
January 13, 2017 13:54 IJFCS S0129054116500349 page 863

International Journal of Foundations of Computer Science
Vol. 27, No. 7 (2016) 863–878
c© World Scientific Publishing Company
DOI: 10.1142/S0129054116500349

State Complexity of Insertion

Yo-Sub Han∗ and Sang-Ki Ko†

Department of Computer Science, Yonsei University

50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea
∗emmous@yonsei.ac.kr
†narame7@yonsei.ac.kr

Timothy Ng‡ and Kai Salomaa§

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
‡ng@cs.queensu.ca

§ksalomaa@cs.queensu.ca

Received 27 July 2015
Accepted 18 February 2016

Communicated by Arseny Shur

It is well known that the resulting language obtained by inserting a regular language
to a regular language is regular. We study the nondeterministic and deterministic state
complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we
give an upper bound (m + 2) · 2mn−m−1 · 3m and find a lower bound for an asymp-
totically tight bound. We also present the tight nondeterministic state complexity by a
fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the
nondeterministic state complexity of insertion is precisely mn+2m, where m and n are
the size of input finite automata. We also consider the state complexity of insertion in
the case where the inserted language is bifix-free or non-returning.

Keywords: Insertion operation; state complexity; regular languages.

1. Introduction

The state complexity problem is one of the fundamental topics in automata and

formal language theory [4, 9, 18, 24]. Most results are about the descriptional com-

plexity of finite automata and regular languages. The operational state complexity

is the size of a DFA required to recognize the language obtained by applying the

operation to given DFAs. For example, Maslov [17] obtained the operational state

complexity of catenation and Yu et al. [24] investigated the state complexity for

basic operations.

Insertion is one of the crucial operations on formal languages [12–14]. The in-

sertion u← v of a string v into a string u is to insert v in an arbitrary place in u;

†Corresponding author.

863

http://dx.doi.org/10.1142/S0129054116500349

January 13, 2017 13:54 IJFCS S0129054116500349 page 864

864 Y.-S. Han et al.

namely, u ← v = {u1vu2 | u = u1u2, u1, u2 ∈ Σ∗}. We can extend the insertion

operation to languages: L1 ← L2 denotes the resulting language of inserting L2 to

L1. Since we insert a string in any place whereas we insert a string at the right ex-

tremity in the catenation, the insertion operation is the most natural generalization

of catenation [13]. For two regular languages L1 and L2 recognized by DFAs with

m and n states, respectively, it is known that the state complexity of the catenation

L1L2 is m · 2n − 2n−1 [24].

Due to the fact that insertion and deletion are inverse to each other, there

have been several approaches concerning these operations. For example, researchers

relied on the insertion-deletion systems in many bio-applications [2,5,15,16,21] and

cryptography [1]. Recently, some of the authors investigated the state complexity

of deletion and bipolar deletion [8].

Here we give state complexity bounds for the language obtained by inserting a

regular language into a regular language. First, we establish the nondeterministic

state complexity of insertion by presenting an NFA construction as an upper bound

and finding a fooling set for the matching lower bound. The nondeterministic state

complexity of insertion is mn+2m. Note that the nondeterministic state complexity

of concatenation is m + n [11]. Then, we give state complexity bounds for the

language obtained by inserting a regular language into a regular language. We show

that if L1 is recognized by an incomplete DFA with m states and L2 is recognized by

an incomplete DFA with n states, we can construct an incomplete DFA for L1 ← L2

with (m+2) · 2mn−m−1 · 3m states. We also show that it is impossible to reach the

upper bound with a fixed-sized alphabet and present a lower bound with a fixed-

sized alphabet for an asymptotically tight bound 2Θ(mn).

Lastly, we consider the case when the inserted language L2 is bifix-free or non-

returning. We present a slightly improved tight bound mn if L2 is bifix-free for the

nondeterministic state complexity. We also establish a tight bound m ·2mn−m if L2

is a non-returning regular language.

We give the basic notations and definitions in Sec. 2. We present the results for

nondeterministic state complexity in Sec. 3 and the deterministic state complexity

results in Sec. 4. We also consider the special case where the inserted language

is bifix-free or non-returning and establish tight bounds in Sec. 5. In Sec. 6, we

conclude the paper.

2. Preliminaries

We assume that the reader is familiar with the basics of finite automata and formal

languages and recall here some definitions and notation. For a general introduction

to the topic the reader may consult the textbooks [20, 22] or the survey [23]. More

information on state complexity of operations can be found in the survey [7].

In the following Σ always stands for a finite alphabet and the set of strings over

Σ is Σ∗. A language is a subset of Σ∗. The cardinality of a finite set S is denoted

|S|. For strings x, y and z, we say that x is a prefix of y and z is a suffix of y if

January 13, 2017 13:54 IJFCS S0129054116500349 page 865

State Complexity of Insertion 865

y = xz. We define a (regular) language L to be prefix-free (suffix-free) if a string

x ∈ L is not a prefix (suffix) of any other strings in L. We say that L is bifix-free if

L is prefix-free and suffix-free.

