World Scientific

International Journal of Foundations of Computer Science \\
www.worldscientific.com

Vol. 16, No. 3 (2005) 499-510
© World Scientific Publishing Company

THE GENERALIZATION OF GENERALIZED AUTOMATA:
EXPRESSION AUTOMATA*

YO-SUB HAN'

Department of Computer Science, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong SAR
emmous@cs.ust.hk

DERICK WOOD!

Department of Computer Science, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong SAR
dwood@cs.ust.hk

Received 29 November 2004
Accepted 21 February 2005
Communicated by Kai Salomaa

We explore expression automata with respect to determinism and minimization. We
define determinism of expression automata using prefix-freeness. This approach is, to
some extent, similar to that of Giammarresi and Montalbano’s definition of deterministic
generalized automata. We prove that deterministic expression automata languages are
a proper subfamily of the regular languages. We close by defining the minimization of
deterministic expression automata.

Keywords: Expression automata, state elimination and prefix-freeness.

1. Introduction

Recently, there has been a resurgence of interest in finite-state automata that al-
low more complex transition labels. In particular, Giammarresi and Montalbano [3]
have studied generalized automata (introduced by Eilenberg [2]) with respect to
determinism. Generalized automata have strings (or blocks) as transition labels
rather than merely characters or the null string. (They have also been called string
or lazy automata.) Generalized automata allow us to more easily construct an au-
tomaton in many cases. For example, given the reserved words for C++ programs,
construct a finite-state automaton that discovers all reserved words that appear in a

*A preliminary version of this paper appeared in the Proceedings of the 9th International
Conference on Implementation and Application of Automata, CIAA’04, Ontario, July 22-24, 2004.

tThe authors were supported under the Research Grants Council Competitive Earmarked Re-
search Grant HKUST6197/01E.

499

500 Y.-S. Han & D. Wood

specific C++ program or program segment. The use of generalized automata makes
this task much simpler.

It is well known that generalized automata have the same expressive power as
traditional finite-state automata. Indeed, we can transform any generalized automa-
ton into a traditional finite-state automaton using state expansion. Giammarresi
and Montalbano, however, took a different approach by defining deterministic
generalized automata (DGAs) directly in terms of a local property which we
introduce in Section 4.

Our goal is to re-examine the notion of expression automata; that is, finite-
state automata whose transition labels are regular expressions over the input al-
phabet. We define deterministic expression automata (DEAs) by extending
the applicability of prefix-freeness.

We first define traditional finite-state automata and generalized automata and
their deterministic counterparts in Section 2 and formally define expression au-
tomata in Section 3. In Section 4, we define determinism based on prefix-freeness
and investigate the relationship between deterministic expression automata and
prefix-free regular languages. Then, we consider minimization of deterministic ex-
pression automata in Section 5.

2. Preliminaries

Let 3 denote a finite alphabet of characters and £* denote the set of all strings
over . A language over ¥ is any subset of X*. The character § denotes the empty
language and the character A denotes the null string. Given two strings z and y in
¥*, z is said to be a prefix of y if there is a string w such that zw = y. Given a
set X of strings over X, X is prefix-free if no string in X is a prefix of any other
string in X.

A traditional finite-state automaton A is specified by a tuple (@, %,4,s, F),
where @ is a finite set of states, X is an input alphabet, § C @ X £ x Q is a (finite)
set of transitions, s € @) is the start state and F' C Q is a set of final states. Given
a transition (p, a,q) in §, where p,q € Q and a € X, we say p has an out-transition
and ¢ has an in-transition. Furthermore, p is a source state of ¢ and ¢ is a target
state of p. A string = over ¥ is accepted by A if there is a labeled path from s
to a final state in F' that spells out . Thus, the language L(A) of a finite-state
automaton A is the set of all strings spelled out by paths from s to a final state
in F. Automata that have only useful states, that is, each state appears on some
path from the start state to some final states are called trim or reduced [2, 7].

