting with a terminal symbol followed by variables in its

right-hand side.

We run a preprocessing step before finding an optimal alignment, which speeds

up the computation in practice by reducing the input size. This step eliminates

nullable variables from GA(A,P). The elimination of nullable variables is somehow

similar to the elimination of λ-productions. The λ-production elimination removes

all λ-productions from a CFG G and yields an equivalent (modulo the string λ)

CFG G′ without λ-productions [5]. However, at least when using the commonly

known straightforward algorithm, the grammar G′ may have exponentially more

productions than the original grammar G [19]. We note that there exists also

a more sophisticated algorithm for eliminating λ-productions that causes only a

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1075

linear increase in the size of the grammar [4].a For our current purpose, we no-

tice that the productions added in the procedure eliminating λ-productions are,

in fact, not needed to generate an optimal alignment in A(A,P). Thus, we can

design a straightforward procedure that simply removes all nullable variables and

their appearances in A(A,P) without adding new productions, and do not need to

implement the sophisticated algorithm from [4].

The modified grammar still generates an optimal alignment between L(A)

and L(P).

Procedure 1 Elimination of Nullable Variables (ENV)

Input: GA(A,P) = (V,Σ, R, S)

1: let VN be a set of all nullable variables in GA(A,P)

2: if S ∈ VN then

3: V = {S}

4: R = {S → λ}

5: else

6: for B ∈ VN do

7: remove all occurrences of B in R // replace B with λ

8: remove all productions of B from R

9: remove B from V

10: end for

11: end if

The ENV (Elimination of Nullable Variables) procedure simply eliminates nul-

lable symbols and their occurrences from the grammar. Note that all productions

of GA(A,P) have as right side either λ or one terminal symbol over Ω followed by at

most two variables. Thus the procedure ENV needs to scan through the variables only

once to find nullable variables. The use of procedure ENV is illustrated in Example 3.

Example 3. Given a grammar G with the following set R1 of productions,

S → AB|a S → B|a

A → aAA|λ A → aAA|λ

B → bBA|a B → bB|a

R1 R2

we obtain R2 after ENV. Note that we only remove the nullable variable A and its

appearances from G and do not increase the size of the grammar.

Lemma 5. Let GA(A,P) = (V,Ω, R, S) be a CFG generating the language of

A(A,P) and let G′
A(A,P) be the grammar that the procedure ENV produces from

aWe thank one of the anonymous referees for pointing out this reference.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1076 Y.-S. Han, S.-K. Ko & K. Salomaa

GA(A,P). Then, the smallest cost of a string generated by G′
A(A,P) is the cost of an

optimal alignment between L(A) and L(P).

Proof. Since G′
A(A,P) is obtained from GA(A,P) by deleting some productions, the

cost of any string generated by G′
A(A,P) cannot be less than the cost of an optimal

alignment between L(A) and L(P). Thus, in order to prove the claim it is sufficient

to show that GA(A,P) has a derivation D producing an optimal alignment such that

in D all occurrences of a nullable variable derive λ.

Let X be a nullable variable and consider a derivation of GA(A,P) producing an

optimal alignment S
∗
⇒ αXβ

∗
⇒ wαwXwβ where wX (respectively, wα, wβ) is the

string generated from the symbol X (respectively, from the string α and β). Since

X is nullable and the derivation is context-free, this means that GA(A,P) generates

also the string wαwβ and we know that C(wαwβ) ≤ C(wαwXwβ).

Algorithm 2 Computing an optimal alignment in L(GA(A,P))

Input: GA(A,P) = (V,Ω, R, S)

1: eliminate all nullable variables by ENV

2: for B → t ∈ R, where t ∈ Ω∗ and C(t) is minimum among all such t in R do

3: if B = S then

4: return t

5: else

6: replace all occurrences of B in R with t

7: remove B from V and its productions from R

8: end if

9: end for

Algorithm 2 describes how to find an optimal alignment in GA(A,P). This

algorithm is a modified version of the algorithm for finding the shortest string

in a context-free grammar suggested by McLean and Johnston [11]. We first elim-

inate from GA(A,P) nullable variables, which are not needed to derive an optimal

alignment, as described in line 1 of Algorithm 2. In general, a procedure eliminating

nullable variables takes quadratic time in the size of an input grammar. However, in

our case all productions of GA(A,P) have as right side either λ or one terminal sym-

bol over Ω followed by at most two variables. This helps us to identify all nullable

variables of GA(A,P) by scanning R only once. It follows that the ENV procedure

takes only linear time for GA(A,P).

Once we have finished the ENV procedure, in the main part of the algorithm, we

pick a variable that has an edit string with the smallest cost as a production, say

v → t, and replace all occurrences of v with t in R and remove v from V . We repeat

this step until the smallest cost edit string is a production for the start symbol S.

