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ABSTRACT

‘We study infix-free regular languages. We observe the structural properties of finite-
state automata for infix-free languages and develop a polynomial-time algorithm to deter-
mine infix-freeness of a regular language using state-pair graphs. We consider two cases:
1) A language is specified by a nondeterministic finite-state automaton and 2) a lan-
guage is specified by a regular expression. Furthermore, we examine the prime infix-free
decomposition of infix-free regular languages and design an algorithm for the infix-free
primality test of an infix-free regular language. Moreover, we show that we can compute
the prime infix-free decomposition in polynomial time. We also demonstrate that the
prime infix-free decomposition is not unique.

1. Introduction

Codes play a crucial role in many areas such as information processing, date
compression, cryptography, information transmission and so on [13]. They are
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categorized with respect to different conditions (for example, prefiz-free, suffiz-free,
infiz-free or outfiz-free) according to the applications [8, 10, 11, 12, 14]. Since codes
deal with sets of strings, they are closely related to formal language theory: a code
is a language. The conditions that classify code types define proper subfamilies of
given language families. For regular languages, for example, prefix-freeness defines
the family of prefix-free regular languages, which is a proper subfamily of regular
languages.

While infix-free languages have not been studied to the extent of prefix-free lan-
guages in the literature, infix-free languages have been used in text searching [2, 6]
and computing forbidden words [1, 4]. Ito et al. [11] showed that it is decidable
whether or not a given regular language is infix-free and recently, Béal et al. [1]
proposed a polynomial-time algorithm to determine infix-freeness for a given deter-
ministic finite-state automaton (DFA). On the other hand, infix-freeness of context-
free languages is undecidable as Jiirgensen and Konstantinidis [13] had shown. We
develop a different algorithm from the algorithm of Béal et al. [1] that can de-
termine infix-freeness of regular languages specified by nondeterministic finite-state
automata (NFAs). Moreover, we investigate infix-freeness when languages are given
by regular expressions.

Recently, Mateescu et al. [15, 16] examined the prime decomposition of regular
languages and showed that it is decidable whether or not a given regular language
has a decomposition and the prime decomposition is not unique. Czyzowicz et
al. [5] studied the prime decomposition of prefix-free regular languages and proved
that the prime prefix-free decomposition is unique. Since the family of infix-free
(regular) languages is a proper subfamily of (regular) languages and also of prefix-
free (regular) languages, we investigate the prime infix-free decomposition of infix-
free regular languages and uniqueness of prime decomposition.

In Section 2, we define some basic notions. We then, in Section 3, define state-
pair graphs and develop a polynomial-time algorithm that determines infix-freeness
of regular languages. In Section 4, we propose an O(m?>) worst-case algorithm
to compute a prime infix-free decomposition for a minimal DFA, where m is the
number of states. We also demonstrate that the decomposition is not unique.

2. Preliminaries

Let ¥ denote a finite alphabet of characters and ¥* denote the set of all strings
over . A language over ¥ is any subset of ¥*. The character (} denotes the empty
language and the character A denotes the null string. A finite-state automaton A
is specified by a tuple (Q, %, 4, s, F'), where @ is a finite set of states, ¥ is an input
alphabet, § C @ x X x Q) is a (finite) set of transitions, s € @ is the start state
and F C @ is a set of final states. Let |Q] be the number of states in @ and |4|
be the number of transitions in §. Then, the size |A| of A is |Q] + |6]. Given a
transition (p,a,q) in §, where p,q € @ and a € 3, we say p has an out-transition
and ¢ has an in-transition. Furthermore, p is a source state of ¢ and ¢ is a target
state of p. A string x over X is accepted by A4 if there is a labeled path from s to a
state in F' such that this path spells out the string x. Thus, the language L(A4) of a
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finite-state automaton A is the set of all strings that are spelled out by paths from
s to a final state in F'. We say that A4 is non-returning if the start state of A does
not have any in-transitions and A is non-exiting if the final state of A does not have
any out-transitions. We assume that A has only useful states; that is, each state of
A appears on some path from the start state to some final state.

Given two strings z and y over 3, z is a prefiz of y if there exists z € ¥* such that
xz = y and x is a suffiz of y if there exists z € ¥* such that zz = y. Furthermore,
x is said to be a substring or an infiz of y if there are two strings « and v such that
uxv = y. Given a set X of strings over X, X is infiz-free if no string in X is an infix
of any other string in X. Given a string z, let z® be the reversal of z, in which
case X = {z# | z ¢ X}. We define a (regular) language L to be infix-free if L is
an infix-free set. A regular expression E is infix-free if L(E) is infix-free. We can
define prefix-free and suffix-free languages in a similar way.