Eilenberg {2] introduced generalized automata, an extension of traditional
finite-state automata by allowing strings on the transitions. A generalized automa-
ton A is specified by a tuple (@, %, 6, s, F), where @ is a finite set of states, ¥ is an
input alphabet, § C @ x £* x Q) is a finite set of block transitions, s € @ is the start
state and F' C Q is a set of final states. Giammarresi and Montalbano [3] defined
a deterministic generalized automaton using a local notion of prefix-freeness. A
generalized automaton A is deterministic if, for each state g in A, the following two
conditions hold:

The Generalization of Generalized Automata: Expression Automata 501

1. The set of all blocks in out-transitions from q is prefix-free.

2. For any two out-transitions (¢,z,p) and (q,y,r) from ¢, if z = y, then we
require that p =r.

Note that Giammarresi and Montalbano do not require condition 2 and, as a result,
some DGAs are nondeterministic.

Since regular languages are sets of strings, we can apply the notion of prefix-
freeness to such sets.

Definition 1 A (regular) language L over an alphabet ¥ is prefiz-free if, for all
distinct strings x and y in L, x is not a prefix of y and y is not a prefiz of xz. A
regular expression a is prefiz-free if L(c) is prefiz-free.

Lemma 1 A regular language L is prefiz-free if and only if a trim deterministic
finite-state automaton (DFA) A for L has no out-transitions from any final states.
Proof. We first prove that if A is a trim DFA that has no out-transitions from
any final states, then L(A) is prefix-free. Now, each string in L(A) is spelled out
by a path in A from the start state s to a final state f € F. If |L(A)| = 1, there is
only one path in A; therefore, L{A) is prefix-free.

On the other hand, if |L{4)| > 1, then assume that there are two distinct
strings z and y in L(A) such that x is a prefix of y; that is, y = zz, where z # .
Now, z is spelled out by a path from s to some f € F and because A is a DFA,
the prefix of y of length |z| is also spelled out by the same path. However, since
|z| = 1, there is an out-transition (f, 21,q1) from state f to some state g;, where
z1 is the first character of z. Since A is trim, there must be a transition sequence
(f,z1,q1) - - (@m—1, Zm, gm), for some m > 1, such that z; -+-2,, = z and ¢, € F.
In other words, there is an out-transition from f — a contradiction. Thus, L{A) is
prefix-free.

Conversely, if L is prefix-free, then a trim DFA A for L has no out-transitions
from any final states. Assume that A has an out-transition from a final state f.
Then, a path from s to f defines an accepted string = and the out-transition from
f also leads to a final state g € F that defines another accepted string zy, where
ly] > 1. Since the out-transition from f is labeled with a character over £, |zy| > |z|.
Thus, A accepts both = and zy, where y # A; hence, L is not prefix-free — a
contradiction. Therefore, final states have no out-transitions. O

3. Expression automata

It is well known that regular expressions and (deterministic) finite-state au-
tomata have exactly the same expressive power [5, 9]. A finite-state automaton
allows only a single character in a transition and a generalized automaton [2] allows
a single string, possibly the null string, in a transition. It is natural to extend this
notion to allow a regular expression in a transition, since a character and a string
are also regular expressions. This concept was first considered by Brzozowski and
McCluskey, Jr. [1] to compute regular expressions from finite-state automata.
Definition 2 An expression automaton A is specified by a tuple (Q,%,4,s, f),
where Q) is a finite set of states, X is an input alphabet, § C Q X Ry X Q is a finite

502 Y.-S. Han & D. Wood

set of expression transitions, where Ry is the set of all regular expressions over X,
s € Q is the start state and f € Q is the final state. (Note that we only have one
final state.) We require that, for every pair p and q of states, there is exactly one
expression transition (p,a,q) in 6, where o is a reqular expression over X.

We can also use the functional notation §:Q x Q@ — Ry that gives the equivalent
representation. An expression transition (p,a,q) gives d(p,q) = a. Note that ¢
contains exactly |Q|? transitions, one transition for each pair of states, and whenever
(p,9,q) is in 4, for some p and ¢ in @, A cannot move from p to ¢ directly.

We generalize the notion of accepting transition sequences to accepting expres-
sion transition sequences and accepting language transition sequences.

Definition 3 An accepting expression transition sequence is a transition
sequence of the form:

(po = s,01,p1) + (Pm—1, ¥m, Pm =),

for some m > 1, where s and f are the start and final states, respectively.