The set of strings obtained by inserting a string v ∈ Σ∗ to the string u ∈ Σ∗ is

u← v = {u1vu2 | u = u1u2, u1, u2 ∈ Σ∗}.

The result of the insertion is a set of strings instead of a single string. For example,

abc← d = {dabc, adbc, abdc, abcd}, where a, b, c, d ∈ Σ.

The insertion operation is extended in the natural way for languages L1, L2 ⊆ Σ∗

by setting

L1 ← L2 =
⋃

u∈L1,v∈L2

u← v.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-tuple

A = (Q,Σ, Q0, F, δ) where Q is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q

is the set of initial states, F ⊆ Q is the set of final states and δ is a multi-valued

transition function from Q × (Σ ∪ {λ}) into 2Q. For a transition p ∈ δ(q, a) in A,

we say that q has an out-transition and p has an in-transition.

By an NFA we mean a nondeterministic automaton without λ-transitions, that

is, A is an NFA if δ is a function from Q × Σ into 2Q. The automaton A is deter-

ministic (a DFA) if Q0 is a singleton set and δ is a (total single-valued) function

Q×Σ→ Q. A DFA is incomplete if δ is a partial function Q×Σ→ Q. A sink state

(also called as a dead state) is a non-final state q such that, for all characters a ∈ Σ,

δ(q, a) = q. This implies that there is no way to reach a final state whenever a DFA

enters a sink state.

For q ∈ Q, P ⊆ Q, b ∈ Σ and L ⊆ Σ∗ we also denote

δ(P, b) = {δ(p, b) | p ∈ P} and δ(q, L) = {δ(q, w) | w ∈ L}.

The transition function δ is defined as a partial function 2Q × Σ → 2Q in the

former notation while Q×Σ∗ → 2Q in the latter. We say that an NFA (or a DFA)

A is non-returning if the start state of A does not have any in-transitions and A is

non-exiting if every final state in A has no out-transition. We assume that A has

only useful states; namely, all states of A are reachable from the start state.

Note that λ-NFAs, NFAs and DFAs all recognize regular languages [19, 20, 22].

Proposition 1 ([22]). A λ-NFA has an equivalent NFA without λ-transitions and

the same number of states.

The (right)Kleene congruence of a language L ⊆ Σ∗ is the relation≡L ⊆ Σ∗×Σ∗

defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

It is well known that L is regular if and only if the index of ≡L is finite and, in this

case, the number of classes of ≡L is equal to the size of the minimal DFA for L.

Note that we define the size of an automaton to be the number of its states.

January 13, 2017 13:54 IJFCS S0129054116500349 page 866

866 Y.-S. Han et al.

The deterministic (respectively, nondeterministic) state complexity of a regular

language L, sc(L) (respectively, nsc(L)) is the size of the minimal DFA (respectively,

the size of a minimal NFA) recognizing L. The incomplete state complexity of L,

isc(L), is the size of the minimal incomplete DFA recognizing L. Here we only

consider the incomplete case for the deterministic state complexity. For each regular

language L either sc(L) = isc(L) + 1 or sc(L) = isc(L). Note that sc(L) is equal to

the number of classes of ≡L.

The nondeterministic state complexity of a language can be estimated using the

fooling set technique that gives a lower bound for the size of NFAs [3].

Proposition 2 ([3, 20]). Let L ⊆ Σ∗ be a regular language. Suppose that there

exists a set P = {(xi, wi) | 1 ≤ i ≤ n, xi, wi ∈ Σ∗} of pairs such that

(i) xiwi ∈ L for 1 ≤ i ≤ n;

(ii) if i 6= j, then xiwj 6∈ L or xjwi 6∈ L, 1 ≤ i, j ≤ n.

Then, a minimal NFA for L has at least n states.

The set P satisfying the conditions of Proposition 2 is called a fooling set for

the language L.

3. Nondeterministic State Complexity of Insertion

We establish the precise nondeterministic state complexity of the insertion opera-

tion. For the lower bound construction the languages can be defined over a binary

alphabet. The result is best possible because over a unary alphabet insertion coin-

cides with concatenation and the nondeterministic state complexity of concatena-

tion is m+ n [11].

Lemma 3. Consider L1, L2 ⊆ Σ∗ where L1 is recognized by an NFA with m states

and L2 is recognized by an NFA with n states. Then,

nsc(L1 ← L2) ≤ mn+ 2m.

Proof. Let A = (Q,Σ, δ, q0, QF) and B = (P,Σ, δ′, p0, PF) be NFAs for L1 and L2,

respectively, where |Q| = m and |P | = n. We define a λ-NFA C = (S,Σ, γ, q0, QF)

for the language L1 ← L2 where S = Q ∪ P0 ∪ · · · ∪ Pm−1
︸ ︷︷ ︸

m copies of P

∪Q.

Here Pi = {pj,i | pj ∈ P, 0 ≤ j ≤ n− 1}, 0 ≤ i ≤ m− 1 is the ith copy of the

state set of B. We denote the ith copy of the NFA B as follows:

Bi = (Pi,Σ, δi, p0,i, PF,i).