3. Infix-free regular languages

A regular language is represented by a finite-state automaton or described by a
regular expression. We present algorithms that determine whether or not a given
regular language L is infix-free based either on finite-state automata or on regular
expressions. We assume that A ¢ L, where L # {\}. Otherwise, L is not infix-free
since A is an infix of any strings.

We first consider the representation of a regular language L by an NFA A. If a
final state in A has an out-transition, then L(A) is not prefix-free and, therefore, not
infix-free. Similarly, if s of A has an in-transition, then L(A) is not suffix-free and,
therefore, not infix-free. Thus, we assume that A is non-returning and non-exiting.
Furthermore, if A is non-exiting and has several final states, then all final states are
equivalent and, therefore, are merged into a single final state.

Given an NFA A = (Q, %, 4, s, ), we assign a unique number for each state from
1 to m, where m is the number of states in (. We use ¢;, for 1 < i < m, to denote
the corresponding state in A; for example, ¢; denotes s and ¢, denotes f.

If L(A) is not infix-free, then there are two distinct strings s; and so accepted
by A and s; is an infix of so. It implies that there are two distinct paths in A that
spell out s; and sq, respectively, and the path for so has a subpath that spells out
s1. For example, in Fig. 1, the given finite-state automaton accepts s; = abba and
$2 = aabbab and the subpath ¢2 — g5 — g5 — g7 — gs of the path for so also spells
out s1.

Figure 1: Two strings abba and aabbab are spelled out by two distinct paths in a
given finite-state automaton.
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We introduce the state-pair graph that is able to identify the case when two
distinct paths in A spell out s; and s, and sy is an infix of so as illustrated in
Fig. 1.

Definition 1 Given an NFA A = (Q, 3,4, s, f), we define the state-pair graph G 4 =
(V,E), where V is a set of nodes and E is a set of edges, as follows:

V=A{(7)| ¢ and ¢; € Q} and

E = {((i’j)’aa (xay)) | (qz"aan) and (Qj,a,Qy) cdandac E}

Figure 2: An example of a state-pair graph G 4 for a given finite-state automaton A.
We omit all nodes that have no out-transitions in G 4.

Fig. 2 illustrates the state-pair graph for a given finite-state automaton A.
L(A) = {ab,aabb} is not infix-free since ab is an infix of aabb. Note that the
infix ab appears on the path from (1, 3) to (6,5) in G4.

Lemma 1 If there is no path from (1,i) to (m,j) in Ga except from (1,1) to
(m,m), for 1 <i,j <m, then L(A) is infiz-free.

Proof. Assume that L(A) is not infix-free. Then, there are two distinct strings s;
and sg accepted by A, where s1 is an infix of sg; namely, so = wis1ws. There are
two cases to consider for s9: 1) w1 # A and 2) wy = A and we # A. We examine
the two cases separately.

1. Since A accepts s2, we arrive at some state ¢; after reading the prefix w; of
so. Note that ¢ £ 1 since A is non-returning. Since s; and s are accepted by
A, there should be two sequences of transitions, one of which is from ¢; (the
start state) to gm, (the final state) and the other is from ¢; to ¢;, and both spell
out the same string s1. It implies that there is a path from (1,¢) to (m,j) in
G 4, where 1 #£ 1 — a contradiction.

2. Since wy = A, s1 is a prefix of s3. Then, there are two paths that spell out
s1 and s in A and both paths have the same prefix s;. Namely, there is a
path from g1 to gy for s; and a path from g1 to ¢; for the prefix s; of ss.
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There is a corresponding path from (1,1) to (m,j) that spells out $1 in G 4.
Now we need to show that j # m. Since A accepts s = sjws, there should

be a transition sequence from ¢; (g5, 21, g )(Qk, 22, Qet1) - - - (Q41—2, 21, Gm ), for
some [ > 1, such that z1 - -+ z; = wo.

Therefore, if there is no path from (1,7) to (m,j) in G4 apart from (1,1) to
(m,m), for 1 < 4,5 <m, then L(A) is infix-free. |
Lemma 2 If L(A) is infiz-free, then there is no path from (1,i) to (m,j) except
for the case (1,1) to (m,m) in Ga, where L <i<m and 1 <j<m.