Lemma 6 guarantees that the algorithm produces an optimal alignment.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1077

Lemma 6. Let GA(A,P) = (V,Ω, R, S) be a CFG with no λ-productions. Let

B → t ∈ R be a terminating production, where C(t) is minimal for all terminating

productions in R. Let G′
A(A,P) be the grammar obtained from GA(A,P) by removing

all productions for B from R and replacing all occurrences of B by t. Then, the

smallest cost of a terminal string generated by G′
A(A,P) is the same as the smallest

cost of a terminal string generated by GA(A,P).

Proof. Clearly, L(G′
A(A,P)) ⊆ L(GA(A,P)) and G′

A(A,P) cannot generate a terminal

string whose cost is less than the smallest cost of a terminal string generated by

GA(A,P). Conversely, let w be a minimum cost terminal string generated byGA(A,P).

If a derivation of w does not use B, then the string w can be generated also by

G′
A(A,P). Next, consider a derivation D of w that involves (one or more occurrences

of) B. Let D′ be the derivation obtained from D by replacing each derivation step

using a production B → α by a derivation step using the production B → t and let

w′ be the terminal string generated by D′.

Since C(t) is minimum among all right-hand sides of productions in R and

GA(A,P) does not have any λ-productions, for any string β that can be derived

from α, we have C(t) ≤ C(β) and it follows that C(w′) ≤ C(w).

We notice that the length of an optimal alignment can be exponential in the

size of an input grammar as shown in Example 4. In Example 4, once we eliminate

one variable v and update G by the single for loop in Algorithm 2, the length of

an edit string with the smallest cost is doubled.

Example 4. Consider a CFG G = (S,A1, . . . An}, {(a → b)}, R, S), where R has

the productions

S → A1A1

A1 → A2A2

...

An−1 → AnAn

An → (a → b) .

The language of G is {(a → b)2
n

} and |G| = O(n).

Now we consider the cost for replacing the occurrences of variables in Algo-

rithm 2. Since the grammar GA(A,P) has no λ-productions, the length of an edit

string with the smallest cost is one. Note that a production can have at most one

terminal followed by two variables. Therefore, when the algorithm replaces the tth

variable, we have an edit string of length at most 2t − 1. Next, we consider the

number of variable occurrences that are eventually replaced with an edit string.

Since there are at most 2|R| occurrences of variables in R and |V | variables, we

replace 2|R|
|V | occurrences of a given variable on average. Therefore, the worst-case

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1078 Y.-S. Han, S.-K. Ko & K. Salomaa

time complexity for finding an optimal alignment is

|V |
∑

t=1

(

|R|+ (2t − 1) ·
2|R|

|V |

)

= O

(

2|R|

|V |
2|V |

)

.

We note that using the notations (1) for the grammar GA(A,P), |V | = O((m1m2)
2 ·

|Γ|) and |R| = O((m1m2)
2 · (n1n2)), and we establish the time complexity of Algo-

rithm 2 with respect to m1,m2, n1 and n2 to be:

O

(

(m1m2)
4 · |Γ| · (n1n2) +

n1n2

|Γ|
· 2(m1m2)

2·|Γ|

)

= O

(

n1n2

|Γ|
· 2(m1m2)

2·|Γ|

)

. (4)

We have established the following:

Theorem 7. Given a PDA P = (QP ,Σ,Γ, δP , sP , Z0, FP) and an FA A =

(QA,Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P) in

O((n1n2) ·2(m1m2)
2·|Γ|) worst-case time. Here m1 = |QA|,m2 = |QP |, n1 = |δA| and

n2 = |δP |. Moreover, we can also identity two strings x ∈ L(A) and y ∈ L(P) and

their alignment with each other in the same runtime.

5. Edit-Distance and Unary Homomorphism

In the previous section, we have designed an algorithm that computes both the

edit-distance and an optimal alignment between a regular language and a context-

free language. From Theorem 7, we note that running time of the algorithm may

be exponential. Furthermore, the exponential running time seems hard to avoid

since it is known from Example 4 that the length of an optimal alignment could be

exponential in the size of input the FA and PDA. In this section we examine how to

calculate the edit-distance without explicitly computing the corresponding optimal

alignment and present a polynomial runtime algorithm for finding the edit-distance

between a regular and a context-free language.

Let ΣU = {u} be a unary alphabet. We often use non-negative integers Z+ for

the cost function associated with the edit-distance. For example, the Levenshtein

distance [10] uses one for all operation costs. From now on, we assume that the cost

function is defined over Z+.

We apply a unary homomorphism to the alignment PDA A(A,P) obtained from

an FA A and a PDA P , and construct a CFG for the resulting unary language.