We also note that the state set Q is a copy of the state set Q = {qi | 0 ≤ i ≤ m−1}

of A and used to continue the computation of A after simulating a string in L2 by

one of m copies of B. Here Q = {qi | qi ∈ Q, 0 ≤ i ≤ m − 1}. The set of final

states of C is QF , where QF = {qf | qf ∈ QF }.

January 13, 2017 13:54 IJFCS S0129054116500349 page 867

State Complexity of Insertion 867

q0

q1

qm−1

q0

q1

qm−1

λ λp0;0 p1;0 pn−1;0

λ λp0;1 p1;1 pn−1;1

λ λp0;m−1 p1;m−1 pn−1;m−1

State set Q State set QState sets from P0 to Pm−1

Fig. 1. The NFA C constructed from two NFAs A = (Q,Σ, δ, q0, {qm−1}) and B =
(P,Σ, δ′, p0, {pn−1}), where Q = {qi | 0 ≤ i ≤ m− 1} and P = {pi | 0 ≤ i ≤ n− 1}.

Then, the transition function γ is defined as follows:

(i) For all qi, qj ∈ Q, 0 ≤ i, j ≤ m−1 and a ∈ Σ, if qj ∈ δ(qi, a), then qj ∈ γ(qi, a).

(ii) For all qi, qj ∈ Q, 0 ≤ i, j ≤ m−1 and a ∈ Σ, if qj ∈ δ(qi, a), then qj ∈ γ(qi, a).

(iii) For all qi ∈ Q, 0 ≤ i ≤ m− 1, p0,i ∈ γ(qi, λ).

(iv) For all pj,i, pk,i ∈ Pi, 0 ≤ i ≤ m − 1, 0 ≤ j, k ≤ n − 1 and a ∈ Σ, if pk,i ∈

δi(pj,i, a), then pk,i ∈ γ(pj,i, a).

(v) For all pj,i ∈ PF,i, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, qi ∈ γ(pj,i, λ).

We give a graphical description of the NFA C in Fig. 1. The NFA C operates

as follows. The computation of A begins at the initial state of the original state

set Q. For any state q ∈ Q, we nondeterministically move to one of the copies of the

NFA B using a λ-transition. After the computation of a string in L2 in the copied

NFA, again we nondeterministically move to the copied set Q of the NFA A. This

implies that if we are at a state of Q, then the insertion of a string of L2 has been

already done. Therefore, the simulation is completed if we arrive at a final state

of the copied set Q of final states. The constructed NFA C has λ-transitions. The

claim follows by Proposition 1.

Lemma 4. Let Σ = {a, b}. For m,n ∈ N, there exist an incomplete DFA A with

m states and an incomplete DFA B with n states over Σ such that any NFA for

L(A)← L(B) needs mn+ 2m states.

Proof. Choose L1 = (am)∗ and L2 = (bn)∗. Since L1 (respectively, L2) has an

incomplete DFA with m (respectively, n) states it is sufficient to give a fooling set

of size mn+ 2m for L1 ← L2.

Define S ⊆ Σ∗×Σ∗ to consist of pairs of strings listed in (i), (ii) and (iii) below.

(i) (aibn+j , bn−jam−i), 0 ≤ i < m, 0 ≤ j < n.

(ii) (ai, a2m−ibn), 0 ≤ i < m.

(iii) (bna2m−i, ai), 0 ≤ i < m.

January 13, 2017 13:54 IJFCS S0129054116500349 page 868

868 Y.-S. Han et al.

We verify that S is a fooling set. Consider two distinct pairs of S, P1 = (X1, Y1)

and P2 = (X2, Y2). If P1 and P2 are both of the type (i) (respectively, both of type

(ii); both of type (iii)), then the number of a’s in X1 · Y2 is not divisible by m or

the number of b’s in X1 · Y2 is not divisible by n and X1 · Y2 is not in L1 ← L2.

If P1 is of type (i) and P2 is of type (ii), we note that X1 · Y2 is not in a∗b∗a∗

and hence not in L1 ← L2. Similarly, if P1 is of type (i) and P2 is of type (iii),

X2 · Y1 is not in a∗b∗a∗. Finally, if P1 is of type (ii) and P2 is of type (iii), X2 · Y1

is again not in a∗b∗a∗.

The above are all possible cases up to symmetry between P1 and P2 and we

have verified that S is a fooling set for L1 ← L2.

As a consequence of Lemma 3 and Lemma 4 we have:

Theorem 5. For languages L1, L2 ⊆ Σ∗ where L1 and L2 are regular,

nsc(L1 ← L2) ≤ mn+ 2m

and this bound can be reached in the worst-case.

4. Deterministic State Complexity of Insertion

From the nondeterministic state complexity of insertion, we already have an upper

bound 2mn+2m for the deterministic state complexity. Here we present an upper

bound construction with incomplete DFAs which is slightly improved from 2mn+2m.

Lemma 6. Consider L1, L2 ⊆ Σ∗ where L1 is recognized by an incomplete DFA

with m states and L2 is recognized by an incomplete DFA with n states. Then,

isc(L1 ← L2) ≤ (m+ 2) · 2mn−m−1 · 3m.