The second notion is an accepting language transition sequence of the
form:

(pO = S7L(a1)1pl) e (pm—h L(am)7pm = f)!

for some m > 1, where s and f are the start and final states, respectively.

We define an expression automaton language to be the language accepted
by an expression automaton.
Lemma 2 Every trim finite-state autormaton can be converted into an egquivalent
trim expression automaton. Therefore, every regular language is an ezpression au-
tomaton language.
Proof. Let A = (Q,%,4,s,F) be a trim finite-state automaton. We construct
a trim expression automaton 4’ = (Q U {f},%,d,s, f) from A as follows, where
state f is not in Q.

1. For all p and ¢ in Q, (p,0,q) is in &' if (p,a,q) is not in §, for all @ € X.
Otherwise, letting o = (a1 + - -+ + a,), where (p,a;,q)isin 6,1 <7 <r, and
{p,a,q) is not in 4, for all a € £\ {ay,...,ar}, we observe that (p, o, gq) is in
&,

2. Forall f/€F, (f',\ f)isin ¢
3. Forallpe Q\ F, (p,0,f)isin ¢
4. Forallpe QU{f}, (f,9,p) isin ¢’

The construction is straightforward except for the first case. Given two states p and
¢, we merge all transitions of the form (p,a;,q), for all 4, 1 < i < r, for some r > 1,
to give the expression transition (p, (a1 +- - - +ay), ¢) or, equivalently, the language
transition (p, {a1,...,ar},¢).

Clearly, L(A) = L(A’) since accepting transition sequences in A become ac-
cepting expression sequences in A’ when a terminating A-transition is appended to
ensure acceptance. O

The Generalization of Generalized Automata: Expression Automata 503

&)CO_’CQ /Oﬁb b@\};
= .. 1O
b\\Q"\ 20 OO

Figure 1: An example of transforming a finite-state automaton into an expression
automaton. We omit all J-transitions between states.

We next establish that we can convert every expression automaton A into an
equivalent finite-state automaton; that is combining the two results, expression
automata and finite-state automata have the same expressive power. We prove
this fact by constructing a regular expression « such that L(a) = L(A). A trim
expression automaton A = (Q,%,d,s, f) is non-returning if §(q,s) = @, for all
g € Q. Note that any trim expression automaton A can be converted into a trim
non-returning expression automaton for the same language L{A) by introducing a
new start state s’ and a transition 6(s’, A, s).

Oem
\ (eielej)+ex

oG G oLl

€k

Figure 2: An example of the state elimination of a state q.

We define state elimination of g € Q\{s, f} in A to be the bypassing of state ¢,
¢’s in-transitions, ¢’s out-transitions and ¢’s self-looping transition with equivalent
expression transition sequences. For each in-transition (p;,;,q), 1 < ¢ < m, for
some m > 1, for each out-transition (q,7,7;), 1 < j < n, for some n > 1, and for
the self-looping transition (g, 3, ¢) in é, construct a new transition (p;, ;- 5% -v;,75).
Since there is always an existing transition (p,v,r) in §, for some expression v, we
merge the two transitions to give the bypass transition (p, (a; - B* - v;)+v, 7). We
then remove ¢ and all transitions into and out of ¢ in §. We denote the resulting
expression automaton by Ay = (Q\ {q}, %, 8, s, f) after the state elimination of q.
Thus, we have established the following state elimination result:

Lemma 3 Let A= (Q,%,6,s, f) be a trim and non-returning expression automa-
ton with at least three states and g be a state in Q \ {s,f}. Define A; = (Q\
{g}, %, 04,5, f) to be a trim and non-returning expression automaton such that, for

504 Y.-S. Han & D. Wood

all pairs p and r of states in @ \ {¢},

Iq(p,r) = d(p,7) + (6(p,q) - (g, 9)" - (g, 7))-
Then, L(Aq) = L(A) and Aq is trim and non-returning.

a

~O=0—0 OO —am
b e | b Na\
O+—0O 0O

ab
)

——O 2, Nl*b Oa(ab)*(aa*b ab)
NG

Figure 3: An expression automaton for the regular language L(a(ab)*(aa*b + ab))
and its state eliminations.