Consider an alphabet Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} of edit operations and let

cI, cD and cS be the costs of insertion, deletion and substitution, respectively. Then,

we define a morphism H : Ω∗ → Σ∗
U by setting:

H(λ → a) = uCI((λ→a)), [insertion]

H(a → λ) = uCD((a→λ)), [deletion]

H(a → b) =
{

uCS((a→b)), if a 6= b;

λ, if a = b.
[substitution] .

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1079

Clearly for any alignment ω ∈ Ω∗, C(ω) = |H(ω)|, that is, the length of H(ω) gives

the cost of ω.

By Lemma 3, we know thatA(A,P) accepts all edit strings (alignments) between

two strings x ∈ L(A) and y ∈ L(P). Note that the cost of an optimal alignment

is the edit-distance between L(A) and L(P). We apply the homomorphism H to

A(A,P) by replacing an edit string ω with a unary string ui, where i = C(ω).

In this step, we can reduce the number of transitions in A(A,P) by applying the

homomorphism. For example, when there are multiple transitions like δE(qE , (a →

b),M) = (q′E ,M
′), where (a → b) ∈ Ω, the unary homomorphism results in only

one transition in the resulting PDA A(A,P), say H(A(A,P)). Since the number

of productions in the grammar GH(A(A,P)) produced by the triple construction is

proportional to the number of transitions in H(A(A,P)), we can reduce the size

of the grammar GH(A(A,P)), compared with GA(A,P). Then, an optimal alignment

in L(GA(A,P)) becomes the shortest string in L(GH(A(A,P))) and its length is the

edit-distance between L(A) and L(P). We establish the following statement.

Corollary 8. The edit-distance d(L(A), L(P)) of an FA A and a PDA P is the

length of the shortest string in L(GH(A(A,P))).

Corollary 8 establishes that in order to solve the edit-distance problem it is

sufficient to find the shortest string in L(GH(A(A,P))). Before searching for the

shortest string, we run a preprocessing step that eliminates λ-productions from

GH(A(A,P)). Lemma 9 guarantees that the preprocessing does not change the length

of the shortest strings generated by the grammar.

Lemma 9. Given a CFG G = (V,Σ, R, S), let G′ be a CFG constructed from G by

eliminating all nullable variables and their occurrences except for the start symbol.

If the start symbol of G is nullable, the grammar G′ is chosen to have only the

production S → λ. Then, a shortest string in L(G′) is also a shortest string in

L(G).

Proof. Since G′ is obtained from G by eliminating nullable variables, any string

generated by G′ is generated also by G. Conversely, relying on the context-freeness

of the derivations exactly as in the proof of Lemma 5, it is seen that G′ generates

a string with length equal to the length of the shortest string in L(G). (In fact, G′

generates all strings of L(G) having minimal length.)

Algorithm 3 computes the length of the shortest string in L(GH(A(A,P))). The

algorithm is based on similar ideas as Algorithm 2, however, we significantly improve

the running time by using a binary encoding for the unary strings. The complexity

of Algorithm 2 is exponential since the length of the shortest string (or optimal

alignment) can be exponential. On the other hand, now we are looking only for the

length of the shortest string (which gives the edit distance) instead of the actual

optimal alignment, and we can encode string lengths in binary. For example, we

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1080 Y.-S. Han, S.-K. Ko & K. Salomaa

Algorithm 3 Computing the length of the shortest string in L(GH(A(A,P)))

Input: GH(A(A,P)) = (V,ΣU , R, S)

1: eliminate all nullable variables by ENV

2: encode all right-hand productions by the number of u occurrences in binary

representation followed by the remaining variables in order

// e.g. from A → uuuBCuu to A → 101BC and now ΣU = {0, 1} instead of

{u}

3: for A → t ∈ R, where t is the smallest binary number in R do

4: if A = S then

5: return t

6: else

7: for each production B → wxAy in R, where w is the binary number part

and x, y ∈ V ∗ do

8: w′ = w + t in binary representation

9: update the production as B → w′xy

10: end for

11: remove A from V and all A’s productions from R

12: end if

13: end for

use 100000 to denote u32. We need only O(log n) space to denote a unary string of

length n, and this significantly improves also the running time of the algorithm.

Now we consider the complexity of Algorithm 3. In the worst-case, we need to

eliminate all variables in V . It takes O(|R|) time to eliminate a variable from G

since we need to scan the whole grammar in the worst-case. We need O((m1m2)
4 ·

(n1n2)·|Γ|) time to remove variables in V in the worst-case since |V | = (m1m2)
2 ·|Γ|

and |R| = O((m1m2)
2 · (n1n2)). (Our notations are as in (1).) Next, we consider

the time needed for replacing the occurrences of variables with encoded numbers in

binary. We should replace all occurrences of variables in the worst-case. The number

of occurrences is at most O((m1m2)
2 · (n1n2)) and the size of binary numbers

is at most O((m1m2)
2 · |Γ|). Then, the time needed is again upper bounded by

O((m1m2)
4 · (n1n2) · |Γ|). Thus, the worst-case time complexity of Algorithm 3

is O((m1m2)
4 · (n1n2) · |Γ|). Assuming the stack alphabet Γ is fixed, we have the

following result.

