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Solid codes have a nice property called synchronization property, which is useful in data
transmission. The property is derived from infix-freeness and overlap-freeness of solid
codes. Since a code is a language, we look at solid codes from formal language viewpoint.
In particular, we study regular solid codes (that are solid codes and regular). We first
tackle the solid code decidability problem for regular languages and propose a polynomial
time algorithm. We, then, investigate the decidability of the overlap-freeness property
and show that it is decidable for regular languages but is undecidable for context-free
languages. Then, we study the prime solid code decomposition of regular solid codes
and propose an efficient algorithm for the prime solid code decomposition problem. We

also demonstrate that a solid code does not always have a unique prime solid code
decomposition.
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1. Introduction

People use codes in various areas such as information processing, data compression,

cryptography and information transmission [1, 12]. We can categorize codes by their

defining properties (for example, prefix-freeness, suffix-freeness or infix-freeness) and

use each family of codes in different applications [8, 9, 10]. Since codes are sets of

strings, they are closely related to formal language theory; a code is a language.

These code conditions define a proper subfamily of a given language family. For

instance, prefix-freeness defines a family of prefix-free regular languages and it is a

proper subfamily of regular languages [1].
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We study solid codes: a set S of strings is a solid code [19] or a code without

overlaps [15] if S satisfies the following conditions:

(1) no string of S is a substring of another string of S (infix-freeness) and

(2) no prefix of a string in S is a suffix of a string in S (overlap-freeness).

In other words, S has to be an infix code and all strings of S should not overlap.

Solid codes have the synchronization property, which is useful in data transmis-

sion [12]. Solid codes lead us to investigate infix codes and overlap-freeness in regu-

lar languages. As a continuation of our research of subfamilies of regular languages,

it is natural to examine overlap-free regular languages and regular solid codes. Note

that we have already studied infix-free regular languages [5].

We define some basic notions in Section 2. In Section 3, we design efficient

algorithms that determine whether or not a given regular language is overlap-free or

a solid code in polynomial time. We also prove that overlap-freeness is undecidable

for context-free languages. Then, in Section 4, we examine the solid code primality

and prime decomposition. We develop an algorithm for computing a prime solid code

decomposition for a regular solid code when it is not prime. We also demonstrate

that a solid code does not have a unique prime solid code decomposition.

2. Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings

over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is any

subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ denotes

the null string. For strings x, y and z, we say that x is a prefix of y if y = xz.

Similarly, x is a suffix of y if y = zx. We define x to be an infix (or substring) of y

if y = uxv for two strings u, v. We define a (regular) language L to be prefix-free if

for any two distinct strings x and y in L, x is not a prefix of y. Similarly, we can

define suffix-free and infix-free languages. Given a string x in a set X of strings, let

xR be the reversal of x, in which case XR = {xR | x ∈ X}.

An FA A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of states,

Σ is an input alphabet, δ : Q× Σ → 2Q is a transition function, s ∈ Q is the start

state and F ⊆ Q is a set of final states. If F consists of a single state f , then we

use f instead of {f} for simplicity. Let |Q| be the number of states in Q and |δ|

be the number of transitions in δ. We define the size of A to be |A| = |Q| + |δ|.

For a transition δ(p, a) = q in A, we say that p has an out-transition and q has an

in-transition. Furthermore, p is a source state of q and q is a target state of p. We

say that A is non-returning if the start state of A does not have any in-transitions

and A is non-exiting if all final states of A have no out-transitions.

A string x over Σ is accepted by A if there is a labeled path from s to a final

state such that this path reads x. We call this path an accepting path. Then, the

language L(A) of A is the set of all strings spelled out by accepting paths in A. We

say that a state of A is useful if it appears in an accepting path in A; otherwise, it
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is useless . Unless otherwise mentioned, in the following we assume that all states

are useful.

For complete background knowledge in automata theory, the reader may refer

to textbooks [7, 20].

Definition 1. Let L be a language and u, v, w be strings over Σ.