The elimination of a state ¢ in a given trim expression automaton A preserves all
the labeled paths from ¢’s predecessors to its successors. Therefore, state elimination
does not change the language accepted by A.

To complete the construction of an equivalent regular expression, we repeatedly
eliminate one state at a time until @ = {s, f}. Thus, we are left with a trim and
non-returning expression automaton A that has exactly two states s and f. Note
that &(s,s) = @ and 6(f,s) = 0 since A is trim and non-returning. Thus, only
the transitions &(s, f) and 8(f, f) can be nontrivial. Hence, L(A) = L((s, f) -
8(f,)*) = L(A). We have established the following result:

Theorem 1 A language L is an expression automaton language if and only if L is
a regular language.

Proof. If L is the language of an expression automaton A, then we can construct
an equivalent regular expression E by state elimination such that L = L(F). Fur-
thermore, if L is a regular language, then it is an expression automaton language
by Lemma 2. a

4. Deterministic expression automata

We now define deterministic expression automata (DEAs) and investigate
their properties. A traditional finite-state automaton is deterministic if, for each
state, the next state is uniquely determined by the current state and the current
input character [9].

The Generalization of Generalized Automata: Expression Automata 505

For an expression automaton, the situation is not as simple. When processing
an input string with a given expression automaton and a given current state, we
need to determine not only the next state but also an appropriate prefix of the
remaining input string since each of the current state’s out-transitions is labeled
with a regular expression (or a regular language) instead of with a single character.

An expression automaton is deterministic if and only if, for each state p of the
automaton, each two distinct out-transitions have disjoint regular languages and,
in addition, each regular language is prefix-free. For example, the out-transition

N\ N\ b

() (b)

Figure 4: a. Example of non-prefix-freeness. b. Example of prefix-freeness.

of the expression automaton in Fig. 4(a) is not prefix-free; L(a*) is not prefix-free
since a' is a prefix of a7, for all 5 and j such that 1 < i < j. Hence, this expression
automaton is not deterministic. On the other hand, the expression automaton in
Fig. 4(b) is deterministic since L{a*b) is a prefix-free language. We formalize the
definition as follows:

Definition 4 An expression automaton A = (Q,%,9,s, f), where |Q| = m, is de-
terministic if and only if the following three conditions hold:

1. Prefix-freeness: For each state ¢ € Q and for q’s out-transitions

(q» 1, (I1), (Q> a2, Q2), ceey (qv Ay Qm),
L{ay) U L{ag) U+ - U L{ay,) is a prefiz-free regular language.

2. Disjointness: For each state ¢ € Q and for all pairs of out-transitions o
and o, where i # j and 1 <4, j < m,

L{a) N L(aj) = 0.

3. Non-exiting: (f,8,q) in 8, for all ¢ € Q.

Lemma 4 If a trim DEA A = (Q,%,6,s, f) has at least three states, then, for any
state ¢ € Q\ {s, f}, A, is deterministic.

Proof. Consider a state ¢ in a DEA A. Let (p,a,q), (¢,8,t) and (p,v,t) be
transitions in 6. Then, by the definition of DEAs, L(a), L(3) and L(v) are prefix-
free regular languages and L(ca) and L(vy) are disjoint from each other. We remove
a state ¢ and its transitions 3. Then o and § are catenated as o, which pre-
serves prefix-freeness. Note that L(af) and L(vy) are still disjoint. Therefore, 4, is
deterministic; namely, state elimination for a DEA preserves determinism. O

However, the converse of Lemima 4 does not hold.

506 Y.-S. Han & D. Wood

Lemma 5 There exists a trim expression automaton A that is deterministic if and
only if L(A) is prefiz-free.

Proof.

== Assume that A = (@,X%,d,s,f) is deterministic. Let Q' = Q@ \ {s, f} and
m = |@Q'|. If m = 0, then A has exactly two states (s and f) and at most two
nontrivial transitions (s, o, s) and (s, 3, f) in §. Thus, L{a*f) is prefix-free since A
is deterministic.