Proof. Assume that there is a path that spells out a string s; from (1,%) to (m, j)
in G4. It implies that there exists two paths, one of which is from ¢; to ¢,,, and the

other is from ¢; to ¢; and both spell out s; in A. There are two cases: 1) ¢ # 1 and
2)i=1and j #£m.

1. Since A has only useful states, there should be a transition sequence from g
to g; that spells out a string wy, which cannot be A since A is non-returning,
and a transition sequence from g¢; to g, that spells out a string ws, which can
be A when j = m. It implies that 4 accepts both s; and wysjws and s1 is an
infix of wys1ws — a contradiction.

2. Since A has only useful states and j # m, there should be a transition sequence
from ¢; to g, that spells out a string ws, which cannot be A. It implies that
A accepts both s; and s;ws and s is an infix of s;ws — a contradiction.

Therefore, if L(A) is infix-free, then there is no path from (1,%) to (m, j) apart
from (1,1) to (m,m) in G4. O

From Lemmas 1 and 2, we obtain the following result.

Theorem 1 A regular language L(A) is infiz-free if and only if the state-pair graph
G 4 for a given finite-state automaton A has no path from (1,4) to (m,§) apart from
(1,1) to (m,m), where 1 <i<m and 1 <j<m.

Let us consider the complexity of the state-pair graph G4 = (V, ) for a given
finite-state automaton 4 = (Q, %, 6, s, f). It is clear that V = |Q|? from Definition 1.
Let &; denote the set of out-transitions from a state ¢; in A. Then, |6] = >, |&],
where m = |Q|. Since a node (i, j) in G4 can have at most |;| x |;| out-transitions,
|E| = Z?jzl |6:| % |6;] < |6|%. Therefore, the complexity of G 4 is at most |Q|* nodes
and |§|% edges.

A sub-function DFS((4, 7)) in Infix-Freeness (IF) shown in Fig. 3 is a depth-
first search that starts at a node (4,7) in G4. Note that although DFS((, 7)) is
executed several times inside for loop in the algorithm, each node in G4 is visited
at most twice. For details on DFS, refer to the textbook [3]. The construction of
Ga = (V,E) from A takes O(|Q]? + |6]?) time in the worst-case and DFS takes
O(|V| + |E|) time. Therefore, the total running time for IF is O(|Q|* + |§|?).

Theorem 2 Given a finite-state automaton A = (Q, 3,4, s, f), we can determine
whether or not L(A) is infiz-free in O(|Q|*+|5|*) worst-case time using IF in Fig. 3.
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Infix-Freeness(A = (@, %,4,s, f))
/* we assume that A is non-returning and non-exiting. */

Construct G4 = (V, E) from A
for each node (1,4) in V, where 2 <i<m
DFS((1,4)) in G4
if we meet a node (m,j) for any 7, 1 < j <m
then output L(A) is not infix-free

DFS((1,1)) in G4
if we meet a node (m,j) forany 7,2 <j<m

then output L{A) is not infix-free

output L{A) is infix-free

Figure 3: An infix-freeness checking algorithm for a given NFA.

Since O(|6]) = O(|Q|*) in the worst-case for NFAs, the running time of IF
is O(]Q|*) in the worst-case. On the other hand, if a language is described by
a regular expression, then we can choose a construction for finite-state automata
that improves the worst-case running time. Since the complexity of the state-pair
graph depends on the number of states and the number of transitions of a given
automaton, we need a finite-state automata construction that gives fewer states and
transitions. One possibility is to use the Thompson construction [17].

Given a regular expression F, the Thompson construction takes O(|E|) time and
the resulting Thompson automaton has O(|E|) states and O(|E|) transitions [9];
namely, O(|Q]|) = O(|3]) = O(|E|). Even though Thompson automata are a sub-
family of NFAs, they define all regular languages. Therefore, we can use Thomp-
son automata to determine infix-freeness of a regular language given by a regular
expression. Since Thompson automata allow null-transitions, we include the null-
transition case to construct the edges for a state-pair graph as follows:

V ={(,7) | ¢; and ¢; € @} and
E={((5,7),a,(z,9)) | (:,0,9) and (gj,a,qy) € 6 and @ € XU {A}}.

The complexity of the state-pair graph based on this new construction is the
same as before; namely, O(|Q|?+|5|2). Therefore, we have the following result when
checking regular expression infix-freeness.