(1) L is infix-free if v, uvw ∈ L implies that u = w = λ.

(2) L is overlap-free if uv, vw ∈ L implies that one of u, v, w has to be λ.

(3) L is a solid code if L is infix-free and overlap-free.

Note that every infix-free language is a code. However, an overlap-free language

may not be a code. For example, L = {a, ab, aab} is overlap-free but is not a code

since (a)(ab) = (aab). On the other hand, note that for any w ∈ Σ+, the singleton

set {w} is a code, however, it need not be overlap-free, for example, when w = aba.

Strings w such that {w} is overlap-free are called unbordered [12].

3. Decidability of Overlap-Free Languages and Solid Codes

Although an overlap-free language may not be a code, overlaps are important to

define solid codes. Moreover, overlaps are often used in various proofs in coding

theory [12]. Overlaps are also crucial for decoding and synchronization [11, 12]. We

first study overlap-free languages and then, look at solid codes.

3.1. Overlap-free languages

We examine the derivative operation [2] since overlaps naturally lead to the opera-

tion. The derivative x\L of a language L with respect to a string x is the language

{y | xy ∈ L}.

Theorem 2. Given a language L and a string x 6= λ, let

Lx = ((x\L)− {λ}) · Σ+.

L is overlap-free if and only if Lx ∩ L = ∅ for any string x.

Proof.

=⇒ Assume that Lx∩L 6= ∅ for a string x. Choose w ∈ Lx∩L and write w = w1w2,

where w1 ∈ (x\L)−{λ} and w2 ∈ Σ+. By the definition of the derivative operation,

it follows that xw1 ∈ L and this together with w1w2 ∈ L implies that L is not

overlap-free.

⇐= Assume that L is not overlap-free. This implies that there are strings u, v, w

such that uv, vw ∈ L and u, v, w 6= λ. Note that

v ∈ (u\L)− {λ},

vw ∈ ((u\L)− {λ}) · Σ+ = Lu.



July 20, 2011 17:20 WSPC/INSTRUCTION FILE S0129054111008647

1200 Y.-S. Han & K. Salomaa

Then vw ∈ Lu ∩ L—a contradiction.

Therefore L is overlap-free if and only if Lx ∩ L = ∅.

Assume that L is regular and given by an FA. Then, since regular languages

are effectively closed under the derivative operation, Theorem 2 shows that it is

decidable whether or not L is overlap-free. However, the algorithm in the proof of

Theorem 2 requires lots of computation. Recently, Han et al. [5] introduced the

state-pair graph for FAs and demonstrated that it is useful to determine certain

structural properties that a code must have. We now show that we can decide

whether or not L is overlap-free quickly when L is regular using state-pair graphs.

Given an FA A = (Q,Σ, δ, s, F ) for L, we assign a unique number for each state

in A from 1 to m, where m = |Q|.

Definition 3 (Han et al. [5]) Given an FA A = (Q,Σ, δ, s, F ), we define the

state-pair graph GA = (VG, EG), where VG is a set of nodes and EG is a set of

edges, as follows:

VG = {(i, j) | i and j ∈ Q} and

EG = {((i, j), a, (x, y)) | (i, a, x) and (j, a, y) ∈ δ and a ∈ Σ}.

We define the size |GA| of GA to be the number of nodes plus the number of edges.

Note that |GA| ≤ |Q|2 + |δ|2.

The crucial property of state-pair graphs is that if there is a string w spelled

out by two distinct paths in A, for example, one path is from i to x and the other

path is from j to y, then, there is a path from (i, j) to (x, y) in GA that spells

out the same string w. Note that state-pair graphs do not require given FAs to be

deterministic. The construction in Definition 3 assumes that A does not have null

transitions, that is λ-transitions. However, it is easy to modify the state-pair graph

construction that can handle λ-transitions by performing the λ-reachability test for

computing EG. For details on the λ-transition case, the readers may refer to Han

et al. [5].