Proof. Let A = (Q,Σ, δ, q0, QF) and B = (P,Σ, δ′, p0, PF) be incomplete DFAs

for L1 and L2, respectively, where |Q| = m and |P | = n. We define the completion

of δ as a function δ : (Q ∪ {sink})× Σ→ Q ∪ {sink} by setting for r ∈ Q ∪ {sink}

and b ∈ Σ,

δ(r, b) =
δ(r, b), if r ∈ Q and δ(r, b) is defined;

sink, otherwise.

We define a DFA C = (T,Σ, γ, t0, TF), where

• T = {(q, R, S) | q ∈ Q ∪ {sink}, R ∈ 2P×Q, S ∈ 2Q},

• t0 = {(q0, {(p0, q0)}, S) | S = ∅ if p0 /∈ PF otherwise {q0}}, and

• TF = {(q, R, S) | S ∩QF 6= ∅}.

It remains to define the transitions of γ. For (q, R, S) ∈ T and a ∈ Σ, we set

γ((q, R, S), a) = (q′, X, Y),

January 13, 2017 13:54 IJFCS S0129054116500349 page 869

State Complexity of Insertion 869

where

• q′ = δ(q, a),

• X = {(δ′(p, a), r) | (p, r) ∈ R} ∪ {(p0, δ(q, a))}, and

• Y = δ(S, a) ∪ {r ∈ Q | (∃(s, r) ∈ R)δ′(s, a) ∈ PF }.

The transitions of C operate as follows. Consider a state (q, R, S) ∈ T . The first

component q simulates the computation of A on a string where no insertion has

taken place. The elements of R keep track of the computation of B on an inserted

string while at the same time remembering the state of A before the corresponding

string was inserted. On an element (p, r) ∈ R, the first component simulates the

transitions of B and the second component keeps track of the state of A at the point

where the simulated computation of A began. The pair (p0, δ(q, a)) is added to take

care of the situation where the string of L2 is inserted directly after the current

symbol a. The computation of A after inserting a string of L2 is continued on states

of S. Additionally, of each pair (p, r) ∈ R where the first component simulates a

computation of B, if input symbol a takes this state to a final state, we add r to

the component Y .

The states of Y keep track of all possible computations of A where a string

of L2 has been inserted previously, and the choice of the set of final states then

guarantees that C recognizes the language L1 ← L2.

Note that we only consider the states reachable from the initial state t0. For each

q ∈ Q and (q, R, S) ∈ T , R should contain (p0, q). Therefore, there exist m · 2mn−1

combinations for the first and second components. If q = sink, we have 2mn more

combinations since we can have any set of state pairs for R. Now we have

m · 2mn−1 + 2mn = (m+ 2) · 2mn−1

combinations for the first and second components of the states of T . We calculate

the number of reachable states of C by considering the number of combinations

that we can have for the third component. Note that if R has a pair (p, q) where

p ∈ P, q ∈ Q such that p ∈ PF , then S should have q in the set to continue the

computation of A after the insertion.

Assume that B has l final states. Let us define a natural number k as follows:

k = |{q | (p, q) ∈ R, p ∈ PF }|.

The set S should contain the k states by the definition of the transition function γ.

Since the number k can be from 0 to m, we have the following number of reachable

states:

(m+ 2) · 2mn−ml−1 ·
m∑

k=0

(
m

k

)

· (2l − 1)k · 2m−k = (m+ 2) · 2mn−ml−1 · (2l + 1)m

= (m+ 2) · 2mn−1 ·

(
2l + 1

2l

)m

= (m+ 2) · 2mn−1 ·

(

1 +
1

2l

)m

,

January 13, 2017 13:54 IJFCS S0129054116500349 page 870

870 Y.-S. Han et al.

which is maximal if l = 1. Therefore, the upper bound for the state complexity of

the insertion is

(m+ 2) · 2mn−m−1 · 3m.

Before we discuss the lower bound of the state complexity, we first prove that

it is impossible to reach the upper bound with a fixed-sized alphabet.

Theorem 7. Let A be a DFA with m states and B be a DFA with n states. Then,

there exists a DFA C recognizing L(A)← L(B) with

(m+ 2) · 2mn−m−1 · 3m

states and this bound cannot be reached with a fixed-sized alphabet.

Proof. Let A = (Q,Σ, δ, q0, QF) and B = (P,Σ, δ′, p0, PF) be incomplete DFAs,

where |Q| = m and |P | = n. Suppose |Σ| < m − 1. Since there are fewer than m

letters, there must be a state k 6= q0 and k ∈ Q that is not reachable from the

initial state q0 by reading any character in Σ. In other words, k 6= δ(q0, a) for all

a ∈ Σ.

Now we construct a DFA C as in the proof of Lemma 6. Consider a state (k,R, S)

of C, where

R = {(p, q) | p ∈ P, q ∈ {q0, k}}.

Assume that we can reach the state (k,R, S) from the initial state of C by

reading a string w. Since k cannot be reached from q0 by reading a string of length 1

by assumption, there should be a longest prefix w′ of w that makes C proceed to

the state (k′, R′, S′), where k′ /∈ {q0, k}.