Theorem 3 Given a regular expression E, we can determine whether or not L(E)
is infiz-free in O(|E|?) worst-case time.

Proof. We construct the Thompson automaton At for E. Hopcroft and Ullman [9)
showed that the number of states in Ay is O(| E|) and also the number of transitions,
O(|Q]) = 0(J8]) = O(|E|). Thus, we construct the state-pair graph based on the
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new construction that includes null-transitions and determine infix-freeness of L(FE)
using IF in Fig. 3. Since O(|Q|) = O(|8]) = O(|E|), the worst-case time complexity
is O(|E)?). O

We know that a regular language L is prefix-free if there are no out-transitions
from a final state of a DFA for L [7]. However, if L is specified by an NFA A, then
we have to use subset construction to compute a corresponding DFA from A and
the subset construction takes exponential time in the worst-case [18]. By loosening
the condition in Theorem 1, we can determine whether or not L({A) is prefix-free in
polynomial time.

Theorem 4 Given a (nondeterministic) finite-state automaton A = (@, %, 6, s, f),
the regular language L(A) is prefiz-free if and only if there is no path from (1,1)
to (m,3), for any j # m, in the state-pair graph Ga for A. Moreover, we can
determine prefiz-freeness in O(|Q|* + |6|) worst-case time.
Proof. Using similar arguments to those of Lemmas 1 and 2, we can show L(A)
is prefix-free if and only if G4 has no path from (1,1) to (m,7). Then, we run
DFS((1,1)) for G4 until either we meet (m,7) for any 1 < j < m or we visit all
nodes in G 4. O
Based on Theorem 4, we can determine suffix-freeness of L(4) in O(|Q|? + |5|?)
worst-case time as well. We define a language L to be bifiz-free if L is prefix-free
and suffix-free. Then, we can determine bifix-freeness by checking for prefix-freeness
and suffix-freeness.

Theorem 5 Given a (nondeterministic) finite-state automaton A = (@, %, 46, s, f),
we can determine prefiz-freeness, suffiz-freeness and bifiz-freeness of L(A) in O(|Q]*+
|6]%) worst-case time.

A language L over X is p-infiz-free if two conditions zuy € L and u € L imply
that y = A, where u,z and y are strings over ». Similarly, L is s-infiz-free if
zuy € L and v € L imply that x = A. For more details on these languages, refer to
Tto et al. [11]. Then, we can determine whether or not a given regular language is
p-infix-free using state-pair graphs.

Theorem 6 A regular language L(A) is p-infiz-free if and only if the state-pair
graph G4 for a given finite-state automaton A has no path from (1,¢) to (m,j),
where l <i<mand 1 <j < m.

prefix-free suffix-free
p-infix-free s-infix-free
infix-free

Figure 4: Some code languages and their relationships. For example, all p-prefix-
free languages are prefix-free and all infix-free languages are p-infix-free.
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Fig. 4 illustrates various code language relationships. For context-free languages,
it is undecidable whether or not a given language L is prefix-free, suffix-free, bifix-
free or infix-free [13]. The p-infix-free and s-infix-free cases are still open. On the
other hand, it is decidable when L is a regular language although there were no
known polynomial time algorithms for these decision problems. In this section, we
have shown that we can solve these decision problems of all code languages in Fig. 4
in polynomial time using state-pair graphs of regular languages.

We characterize the family of infix-free (regular) languages in terms of closure
properties.

Theorem 7 The family of infiz-free (regular) languages is closed under catenation
and intersection but not under union, complement or star.

Proof. We only prove the catenation case. The other cases can be proved
straightforwardly.

Assume that L = L1 - Lo is not infix-free whereas L1 and L are infix-free. Then,
there are two strings s = s1 - s9 and w = wy - we € L, where s1 and wy € L1, s and
wg € Lo and s is a substring of w. Since s is a substring of w, w = vs1ssu and at
least one of v and w is not null string. Note that w can be decomposed into wywe
and therefore we should be able to partition vsiseu into two substrings wy and wo.
Then, either s; is an infix of wy or s is an infix of wo — a contradiction. 0

4. Prime infix-free regular languages and decomposition

Decomposition is the reverse operation of catenation. If L. = L - Lo, then L is
the catenation of L1 and Ls and L7 - Lo is a decomposition of L. We call L1 and Lo
factors of I.. Note that every language I has a decomposition, L. = {A} - L, where
L is a factor of itself. We call {\} a trivial language. We define a language L to
be prime if L. # Ly - Lo, for any non-trivial languages L; and Lo. Then, the prime
decomposition of L is to decompose L into LiLg--- Ly, where Ly, Lo, ---, Ly are
prime languages and £ > 1 is a constant.