Theorem 4. Given an FA A = (Q,Σ, δ, s, F ), L(A) is overlap-free if and only if

the state-pair graph GA for A has no path from (1, i) to (j, k), where

(1) i is a state that has an in-transition.

(2) j is a state that has an out-transition.

(3) k is a final state in F .

(4) 1 denotes the start state.

Proof.

=⇒ Assume that there is a path from (1, i) to (j, k) that spells out a string w in GA.

This implies that there are two distinct paths in A, where one is from 1 to j and

the other is from i to k and both paths spell out w. Since j has an out-transition

and A has only useful states, there should be a path from j to a final state. Let z
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be the string spelled out by this path from j. Then, we know that A accepts wz.

Similarly, there should be a path from 1 to i since i should be reachable in A. Let y

be the string spelled out by this path. (It may be possible that i is the start state.)

Thus, A accepts yw. Note that

- z can be chosen to be non-empty because j has an out-transition and all state

are useful,

- y can be chosen to be non-empty because i has an in-transition and all states

are useful.

Therefore, A accepts both yw and wz, and w, y, z are not λ—a contradiction.

⇐= Assume that L(A) is not overlap-free. This implies that there are strings u, v, w

such that uv, vw ∈ L(A) and u, v, w 6= λ. Since vw ∈ L(A), there is a corresponding

path for vw in A. Let j be the state that we reach after reading v from the start

state. This implies that j should have an out-transition with label w1, which is the

first character of w. Similarly, there must be an accepting path for uv in A. Let i be

the state that we reach after reading u. Then, it is clear that i has an in-transition.

Furthermore, we should reach to a final state k from i after reading v since uv is

accepted by A. Therefore, there must be a path from (1, i) to (j, k) that satisfies all

four conditions above—a contradiction.

We can check the existence of such a path of Theorem 4 in linear time in the

size of GA using Depth-First Search (DFS) [3]. Thus, we obtain the following result

from Definition 3 and Theorem 4:

Theorem 5. Given an FA A = (Q,Σ, δ, s, F ), we can determine whether or not

L(A) is overlap-free in O(|Q|2 + |δ|2) worst-case time.

Theorem 5 shows that given a regular language L, it is decidable whether or

not L is overlap-free. Next, we investigate the decidability problem when L is not

regular. Note that for most codes, (such as prefix, suffix or inter codes) it is un-

decidable when L is a linear language [12, 13]. We establish a similar result for

overlap-freeness.

Theorem 6. There is no algorithm that determines whether or not a given linear

language L is overlap-free.

Proof. Let Σ be an alphabet and let (U, V ) be an instance of Post’s Correspondence

Problem [18], where

U = (u0, u1, . . . , un−1) and V = (v0, v1, . . . , vn−1)

for a positive integer n ∈ N and u0, u1, . . . , un−1, v0, v1, . . . , vn−1 ∈ Σ∗. A solution

to (U, V ) is a pair (m, I), where m is a positive integer and I is an m-tuple of

integers, I = (i0, i1, . . . , im−1) such that

ij ∈ {0, 1, . . . , n−1} for 0 ≤ j ≤ m−1 and ui0ui1 · · ·uim−1
= vi0vi1 · · · vim−1

.
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Without loss of generality, we assume that the symbols 0, 1, #, $ and φ are

not in Σ. Let Σ′ = Σ ∪ {0, 1,#, $, φ}. For any nonnegative integer i, let β(i) be the

shortest binary representation of i.

Consider a linear grammar G = (N,Σ′, P, S) for L, where

N = {S, TU , TV } is the nonterminal alphabet,

Σ′ is the terminal alphabet,

S is the sentence symbol and

the rules in P are

S → #β(i)φTUui | #β(i)$ui | β(i)φTV vi% | β(i)$vi%

TU → β(i)φTUui | β(i)$ui

TV → β(i)φTV vi | β(i)$vi
for i ∈ {0, 1, . . . , n−1}.