Now (p0, k
′) ∈ R′ but recall that (p, k′) /∈ R for all p ∈ P . This implies that we

need to remove the state (p0, k
′) by reading the remaining suffix of w. However, if

we remove the state (p0, k
′) from R′, then we also remove all the state pairs with the

same first components such as (p0, q0). Moreover, since the string w′ is the longest

prefix of w, there is no chance to restore the pair. Therefore, it is impossible to reach

the state (k,R, S) if we have fewer than m − 1 letters. Since the state (k,R, S) is

included in the upper bound (m + 2) · 2mn−m−1 · 3m claimed in Lemma 6, the

theorem holds.

Next we give a lower bound example that asymptotically reaches the upper

bound 2O(mn) using a fixed-sized alphabet.

Lemma 8. For every m,n ≥ 3 there exist incomplete DFAs A and B over the

alphabet Σ = {a, b, c, d, e} with m and n states, respectively, such that

isc(L(A)← L(B)) ≥ m · 2mn−m.

Proof. Now we show that there exists a lower bound example with a fixed-sized

alphabet that asymptotically reaches the upper bound.

January 13, 2017 13:54 IJFCS S0129054116500349 page 871

State Complexity of Insertion 871

Choose A = (Q,Σ, δ, 0, {0}) where Q = {0, 1, . . . ,m− 1} and the transitions of

δ are defined by setting

• δ(i, a) = i+ 1 for 0 ≤ i ≤ m− 2 and δ(m− 1, a) = 0;

• δ(i, b) = i for 0 ≤ i ≤ m− 1;

• δ(i, c) = i for 0 ≤ i ≤ m− 1;

• δ(i, d) = i for 0 ≤ i ≤ m− 1.

We also choose B = (P,Σ, δ′, 0, {n − 1}) where P = {0, 1, . . . , n − 1} and the

transitions of δ′ are defined by setting

• δ′(i, a) = i for 1 ≤ i ≤ n− 2;

• δ′(i, b) = i+ 1 for 1 ≤ i ≤ n− 2;

• δ′(0, c) = 1 and δ′(i, c) = i for 1 ≤ i ≤ n− 2;

• δ′(i, e) = i for 1 ≤ i ≤ n− 2.

The DFAs A and B are depicted in Figs. 2 and 3.

0 1 2

b, c, d

a
m−1

b, c, d b, c, d b, c, d

a a a

a

Fig. 2. The incomplete DFA A used in the proof of Lemma 8.

0 1 2
c

n−1

a, c, e

b b b

a, c, e

Fig. 3. The incomplete DFA B used in the proof of Lemma 8.

Let C = (T,Σ, γ, t0, TF) be the incomplete DFA recognizing the language

L(A) ← L(B) constructed as in the proof of Lemma 6. Recall that a state t =

(r, R, S) of C is a triple, where r ∈ Q is a state (including the sink state) of A,

R ⊆ 2P×Q is a set of state pairs, and S is a set of states of A. Here we only

consider the reachability of states (r, R, S) of C, where r ∈ Q, R is a set of state

pairs (p, q) ∈ (P \ {0})×Q. By considering only these combinations, we can show

that at least m · 2mn−m states are reachable in the new DFA C.

Now we show that m · 2mn−m states are reachable from the initial state t0 =

(0, {(0, 0)}, ∅). For r ∈ Q and R ∈ 2(P\{0})×Q, we claim that there exists a state t =

(r, R ∪ R′, S) ∈ T , where R′ ∈ 2{0}×Q and S ∈ 2Q, which is reachable from the

initial state t0.

January 13, 2017 13:54 IJFCS S0129054116500349 page 872

872 Y.-S. Han et al.

We first denote a subset Ri ⊆ R of state pairs in which the first component of

the pair is i by Ri. Formally, we define

Ri = {(i, q) | (i, q) ∈ R}, 1 ≤ i ≤ n− 1.

We also define

Yi = {q | (i, q) ∈ R}, 1 ≤ i ≤ n− 1.

Lastly, we define

R(k) =

k⋃

j=1

({j} × Yn−k+j−1)

to represent the second component of the kth intermediate state in the path from

the initial state t0 = (0, {(0, 0)}, ∅) to the state t = (r, R∪R′, S). Note that R(0) = ∅

and R(n−1) = R since

R(n−1) =

n−1⋃

j=1

({j} × Yj).

We show how we reach a state where the second component contains R(n−1) as

a subset from a state where the second component contains R(0) as a subset.

Let Yn−1 = {s1, s2, . . . , sl}, where 0 ≤ s1 < s2 < · · · < sl ≤ m − 1. By reading

a string

as1cas2−s1c · · · casl−1−sl−2casl−sl−1c,

we make the second component of the state contain R(1) as a subset. Now we are

at a state where the first component is sl and the second component contains R(1).

Let Yn−2 = {z1, z2, . . . , zh}, where 0 ≤ z1 < z2 < · · · < zh ≤ m− 1. First we move

the first component back to 0 by reading am−sl . After, we read b to shift the set

of pairs R1 of states in the second component to R2. Then, we can let the second

component of the state to contain R(2) as a subset by reading a string

az1caz2−z1c · · · cazh−1−zh−2cazh−zh−1c.