If m > 0, then apply state elimination to A for each ¢ € @’. The resulting
automaton A has exactly two states and two nontrivial transitions, (s,a,s) and
(s,8, f) in 8, where L(a*f) is a prefix-free language by Lemma 4. Since L(A) =
L(A) = L(a*B) and L(a*p) is a prefix-free language, L(A) is a prefix-free language.
<= Assume that L(A) is prefix-free. Then, there is a prefix-free regular expression o
such that L(A) = L(e). Using «, we can construct the expression automaton
A= ({s}LZ {(s;a f)},s, f) such that L(A) = L(c). Moreover, since L(c) is a
prefix-free language and « is the only transition in A, A is deterministic. O

Lemma 5 demonstrates that the regular languages accepted by DEAs are prefix-
free. Thus, DEA languages define a proper subfamily of the regular languages.

Theorem 2 The family of prefix-free regular languages is closed under catenation
and intersection but not under union, complement or star.

These closure and nonclosure results can be proved straightforwardly.

5. Minimization of DEAs

It is natural to attempt to reduce the size of an automaton as much as possible to
save space. There are well-known algorithms [4, 6] to truly minimize DFAs in that
they give unique (up to a renaming of states) minimal DFAs. Recently, Giammar-
resi and Montalbano [3] suggested a minimization algorithm for deterministic
generalized automata (DGAs). The technique does not, however, result in a
unique minimal DGA. Given a DGA, they introduce two operations in their quest
for a minimal DGA. The first operation identifies indistinguishable states similar to
minimization for DFAs and the second operation applies state elimination to reduce
the number of states in a DGA (at the expense of increasing the label lengths of
the transitions).

We define the minimization of a DEA as the transformation of a given DEA into
a DEA with a smaller number of states. Note that, for all DEAs, we can construct
an equivalent simple DEA, which consists of one start state and one final state with
one transition between them, from any DEA using a sequence of state eliminations.
However, this sequence of state eliminations makes the regular expression of the
transition more complex.

Given a trim DEA A = (Q, %, 4, s, f) and a state g € @, we define the right lan-
guage L—» to be the set of strings defined by the trim DEA A@ =(Q,¥,¥,q,),
where Q' C @,%' C ¥ and § C 4. Similarly, we define the left language L‘?
defined by the trim DEA A<-q— =(Q,¥,¥,s,q), where @' C @, C X and & C 4.

We then define two distinct states p and ¢ to be indistinguishable if L‘p’ =

The Generalization of Generalized Automata: Erpression Automata 507
L~q>. We denote this indistinguishability by p ~ q. Note that if p ~ g, then there

must be a pair of indistinguishable states in the following states in a DFA. However,
this property does not always hold for a DEA; Fig. 5 illustrates it.

@ bead
-

Figure 5: An example of indistinguishable states. Note that r and u are distin-
guishable although p ~ q.

\@
/-

<>

y
a\

Based on the notion of the right language, we define a minimal DEA as follows.
Definition 5 A trim DEA A is minimal if all states A are distinguishable from
each other.

Thus, we minimize a DEA by merging indistinguishable states. We now explain
how to merge two indistinguishable states p and ¢ to give one state p, say. The
method is simple, we first remove state ¢ and its out-transitions and then redirect
its in-transitions into state p. Once we have defined this micro-operation, we can
repeat it wherever and whenever we find two indistinguishable states. Since there
are only finitely many states, we can guarantee termination and minimality.

—~

«,O&

: §©
AP\

€6

Figure 6: An example of the merging of two indistinguishable states p and q. The
dotted lines show the removal of transitions.

Now we need to prove that the micro-operation on p ~ q in A does not change
L(A). Observe that since L— = L, we can remove state ¢ and its out-transitions
and redirect ¢’s in-transitions to be in-transitions of p. Now, let L‘ﬁ and L? be
the left languages of p and q. Observe that redirecting ¢’s in-transitions to be new
in-transitions of p implies that the new left language of p is now L« U L« whereas
before the redirection the left languages of p and ¢ are L+ and L<-. Moreover, since
L?’ = L—(?, once ¢ is removed the right language of p is unchanged. Finally, we

508 Y.-S. Han & D. Wood

catenate the two languages to obtain (L« U L) - L? = (LT . L?») u (Lv . L—p>)
= (L(ﬁ . L?) U (Leq— . L?), before the removal of g. Notice that the resulting
expression automaton is still deterministic.