Theorem 10. Given a PDA P = (QP ,Σ,Γ, δP , sP , Z0, FP) and an FA A =

(QA,Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P) in

O((m1m2)
4 · (n1n2)) worst-case time, where m1 = |QA|,m2 = |QP |, n1 = |δA| and

n2 = |δP |.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

The Edit-Distance Between a Regular Language and a Context-Free Language 1081

6. Conclusion

Computing the edit-distance between two languages involves finding a pair of

strings, each of which is from a different language, with the minimum edit-distance.

The edit-distance problem between, respectively, two regular languages or between

two context-free languages has been well-studied in the literature [2, 7, 13]. We have

considered the “intermediate” problem of finding the edit distance between a reg-

ular language and a context-free language. We have proposed an algorithm that

finds an optimal alignment between a regular language and a context-free language,

however, since the length of an optimal alignment can be exponential in the size of

the input (the size of the given FA and PDA), the runtime of the algorithm is nec-

essarily exponential. This also led us to consider the problem of computing only the

edit-distance, as opposed to identifying the corresponding string of edit operations,

and we have given a polynomial runtime algorithm for the latter problem. Note

that the second algorithm only calculates the minimum edit cost between strings

in the two languages and does not explicitly yield an optimal alignment.

Acknowledgments

We wish to thank the referees for the careful reading of the paper and many valuable

suggestions including the previous results by Ésik and Iván [4], and by McLean and

Johnston [11]. As usual, however, we alone are responsible for any remaining sins

of omission and commission.

Han and Ko were supported by the Basic Science Research Program through

NRF funded by MEST (2010-0009168) and Salomaa was supported by the Natural

Sciences and Engineering Research Council of Canada Grant OGP0147224.

References

[1] C. Allauzen and M. Mohri. Linear-space computation of the edit-distance between
a string and a finite automaton. In London Algorithmics 2008: Theory and Practice.
College Publications, 2009.

[2] H. Bunke. Edit distance of regular languages. In Proceedings of 5th Annual Symposium

on Document Analysis and Information Retrieval, 113–124, 1996.
[3] C. Choffrut and G. Pighizzini. Distances between languages and reflexivity of rela-

tions. Theoretical Computer Science, 286(1):117–138, 2002.
[4] Z. Ésik and S. Iván. Büchi context-free languages. Theoretical Computer Science,

412(8-10):805–821, 2011.
[5] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley, Reading, MA, 2nd edition, 1979.
[6] L. Kari and S. Konstantinidis. Descriptional complexity of error/edit systems. Journal

of Automata, Languages and Combinatorics, 9(2-3):293–309, 2004.
[7] S. Konstantinidis. Computing the edit distance of a regular language. Information

and Computation, 205:1307–1316, 2007.
[8] S. Konstantinidis and P. V. Silva. Maximal error-detecting capabilities of formal

languages. Journal of Automata, Languages and Combinatorics, 13(1):55–71, 2008.

February 19, 2014 12:9 WSPC/INSTRUCTION FILE S0129054113400315

1082 Y.-S. Han, S.-K. Ko & K. Salomaa

[9] S. Konstantinidis and P. V. Silva. Computing maximal error-detecting capabilities
and distances of regular languages. Fundamenta Informaticae, 101(4):257–270, 2010.

[10] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady, 10(8):707–710, 1966.

[11] M. J. McLean and D. B. Johnston. An algorithm for finding the shortest termi-
nal strings which can be produced from non-terminals in context-free grammars. In
Combinatorial Mathematics III, volume 452 of Lecture Notes in Mathematics,
180–196. 1975.

[12] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Jour-
nal of Automata, Languages and Combinatorics, 7:321–350, 2002.

[13] M. Mohri. Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science, 14(6):957–982, 2003.

[14] P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach (Com-

putational Molecular Biology). The MIT Press, 2000.
[15] G. Pighizzini. How hard is computing the edit distance? Information and Computa-

tion, 165(1):1–13, 2001.
[16] K. Thompson. Programming techniques: Regular expression search algorithm. Com-

munications of the ACM, 11:419–422, 1968.
[17] R. A.Wagner. Order-n correction for regular languages. Communications of the ACM,

17:265–268, 1974.
[18] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of

the ACM, 21:168–173, 1974.
[19] D. Wood. Theory of Computation. Harper & Row, 1987.

	Introduction
	Preliminaries
	Edit-Distance
	The Edit-Distance Between a Regular Language and a Context-Free Language
	Alignment PDA
	Computing an optimal alignment from A(A,P)

	Edit-Distance and Unary Homomorphism
	Conclusion