By repeating the above steps, we can reach the state where the second compo-

nent contains R(n−1) as a subset. After then, we can also move the first component

of the state to r by reading a sequence of a’s.

Since the number of combinations for the first and the second components is

m · 2mn−m, we can say that at least m · 2mn−m states of C are reachable and it

remains to show that they are all pairwise inequivalent.

First consider two states (r, R, S), (r′, R′, S′) ∈ T where S 6= S′. Without loss

of generality, we find s ∈ S \S′ since the other possibility is completely symmetric.

By reading d from the two states, we can remove all state pairs except (0, r) and

(0, r′) from R and R′, respectively. This step ensures that we do not change the

elements of S and S′ by the effect of the first or second second component if we

January 13, 2017 13:54 IJFCS S0129054116500349 page 873

State Complexity of Insertion 873

read a sequence of a. Then, the state (r, R, S) moves to a final state by reading

am−s while the state (r′, R′, S′) moves to a non-final state.

Now we consider two states (r, R, S), (r′, R′, S′) ∈ T , where R 6= R′. As we have

defined for the set R above, we use similar notations for R and R′ as follows:

Ri = {(i, q) | (i, q) ∈ R} and R′
i = {(i, q) | (i, q) ∈ R′}, 1 ≤ i ≤ n− 1.

We also define

Yi = {q | (i, q) ∈ R} and Y ′
i = {q | (i, q) ∈ R′}, 1 ≤ i ≤ n− 1.

Since R 6= R′, there should exist 0 ≤ i ≤ n − 1 such that Ri 6= R′
i. Note

that Yi 6= Y ′
i because Ri 6= R′

i. We read bn−i−2 from the two states (r, R, S) and

(r′, R′, S′). Now the first components of the state pairs in Ri and R′
i become n− 2

and, therefore, Rn−2 6= R′
n−2 and Yn−2 6= Y ′

n−2. We now move the first component

of states to the sink state and empty the third component of states by reading a

character e, which is undefined in A. Then, we move the first components of the

state pairs in Rn−2 and R′
n−2 to n − 1 by reading the symbol b while the third

components become Yn−2 and Y ′
n−2, respectively.

Since we have already shown that two states are pairwise inequivalent if the third

components of the states are inequivalent, the two states (r, R, S), (r′, R′, S′), R 6=

R′ are also pairwise inequivalent.

Lastly, we consider two states (r, R, S), (r′, R′, S′), where r 6= r′. Without loss

of generality, we assume r < r′.

As there is no transition defined for the character d in B, the two states (r, R, S)

and (r′, R′, S′) become (r, {(0, r)}, S) and (r′, {(0, r′)}, S′) by reading d. Since we

have shown that two states are pairwise inequivalent if the second components

are inequivalent, two states (r, R, S), (r′, R′, S′) with r 6= r′ are also pairwise

inequivalent.

We have shown that at least m · 2mn−m states of C are reachable and they are

all pairwise inequivalent. Therefore, the deterministic state complexity of insertion

has a lower bound of m · 2mn−m.

As a consequence of Lemma 6 and Lemma 8 we have:

Theorem 9. For languages L1, L2 ⊆ Σ∗ where L1 and L2 are regular,

isc(L1 ← L2) ∈ 2Θ(mn).

Note that the deterministic state complexity of insertion is strictly worse than

the deterministic state complexity of concatenation m · 2n − 2n−1.

5. Special Case: If L2 is Bifix-Free or Non-Returning

Now we briefly consider the case when the inserted language L2 is contained in a

subclass of regular languages called bifix-free regular languages.

January 13, 2017 13:54 IJFCS S0129054116500349 page 874

874 Y.-S. Han et al.

A regular language L is prefix-free if and only if any DFA accepting L is non-

exiting. For suffix-free regular languages, we have a restriction that DFAs accepting

suffix-free regular languages should be non-returning, but the converse does not

always hold [10]. Since the non-returning property is only a necessary condition for

a minimal DFA to be suffix-free, we call a family of regular languages where the

minimal DFAs accepting the languages are non-returning, non-returning regular

languages [6].

For NFAs, any NFA accepting a prefix-free regular language should be non-

exiting and any NFA accepting a suffix-free regular language should be non-

returning. We also mention that the converse does not always hold.

We first present the nondeterministic state complexity of insertion.

Theorem 10. For languages L1, L2 ⊆ Σ∗ where L1 and L2 are regular and L2 is

bifix-free,

nsc(L1 ← L2) ≤ mn

and this bound can be reached in the worst-case.

Proof. The upper bound mn is immediate from the proof of Lemma 3. See Fig. 1

for example. Since a bifix-free NFA is always non-exiting and non-returning, the

initial state of the NFA has no in-transition and the only final state of the NFA has

no out-transition. Therefore, we can mergem state pairs qi and p0,i for 0 ≤ i ≤ m−1

as the states p0,i, 0 ≤ i ≤ m− 1 have no in-transitions. We can also merge m state

pairs pn−1,i and qi for 0 ≤ i ≤ m − 1 as the states pn−1,i, 0 ≤ i ≤ m − 1 have no

in-transitions.