Namely, L(G) is the language that consists of all the strings

#β(im−1)φβ(im−2)φ · · · β(i0)$ui0 · · ·uim−2
uim−1

and

β(im−1)φβ(im−2)φ · · ·β(i0)$vi0 · · · vim−2
vim−1

%,

for all m ∈ N and ij ∈ {0, 1, . . . , n−1} for 0 ≤ j ≤ m−1.

Note that (U, V ) has a solution if and only if L(G) is not overlap-free. Therefore,

it is undecidable whether or not L(G) is overlap-free since Post’s Correspondence

Problem is undecidable [7, 18].

Theorem 6 shows that the overlap-freeness of a context-free language is undecid-

able. Before we move to solid codes, we study the closure properties of overlap-free

languages. A subfamily of languages with certain code properties is often closed

under catenation. For example, prefix-free languages, bifix-free languages, infix-

free languages and outfix-free languages are all closed under catenation, respec-

tively [1, 9].

Theorem 7. The family of overlap-free (regular) languages is closed under inter-

section but not under catenation, union, complement or Kleene plus.

Proof. Let L1 and L2 be overlap-free languages. Except for the intersection case,

we prove results by giving examples.

• Let L = L1 ∩ L2. Assume that L is not overlap-free. It implies that there are

two strings u, v ∈ L such that u and v overlap with each other. Since L is the

intersection of L1 and L2, u and v must be L1 and L2 and, thus, L1 and L2 are

not overlap-free—a contradiction. Therefore, overlap-free languages are closed

under intersection.

• Let L = L1 · L2. If L1 = L2 = {ab}, then L = {abab} is not overlap-free.

Therefore, overlap-free languages are not closed under catenation.

• Let L = L1 ∪L2. If L1 = {ab} and L2 = {ba} then L = {ab, ba} is not overlap-

free. This means that overlap-free languages are not closed under union.
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Complement and Kleene plus cases can be proved straightforwardly.

In fact, if L is overlap-free and L′ is an arbitrary language, then L∩L′ is always

overlap-free. We also establish the following closure property under morphism and

inverse morphism.

Theorem 8.

(a) The family of overlap-free languages is closed under inverse non-erasing mor-

phisms. The family of overlap-free languages is not closed under general inverse

morphisms.

(b) The family of overlap-free languages is not closed under morphisms or non-

erasing morphisms.

Proof.

(a) Consider an overlap-free language L ⊆ Σ∗ and an arbitrary non-erasing mor-

phism ϕ : Ω∗ → Σ∗. For the sake of contradiction assume that ϕ−1(L) is not

overlap-free. Thus, there exist u, v, w ∈ Ω+ such that uv, vw ∈ ϕ−1(L). This

means that ϕ(uv) = ϕ(u)ϕ(v) ∈ L and ϕ(vw) = ϕ(v)ϕ(w) ∈ L. Since ϕ is

non-erasing, ϕ(v) 6= λ and this contradicts the fact the L is overlap-free.

To see that overlap-free languages are not closed under inverse general mor-

phisms choose Σ = {a, b}, L = {a} and consider the morphism φ : Σ∗ → Σ∗

defined by φ(a) = a, φ(b) = λ. Now L is overlap-free but, for example,

ba, ab ∈ φ−1(L).

(b) The non-closure under direct morphisms is straightforward and is left as an

exercise for the reader.

Remark that the family of (regular) solid codes is closed under inverse non-

erasing morphisms [14].

3.2. Solid codes

We say that a language L is a solid code if and only if L is overlap-free and an

infix code. We design an algorithm that determines whether or not a given regular

language is a solid code. Note that it is undecidable for linear languages [12] and

it is decidable for regular languages [14]. Given a regular language L, we can check

whether or not L is an infix code in quadratic time [5] and can check whether or not

L is overlap-free in quadratic time as shown in Theorem 5, where both algorithms

are based on state-pair graphs. Therefore, we know that we can determine it in

polynomial time.