Mateescu et al. [15, 16] showed that the primality of regular languages is decid-
able and the decomposition of a regular language into prime regular languages is not
unique. Recently, Czyzowicz et al. [5] considered prefix-free regular languages and
showed that the prime prefix-free decomposition for a prefix-free regular language L
is unique and can be computed in O(m) worst-case time, where m is the size of the
minimal DFA for L. Note that in prime prefix-free decomposition, all factors must
be prefix-free.

We investigate prime infix-free regular languages and decomposition.

4.1. Prime infiz-free regular languages

Definition 2 We define a regular language L to be a prime infiz-free language if
L # Ly - Lo, for any non-trivial infiz-free reqular languages L1 and Lo.
From now on, when we say prime, we mean prime infix-free.

Definition 3 We define a state b in o DFA A to be a bridge state if the following
conditions hold:
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1. State b is neither a start nor a final state.

2. For any string w € L(A), its path in A must pass through b at least once.
Therefore, we can partition A at b into two subautomata A, and As such that
all out-transitions from b belong to As.

3. State b is not in any cycles in A.
4. L{A1) and L(A2) are infiz-free.

Given an infix-free DFA A = (Q,%,4, s, f) with a bridge state b € @), we can
partition A into two subautomata A; and As as follows: A; = (Q1,%,d1,5,b) and
A = (Q2,%,02,b, ), where Q1 is a set of states of A that appear on some path
from s and b in A, Q2 = @\ @1 U {b}, 02 is a set of transitions of A that appear
on some path from b to f in A and d1 = § \ d2. Fig. 5 illustrates the partition at a

bridge state.

G@ B—©®

OO OB OR =0

Figure 5: An example of the partitioning of an automaton at a bridge state b.

Lemma 3 Given a DFA A and its subautomata A1 ond As partitioned ot o bridge

state, L(A) = L(A4;) - L(Az2).

Proof. Let wy; € L(A;) and wy € L{A2). We process wjws with respect to A.

Since 61 C 8, we reach state b after reading w;. Again, we can process wq from b

and reach the final state of 4 since d C 4. O
Lemma 3 shows that the second requirement in Definition 3 ensures that the

decomposition of L(A) is L(A;) - L(As). The third requirement is based on the

property that finite-state automata for infix-free regular languages must be non-

returning and non-exiting.

Theorem 8 An infiz-free reqular language L is prime if and only if the minimal

DFA A for L does not have any bridge states.

Proof. Let s denote the start state and f denote the final state in A.

— Assume that A has a bridge state ¢. Then, we can separate A into two automata



388 Y.-S. Han, Y. Wang & D. Wood

Ay and As such that s is the start state and ¢ is the final state of A; and ¢ is the
start state and f is the final state of As. Then, L = L(A1) - L(As), where L{A;)
and L{Ag) are infix-free — a contradiction.

<= Assume that L is not prime. Then, L can be represented as I - La, where
Ly and Lo are infix-free; namely, L = L; - Ls. Czyzowicz et al. [5] showed that
given prefix-free languages A, B and C such that A = B - C, A is regular if and
only if B and C are regular. Thus, if L is regular, then L; and Ly must be regular
since all infix-free languages are prefix-free. Let A; and As be minimal DFAs for L
and Lo, respectively. Since A; and As are non-returning and non-exiting, there is
only one start state and one final state for A; and As. We catenate A; and As by
merging the final state of A1 and the start state of Ao as a single state ¢g. Then, the
catenated automaton is the minimal DFA for L(A;) - L(As) = L and has a bridge
state ¢ — a contradiction. a

4.2. Prime decomposition of infix-free regular languages

The prime decomposition for an infix-free regular language L is to represent L
as a catenation of prime infix-free regular languages. If L is prime, then L itself is a
prime decomposition. Thus, given L, we first check whether or not L is prime and
decompose L if it is not prime. By the definition of bridge states, we can decompose
L into L(A;) and L(A2) at bridge states. If both L(A;) and L{As) are prime, a
prime decomposition of L is L(A;) - L(A2). Otherwise, we repeat the preceding
procedure for a non-prime language.