Note that, as with DGA, we cannot guarantee that we obtain a unique minimum
DEA from a given DEA. We can only guarantee that we obtain a minimal DEA.
For example, the automaton in Fig. 5 can be minimized in at least two different

ways as shown in Fig. 7.

(\r“
bead
} +b T e
\ N / @ \b\

<

- @a+b @ - @ unggg}chable @

pP—9q q—p

(\' becad
* O—— 0%
- (O=O=0*20*0 |~ O @)
(a) (b)

Figure 7: Two different minimal DEAs for the DEA in Fig. 5.

As shown in Fig. 7(a), we merge p into ¢ and remove state 7 since it is unreachable
after merging. In Fig. 7(b), we merge ¢ into p and remove state u since it is
unreachable. However, the second state v from ¢ has an in-transition from s, which
prevents v from being useless. The two minimizations result in two different minimal
expression automata that have the same number of states.

The minimization is based on the check the equivalence of two right languages of
two states in a given DEA A = (Q, %, §, s, f) for identifying indistinguishable states.
For example in Fig. 5, we have to determine whether or not L— = L—. Since the
regular expression equivalence problem is PSPACE-complete [8], the complexity
of identifying indistinguishable states is at least PSPACE-complete. On the other
hand, once we have all pairs of indistinguishable states, then the merging step in
the micro-operation takes O(|Q|) worst-case time for each pair of indistinguishable
states, where |@Q| is the number of states in A, since each state can have at most
O(|Q]) in-transitions and O{|Q]) out-transitions.

6. Conclusions

We have formally defined expression automata and DEAs based on the notion
of prefix-freeness. In addition, we have shown that DEA languages are prefix-free

The Generalization of Generalized Automata: Expression Automata 509

regular languages and, therefore, they are a proper subfamily of regular languages.

State elimination is a natural way to compute a regular expression from a given
automaton that results in an automaton that we call an expression automaton.
One interesting observation about state elimination is that different state removal
sequences from the same automaton give rise to different regular expressions that
define the same language; see Fig. 8 for example.

08¢0 a IRCRCROOCRE

E; = (aa + b)(a + cb)*{cd + d) E, = (aa + bla*c(ba*c)*(ba*d + d) + (aa + b)a*d

Figure 8: Different removal sequences result in different regular expressions for the
same language. Ep is the output of the state elimination in p — r — ¢ order and
E, is the output of the state elimination in p — ¢ — r order, where L(E;) = L(E>2).

If we choose a good removal sequence, then we end up with shorter regular
expressions. On the other hand, we have to consider all possible removal sequences
to obtain the shortest regular expression by state elimination, which is exponential.
Therefore, it is an interesting problem to develop heuristics that give a shorter
regular expression by state elimination.

Acknowledgment

We are deeply grateful to Byron Choi for his helpful comments and hearty
encouragement.

References

1. J. Brzozowski and E. McCluskey, Jr. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Transactions on Electronic Computers, EC-12:67-76,
1963.

2. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
New York, NY, 1974.

3. D. Giammarresi and R. Montalbano. Deterministic generalized automata. Theo-
retical Computer Science, 215:191-208, 1999.

4. J. Hopcroft. An nlogn algorithm for minimizing the states in a finite automaton.
In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, 189-196,
New York, NY, 1971. Academic Press.

5. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA, 2 edition, 1979.

6. E. Moore. Gedanken experiments on sequential machines. In C. Shannon and
J. McCarthy, editors, Automata Studies, 129-153, Princeton, NJ, 1956. Princeton
University Press.

7. D. Perrin. Finite automata. In J. van Leeuwen, editor, Formal Models and Seman-

510 Y.-S. Han & D. Wood

tics, volume B of Handbook of Theoretical Computer Science, 1-57. The MIT Press,
Cambridge, MA, 1990.

8. L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In

Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, 1-9,
1973.

9. D. Wood. Theory of Computation. John Wiley & Sons, Inc., New York, NY, 1987.

	
	
	
	
	
	
	
	
	
	
	
	
	