After merging 2m pairs of states, we have an upper bound mn+2m−2m = mn

for the nondeterministic state complexity of insertion.

Now we give a matching lower bound with a fooling set technique.

Choose L1 = (am)∗ and L2 = c(bn−2)∗c. Since L1 (respectively, L2) has an

incomplete DFA with m (respectively, n) states it is sufficient to give a fooling set

of size mn for L1 ← L2.

Define S ⊆ Σ∗×Σ∗ to consist of pairs of strings listed in (i), (ii) and (iii) below.

(i) (aicbn+j−2, bn−j−2cam−i), 0 ≤ i < m, 0 ≤ j < n− 2.

(ii) (ai, a2m−icbn−2c), 0 ≤ i < m.

(iii) (cbn−2ca2m−i, ai), 0 ≤ i < m.

We verify that S is a fooling set. Consider two distinct pairs of S, P1 = (X1, Y1)

and P2 = (X2, Y2). If P1 and P2 are both of the type (i) (respectively, both of type

(ii); both of type (iii)), then the number of a’s in X1 · Y2 is not divisible by m or

the number of b’s in X1 · Y2 is not divisible by n− 2 and X1 · Y2 is not in L1 ← L2.

If P1 is of type (i) and P2 is of type (ii), we note that X1 · Y2 is not in a∗cb∗ca∗

and hence not in L1 ← L2. Similarly, if P1 is of type (i) and P2 is of type (iii),

X2 ·Y1 is not in a∗cb∗ca∗. Finally, if P1 is of type (ii) and P2 is of type (iii), X2 · Y1

is again not in a∗cb∗ca∗.

January 13, 2017 13:54 IJFCS S0129054116500349 page 875

State Complexity of Insertion 875

The above are all possible cases up to symmetry between P1 and P2 and we

have verified that S is a fooling set for L1 ← L2. Moreover, since S has mn pairs

of strings, we have a matching lower bound for the claimed upper bound.

We also consider the deterministic state complexity of insertion when L2 is bifix-

free. Since a bifix-free DFA is always non-returning and non-exiting, we present an

upper bound for non-returning and non-exiting incomplete DFAs.

Theorem 11. For languages L1, L2 ⊆ Σ∗ where L1 and L2 are regular and L2 is

non-returning and non-exiting,

isc(L1 ← L2) ≤ m · 2mn−m

and this bound can be reached in the worst-case.

Proof. Recall the upper bound construction used in Lemma 6. Here we assume

that the DFA B is non-returning and non-exiting. Since a non-exiting DFA has

a single final state, we say PF = {pF}. Now we show that some states of C are

unreachable or pairwise equivalent by the construction and the properties of bifix-

free DFAs.

Claim 1. All states (q, R, S) ∈ T , where R ∩ {(p0, q′) | q′ ∈ Q, q′ 6= q} 6= ∅, are

unreachable from the initial state t0.

Claim 2. Any two states (q, R, S) ∈ T and (q, R\R′, S) ∈ T , where R′ = {(pF , q′) |

q′ ∈ Q}, are pairwise equivalent.

Proof of Claim 1: Since the DFA B is non-returning, the initial state p0 of

B has no in-transition. This implies that any state pair of the form (p0, q), where

q ∈ Q, in the second component should be removed by reading any character in Σ.

The only way to have a state pair of the form (p0, q) is to have the state q in the

first component. Therefore, the claim holds.

Proof ofClaim 2: Since the DFAB is non-exiting, all state pairs in R′ are always

removed from the second component by reading any character in Σ. Moreover, a

state pair in the second component of the state of C can generate a state in the

third component only when the first component of the state pair becomes the only

final state pF of B. Therefore, the claim holds.

By the above claims, we have at most m · 2mn−m reachable and pairwise in-

equivalent states by the upper bound construction if the DFA accepting L2 is non-

returning and non-exiting.

Note that the DFA B used in the proof of Lemma 8 is non-returning and non-

exiting. Therefore, we establish the tight bound m · 2mn−m for the deterministic

state complexity of insertion when L2 is accepted by a non-returning and non-

exiting DFA.

Since a bifix-free DFA is always non-returning and non-exiting, we have a fol-

lowing corollary as a result.

January 13, 2017 13:54 IJFCS S0129054116500349 page 876

876 Y.-S. Han et al.

Corollary 12. For languages L1, L2 ⊆ Σ∗ where L1 and L2 are regular and L2 is

bifix-free,

isc(L1 ← L2) ≤ m · 2mn−m.

As a final note, we mention that the tight bound for the deterministic state

complexity of insertion when L2 is bifix-free still remains open.

6. Conclusions

Insertion is a fundamental operation on strings and languages and has been used

in practice such as bio-applications or cryptography. Regular languages are closed

under insertion. This has led us to examine the state complexity of regular languages

with respect to insertion.

We have studied tight state complexity bounds for the insertion operation. For

the nondeterministic state complexity, we have given an upper bound construction

with mn+2m states and a matching fooling set to show the tightness of the bound.