Let B denote the set of bridge states for a given minimal DFA A. Then, the
number of states in B is at most m, where m is the number of states in A. Note
that once we partition A at b € B into A; and Ag, then only states in B\ {b} can be
bridge states of 4; and A2®. Therefore, we can determine the primality of L(A) by
checking whether A has bridge states and compute a prime decomposition of L(A)
using these bridge states. Since there are at most m bridge states in an automaton
for an infix-free regular language, we can compute a prime decomposition of L(A)
after a finite number of decompositions at bridge states.

First, we show how to compute bridge states and, then, present an algorithm to
decompose a non-prime infix-free regular language using bridge states. Let G(V, E)
be a labeled directed graph for a given minimal DFA A = (@, 3,4, s, f), where
V =@ and F =4§. We say that a path in G is simple if it does not have a cycle.

Lemma 4 Let P ¢ be a simple path from s to f in G. Then, only the states on
Py 5 can be bridge states of A.

Proof.  Assume that a state ¢ is a bridge state and is not on P, ¢. Then, it
contradicts the second requirement of bridge states. O

Since the first three requirements in Definition 3 are based on the structural
properties of a given automaton, we compute a set of states that satisfy these three
requirements and check the last requirement for each state in the set. Assume that
we have a simple path P, ¢ from s to f in G = (V, E), which can be computed

“Sometimes, a state in B\ {b} is not a bridge state anymore after partitioning. Fig. 7 gives an
example.
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in O(|V| + | E|) worst-case time. All states on P, ¢ form a set of candidate bridge
states (CBS); namely, CBS = (s,b1,b2,- -, by, f).

We use DFS to explore G from s. We visit all states in CBS first. While
exploring G, we maintain the following three values, for each state ¢ € @,

anc: The index 7 of a state b; € CBS such that there is a path from b; to ¢
and there is no path from b; € C'BS to ¢ for j > 1. The anc of b; is 1.

min: The index i of a state b; € CBS such that there is a path from ¢ to b;
and there is no path from ¢ to by, for h < i without visiting any state in CBS.

max: The index 7 of a state b; € CBS such that there is a path from ¢ to b;
and there is no path from g to b; for ¢ < j without visiting any state in CBS.

The min value of a state ¢ means that there is a path from ¢ to byin. Therefore,
if a state b; € CBS has a min value, then it implies that b; is in a cycle. Similarly,
if b; has a max value and max +# i + 1, then it means that there is another simple
path from b; to bymax without passing through b;y1.

When a state ¢ € @\ CBS is visited during DFS, ¢ inherits anc of its preceding
state. A state g has two types of child state: One type is a subset 77 of states in
CBS and the other is a subset T3 of @\ CBS; namely, all states in T} are candidate
bridge states and all states in T are not candidate bridge states. Once we have
explored all children of ¢, we update min and max of ¢ as follows:

min = min(min (¢g.anc), min(g.min
(1min(g-anc), min (g.min))
and
max = max(max(g.anc), max(g.max)).
(max(g.anc), max(g.max))

Fig. 6 provides an example of DFS after updating (min, anc, max) for all states
in G.

(1,2,6)

(1,2,6) (1,3,5) (#.6,7)
L) — ) —()——(——D
(#:3,5)

Figure 6: An example of DFS that computes (min, anc, max), for each state in
G, for a given CBS = (s, b1, bs, b3, by, b3, bg, [), where # denotes the null index.

If a state b; € CBS does not have any out-transitions except a transition to
biv1 € CBS (for example, bg in Fig. 6), then b; has (#,¢,7 + 1) when DFS is
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completed, where # denotes the null index. Once we have completed DFS and
computed (min, anc, max) for all states in GG, we remove states from CBS that
violate the first three requirements to be bridge states. Assume b, € CBS has
(h,i,7), where h < i and i < j. First, we remove by, bp41,...,b; from CBS since
there is a path from b; to by and, therefore, these states are in a cycle in A. If h is
#, then we do not remove any states. Second, we remove b;y1,b:q2,...,b;—1 from
CBS since there is a path from b; to b;; that is, there is another simple path from
b; to f. Finally, we remove s and f from CBS. For example, we have {bg} after
removing states that violate the first three requirements from C'BS in Fig. 6. This
algorithm gives the following result.