Theorem 9. Given an FA A = (Q,Σ, δ, s, f), L(A) is a solid code if and only if

the state-pair graph GA for A has
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(1) no path from (1, i) to (m, k), apart from (1, 1) to (m,m), where 1 ≤ i ≤ m and

1 ≤ k ≤ m (This is the infix code condition.)

(2) no path from (1, i) to (j,m), where i 6= 1 and j 6= m. (This is the overlap-free

condition.)

Proof. Han et al. [5] proved the first condition is valid for an infix code. The second

condition is more restrict than the condition in Theorem 5 since we do not need to

consider infix codes. Note that L = {a, ab} is not an infix code but is overlap-free

and Theorem 5 has to consider this case as well.

Theorem 9 gives an algorithm that determines whether or not L(A) is a solid

code in polynomial time.

Theorem 10. Given an FA A = (Q,Σ, δ, s, f), we can determine whether or not

L(A) is a solid code in O(|Q|2 + |δ|2) worst-case time using its state-pair graph.

Note that in both Theorems 9 and 10, we assume that there is a single final

state. This is because all infix FAs must be non-exiting; namely, no final state has

an out-transition. This implies that all final states are equivalent and, thus, can be

merged into a single final state.

4. Prime Decomposition for Regular Solid Codes

Decomposition is the reverse operation of catenation. If L = L1 · L2, then L is the

catenation of L1 and L2 and L1 · L2 is a decomposition of L. We call L1 and L2

factors of L. Note that every language L has a decomposition, L = {λ} · L, where

L is a factor of itself. We call {λ} a trivial language. We define a language L to

be prime if L 6= L1 · L2, for any non-trivial languages L1 and L2. Then, a prime

decomposition of L is a decomposition L = L1L2 · · ·Lk, where each Li, 1 ≤ i ≤ k,

is a prime language.

Mateescu et al. [16, 17] showed that the primality of regular languages is decid-

able and the prime decomposition of a regular language is not unique. They also

conjectured that the primality test of a regular language is NP-complete. On the

other hand, if we preserve certain properties for each factor language, then we can

compute a prime decomposition in polynomial time. For example, Czyzowicz et

al. [4] showed that for a given prefix-free regular language L, the prime prefix-free

decomposition is unique and the decomposition can be computed in O(m) worst-

case time, where m is the size of the minimal DFA for L. Han et al. [5] investigated

the prime infix-free decomposition of infix-free regular languages and demonstrated

that the prime infix-free decomposition is not unique. On the other hand, the prime

outfix-free decomposition of outfix-free regular languages is unique [6].

We say a language L is a regular solid code if L is regular and a solid code. Now

we investigate prime regular solid codes and prime decomposition for regular solid

codes.



July 20, 2011 17:20 WSPC/INSTRUCTION FILE S0129054111008647

Overlap-Free Languages and Solid Codes 1205

4.1. Prime Regular Solid Codes

Definition 11. We define a regular language L to be a prime solid code if L 6=

L1 · L2, for any regular solid codes L1 and L2.

From now on, when we say prime, we mean prime regular solid code.

Definition 12. We define a state b in a DFA A to be a bridge candidate state if

the following conditions hold:

(1) State b is neither a start nor a final state.

(2) For any string w ∈ L(A), its path in A must pass through b.

(3) State b is not in any cycles in A.

Given a solid code DFA A = (Q,Σ, δ, s, f) with a bridge candidate state b ∈ Q,

we can partition A into two subautomata A1 and A2 as follows: A1 = (Q1,Σ, δ1, s, b)

and A2 = (Q2,Σ, δ2, b, f), where Q1 is a set of states that appear on some path

from s and b in A, δ1 is a set of transitions that appear on some path from s and

b in A, Q2 = Q − Q1 ∪ {b} and δ2 = δ − δ1. Note that the second requirement in

Definition 12 ensures that the decomposition of L(A) is L(A1) ·L(A2) and the third

requirement is from the property that a solid code FA must be non-returning and

non-exiting since it is infix-free. Now we are ready to define bridge states:

Definition 13. We define a candidate bridge state b ∈ Q to be a bridge state if,

for the automata A1 and A2 constructed as above, L(A1) and L(A2) are solid codes.