For the deterministic state complexity, we have considered the case where L1

and L2 can be recognized by incomplete DFAs with m and n states, respectively. We

have established an upper bound construction of (m+2) · 2mn−m−1 · 3m states and

proved that it is impossible to reach the upper bound using a fixed-sized alphabet.

In addition, we have presented a lower bound with a fixed-sized alphabet for an

asymptotic tight bound 2Θ(mn). We leave the problem of finding a tight lower

bound with a fixed-sized alphabet or a new upper bound construction open for

future research.

In addition, we have investigated the case when the inserted language L2 is

bifix-free or non-returning. When L2 is bifix-free, we have a slightly improved tight

bound mn for the nondeterministic state complexity. We also have a tight bound

m·2mn−m even with a fixed-sized alphabet if L2 is a non-returning regular language.

Note that the tight bound on the deterministic state complexity when L2 is bifix-

free is an open problem.

Acknowledgments

We thank the anonymous referees for a careful reading of an earlier version of the

paper and many useful suggestions that have improved the presentation.

Han and Ko were supported by the Basic Science Research Program through

NRF funded by MEST (2015R1D1A1A01060097), the Yonsei University Future-

leading Research Initiative of 2015 and the International Cooperation Program

managed by NRF of Korea (2014K2A1A2048512), and Ng and Salomaa were sup-

ported by the Natural Sciences and Engineering Research Council of Canada Grant

OGP0147224.

References

[1] M. Andraşiu, G. Păun, J. Dassow, and A. Salomaa. Language-theoretic problems
arising from richelieu cryptosystems. Theoretical Computer Science, 116(2):339–357,
1993.

January 13, 2017 13:54 IJFCS S0129054116500349 page 877

State Complexity of Insertion 877

[2] F. Biegler, M. J. Burrell, and M. Daley. Regulated RNA rewriting: Modelling RNA
editing with guided. Theoretical Computer Science, 387(2):103–112, 2007.

[3] J.-C. Birget. Intersection and union of regular languages and state complexity. In-
formation Processing Letters, 43(4):185–190, 1992.

[4] C. Câmpeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic op-
erations on finite languages. In Proceedings of the 4th International Workshop on

Implementing Automata, 60–70, 2001.
[5] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual insertions/dele-

tions with applications to biomolecular computation. In Proceedings of the String

Processing and Information Retrieval Symposium, 1999 and International Workshop

on Groupware, 47–54, 1999.
[6] H.-S. Eom, Y.-S. Han, and G. Jirásková. State complexity of basic operations on

non-returning regular languages. Fundamenta Informaticae. To appear.
[7] Y. Gao, N. Moreira, R. Reis, and S. Yu. A review on state complexity of individual

operations. Technical report, Universidade do Porto, Technical Report Series DCC-
2011-08, Version 1.1 (September 2012).

[8] Y.-S. Han, S.-K. Ko, and K. Salomaa. State complexity of deletion and bipolar dele-
tion. Acta Informatica, 53:67–85, 2016.

[9] Y.-S. Han and K. Salomaa. State complexity of union and intersection of finite lan-
guages. International Journal of Foundations of Computer Science, 19(3):581–595,
2008.

[10] Y.-S. Han and K. Salomaa. State complexity of basic operations on suffix-free regular
languages. Theoretical Computer Science, 410(27–29):2537–2548, 2009.

[11] M. Holzer and M. Kutrib. Nondeterministic descriptional complexity of regular lan-
guages. International Journal of Foundations of Computer Science, 14(6):1087–1102,
2003.

[12] L. Kari. On insertion and deletion in formal languages. PhD thesis, University of
Turku, 1991.

[13] L. Kari. Insertion operations: Closure properties. Bulletin of the EATCS, 51:181–191,
1993.

[14] L. Kari. On language equations with invertible operations. Theoretical Computer

Science, 132(1–2):129–150, 1994.
[15] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of insertion-

deletion (p) systems with rules of size two. Natural Computing, 10(2):835–852, 2011.
[16] M. Margenstern, G. Păun, Y. Rogozhin, and S. Verlan. Context-free insertion-

deletion systems. Theoretical Computer Science, 330(2):339–348, 2005.
[17] A. Maslov. Estimates of the number of states of finite automata. Soviet Mathematics

Doklady, 11:1373–1375, 1970.
[18] G. Pighizzini and J. Shallit. Unary language operations, state complexity and Ja-

cobsthal’s function. International Journal of Foundations of Computer Science,
13(1):145–159, 2002.

[19] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 3:
Beyond Words. Springer-Verlag New York, Inc., 1997.

[20] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[21] A. Takahara and T. Yokomori. On the computational power of insertion-deletion
systems. Natural Computing, 2(4):321–336, 2003.

[22] D. Wood. Theory of Computation. John Wiley & Sons, Inc., New York, NY, 1987.

January 13, 2017 13:54 IJFCS S0129054116500349 page 878

878 Y.-S. Han et al.

[23] S. Yu. State complexity of regular languages. Journal of Automata, Languages and

Combinatorics, 6(2):221–234, 2001.
[24] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations

on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