Lemma 5 We can compute a set of candidate bridge states that satisfy the first
three requirements in Definition 3 for a given automaton A = (Q,%,4,s, f) in
O(1Q| + |8]) worst-case time using DFS.

Given a set of candidate bridge states CBS computed from a given minimal
DFA A for L(A), we check for each state b; € C'BS whether or not two subautomata
A; and A, that are partitioned at b; are infix-free using IF. If both A; and As are
infix-free, then L is not prime and we decompose L into L(A1) - L{As2) and continue
to check and decompose for each A; and As respectively using CBS \ {b;}.

Lemma 6 If a candidate state b; € CBS is not a bridge state for a given minimal
DFA A, then b; cannot be a bridge state in a decomposed subautomaton after the
decomposition at o bridge state b;, ¢ # j.

Proof. Assume that b; is not a bridge state in A but it becomes a bridge state in
a subautomaton, say A, after decomposing A into two subautomata at b; € CBS,
where ¢ < j.

— Li — +— L —

0000

| — L) —

By the assumption, L{ and Lé are infix-free. Since b; is a bridge state in Ay,
L% and L should be infix-free. However, if L} is infix-free, then L} - Lg must be
infix-free since the catenation of infix-free regular languages is closed according to
Theorem 7. It implies that L(A) = L - L4L}, and, thus, b; is a bridge state of A
— a contradiction. Therefore, if b; is not a bridge state in A, then b; cannot be a
bridge state in a decomposed subautomaton. O

Lemma 6 shows that once a candidate state in C'BS is not a bridge state, then we
do not need to consider the state as a candidate anymore even after a decomposition
at some bridge state.

Theorem 9 Given a minimal DFA A = (Q,%, 4, s, f) for an infiz-free regular lan-
guage L(A), we can determine primality of L(A) in O(m?®) worst-case time and
compute a prime decomposition of L(A) in O(m?®) worst-case time, where m is the
number of states in A.
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Proof. Since there can be at most m candidate bridge states CBS after DFS
and it takes O(m?) time for each candidate state to determine whether or not
L(A;) and L{A2) are infix-free, the total running time for determining primality
of L(A) is O(m) x O(m?) = O(m?®) in the worst-case. If a state b; € CBS is not
a bridge state, then we remove b; from CBS since it can never be a bridge state
by Lemma 6. Furthermore, once we find a bridge state b;, then we partition A
into A1 and Ay at b; and repeat the procedure for L(A1) and L(As), respectively,
using the remaining candidate states in C'BS. Since each candidate state in CBS
can contribute a decomposition at most once, it takes O(m?) worst-case time to
compute an infix-free decomposition for L(A). O

Note that a bridge state b; € CBS of a minimal DFA A can turn out not to
be a bridge state after a decomposition at some other bridge state b; of A. Fig. 7
illustrates this situation.

C
O @QQ@ =0
C

et OOy D0

Figure 7: States b1 and by are bridge states for a given minimal DFA A. However,
once we decompose A at bg, then b; is no longer a bridge state anymore in Aj.
Similarly, if we decompose A at by, then b is not a bridge state in As.

Czyzowicz et al. [5] demonstrated that the prime prefix-free decomposition for
a prefix-free regular language is unique. However, it turns out that the prime infix-
free decomposition for an infix-free regular language is not unique. Example 1 gives
an example of non-uniqueness.

Example 1 The following is an example of non-uniqueness for the infiz-free de-

composition.
Li(a(beb + c)) - La(a).
L{a(bch + c)a) = { L;(Z) -CLg((icb . i)Z).

The language L is infix-free but not prime and it has two different prime decom-
positions, where L1, Lo and L3 are prime infix-free languages.

5. Conclusions

We have investigated infix-free regular languages and their prime decomposition.
We have designed algorithms to determine whether or not a given regular language L
is infix-free based on state-pair graphs, where L is either specified by an NFA or
given by a regular expression. It turns out that state-pair graphs are an appropriate
tool for the decision problems of various codes in regular languages. Furthermore,
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we have provided an algorithm to determine the primality for a given minimal DFA
of an infix-free regular language and compute a prime infix-free decomposition in
O(m3) time, where m is the number of states in the minimal DFA. In addition, we
have shown that the prime infix-free decomposition is not unique.

We conclude this paper by mentioning two interesting open problems in the
literature.

1. Is it decidable whether or not a given context-free language is p-infix-free [13]?

2. Is it NP-complete to determine whether or not a given (finite) language has
a decomposition [16]7
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