We show the relationship between bridge states and prime regular solid codes.

Theorem 14. A regular solid code L is prime if and only if the minimal DFA A

for L does not have any bridge states.

Proof. Let s denote the start state and f denote the final state in A.

=⇒ Assume that A has a bridge state q. We partition A into two automata A1 and

A2 at q. Now s is the start state and q is the final state of A1 and q is the start

state and f is the final state of A2. Note that L = L(A1) · L(A2) and L(A1) and

L(A2) are solid codes because of the bridge state properties—a contradiction.

⇐= Assume that L is not prime. This implies that L can be decomposed into two

regular solid codes L1 and L2. Let A1 and A2 be minimal DFAs for L1 and L2,

respectively. Since A1 and A2 are non-returning and non-exiting, there is only one

start state and one final state for each minimal DFA. We catenate A1 and A2 by

merging the final state of A1 and the start state of A2 into a single state q. Then,

the catenated automaton is the minimal DFA for L(A1) ·L(A2), which is L, and it

has a bridge state q—a contradiction.

Therefore, L is prime if and only if A has no bridge states.

We determine whether or not a given regular solid code L(A) is prime based

on bridge states. Next, when L(A) is not prime and, thus, A has bridge states, we

show how to obtain a prime decomposition for L(A) using these bridge states.
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4.2. Prime Decomposition for Regular Solid Codes

By a prime solid code decomposition of a regular solid code L, we mean the rep-

resentation of L as a product L1 · . . . · Lk, k ≥ 1, where each Li is a regular solid

code, i = 1, . . . , k. If L is prime, then L itself is a prime decomposition. Thus, given

a regular solid code L, we, first, determine whether or not L is prime. If L is not

prime, then there should be some bridge state(s) and we decompose L using the

bridge state(s). Let A1 and A2 be two subautomata partitioned at a bridge state

for L. If both L(A1) and L(A2) are prime, then a prime decomposition of L is

L(A1) · L(A2). Otherwise, we repeat the preceding procedure for a non-prime solid

code.

Let B denote a set of bridge states for a given minimal DFA A. The number

of states in B is at most m, where m is the number of states in A. Note that

once we partition A at b ∈ B into A1 and A2, then only the states in B − {b}

can be bridge states in A1 and A2. Note that it is not necessary for all remaining

states to be a bridge state. Therefore, we can determine the primality of L(A) by

checking whether or not A has bridge states. Moreover, we can compute a prime

decomposition of L(A) using these bridge states. Since there are at most m bridge

states in A, we can compute a prime decomposition of L(A) after a finite number

of decompositions at bridge states.

We first compute all candidate bridge states and, then we determine whether or

not each candidate bridge state is a bridge state.

Proposition 15 (Han et al. [5]) Given a minimal DFA A = (Q,Σ, δ, s, f), we

can identify all candidate bridge states in O(|Q|+ |δ|) worst-case time.

Let CBS denote a set of candidate bridge states that we compute from a solid

code DFA A based on Proposition 15. Once we obtain CBS, for each state bi ∈

CBS, we check whether or not two subautomata A1 and A2 partitioned at bi are

solid codes. If both A1 and A2 are solid code DFAs, then L is not prime and, thus,

we decompose L into L(A1) · L(A2) and continue to check and decompose for each

A1 and A2, respectively, using the remaining states in CBS − {bi}.

Theorem 16. Given a DFA A = (Q,Σ, δ, s, f) for a regular solid code, we can

determine the primality of L(A) in O(m3) worst-case time and compute a prime

decomposition for L(A) in O(m4) worst-case time, where m = |Q|.

Proof. Since the size of CBS is at most m and it takes O(m2) time for each

candidate state in CBS to determine whether or not L(A1) and L(A2) are solid

codes as shown in Theorem 10, the total running time for determining primality of

L(A) is O(m) ×O(m2) = O(m3) in the worst-case.

If a candidate state bi ∈ CBS turns out to be a bridge state, then we partition

A into A1 and A2 at bi and repeat the procedure for L(A1) and L(A2), respectively,

using the remaining candidate states in CBS − {bi}. We continue this partition-

ing until we cannot decompose anymore. Therefore, the total time complexity for

computing a prime decomposition of L(A) is O(m4) in the worst-case.
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The algorithm for computing a prime decomposition for L(A) in Theorem 16

looks similar to the algorithm for the regular infix code case studied by Han et

al. [5]. However, there is one big difference between these two algorithms because

of the different closure properties of two families: In fact, Han et al. [5] speeded up

their algorithm by linear factor based on the fact that infix codes are closed under

catenation whereas solid codes are not [14].

We observe that a bridge state bi of a minimal DFA A may not be a bridge state

anymore if A is partitioned at a different bridge state bj . It hints that the prime

decomposition for a regular solid code may not be unique. Note that the prime

prefix-free decomposition for a regular prefix code is unique [4] whereas the prime

infix-free decomposition for a regular infix code is not unique [5]. Since solid codes

are a proper subfamily of both prefix codes and infix codes, it is natural to examine

the uniqueness of prime decomposition for regular solid codes.

Example 17. The following example demonstrates the non-uniqueness of prime

solid code decomposition.

L(c(ab+ ba)d) =

{

L1(c(ab+ ba)) · L2(d).

L2(c) · L3((ab+ ba)d).

The language L is a regular solid code but not prime and it has two different

prime decompositions, where L1, L2 and L3 are prime and regular solid codes.

5. Conclusions

Solid codes are a language that is overlap-free and infix-free. We notice that overlap-

freeness is an interesting property since, not like similar properties (such as prefix-

freeness or suffix-freeness), it does not define a code. Nevertheless, it is an important

property used in several proofs in coding theory [12]. Moreover, overlap-freeness is

crucial for defining solid codes. Thus, we have examined the family of overlap-free

regular languages and regular solid codes.

We have proposed algorithms that determine whether or not a given regular

language is overlap-free or a solid code using its FA. We have also shown that it is

undecidable whether or not a given context-free language is overlap-free. We have

examined prime regular solid codes and designed a polynomial time algorithm that

computes a prime decomposition for a regular solid code. We have then demon-

strated that a solid code does not have a unique prime solid code decomposition.

We have not considered the question of determining whether a given overlap-free

regular language L is prime, that is, whether L can be written in a non-trivial way

as a product of overlap-free languages. Note that the definition of primality (and

the algorithm used to determine primality) of a solid code (or some of the other

usual code classes) relies essentially on the fact that solid codes are closed under

concatenation. Thus, to determine whether or not a regular solid code L is prime it

is sufficient to determine whether there exist regular solid codes L1 and L2 such that
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L = L1 · L2. However, since overlap-free languages are not closed under concatena-

tion (Theorem 7), it may be the case that a regular overlap-free language L has no

decomposition L1 · L2 where Li is overlap-free, i = 1, 2, but L can be written as a

product L′

1 · · ·L
′

k for some k > 2, where each L′

i, i = 1, . . . , k, is overlap-free. For ex-

ample, consider the overlap-free language L0 = {bbc, bac, bbca, baca, bbcaaa, bacaaa}.

We can write L0 = {b}·{a, b}·{c, ca, caaa}where each of the three factors is overlap-

free. However, it is easy to verify that L0 has three different decompositions into a

product of two non-trivial factors and in each of these decompositions one of the

languages contains overlaps.

If we use the more general definition of primality for overlap-free languages that

prohibits decompositions into any finite number of overlap-free factors, then it is

not clear even whether this property is decidable for regular overlap-free languages.

Primality of overlap-free languages remains a topic for future research.
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