
Inferring a Relax NG Schema from XML
Documents

Guen-Hae Kim, Sang-Ki Ko, and Yo-Sub Han(B)

Department of Computer Science, Yonsei University, 50, Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea
{guenhaekim,narame7,emmous}@cs.yonsei.ac.kr

Abstract. An XML schema specifies the structural properties of XML
documents generated from the schema and, thus, is useful to manage
XML data efficiently. However, there are often XML documents without
a valid schema or with an incorrect schema in practice. This leads us to
study the problem of inferring a Relax NG schema from a set of XML
documents that are presumably generated from a specific XML schema.
Relax NG is an XML schema language developed for the next generation
of XML schema languages such as document type definitions (DTDs)
and XML Schema Definitions (XSDs). Regular hedge grammars accept
regular tree languages and the design of Relax NG is closely related
with regular hedge grammars. We develop an XML schema inference
system using hedge grammars. We employ a genetic algorithm and state
elimination heuristics in the process of retrieving a concise Relax NG
schema. We present experimental results using real-world benchmark.

Keywords: XML schema inference · Regular hedge grammar · Relax
NG · Genetic algorithm

1 Introduction

Most information in the real-world has structured with linear ordering and hier-
archies. Structural information is often represented in XML (Extensible Markup
Language) format, which is both human-readable and machine-readable. An
XML schema describes properties and constraints about XML documents. We
can manipulate XML data efficiently if we know the corresponding XML schema
for the input XML data [11,16,20]. Many researchers demonstrated several
advantages when the corresponding XML schema exists [14,21].

All valid XML documents should conform to a DTD or a XML schema. How-
ever, in practice, we may not have a valid schema or have an incorrect schema
or have an incorrect schema for an input XML data [2,17]. For these reasons,
there were several attempts to infer a valid XML schema from a given XML
data [3–5]. Bex et al. [3,4] presented an idea for learning deterministic regular
expressions for inferring document type definitions (DTDs) concisely from XML
documents. Bex et al. [5] designed an algorithm for inferring XML Schema Def-
initions (XSDs), which are more powerful than DTDs, from XML documents.
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 400–411, 2016.
DOI: 10.1007/978-3-319-30000-9 31

Inferring a Relax NG Schema from XML Documents 401

We consider a schema language called Relax NG, which is more powerful than
both DTDs and XSDs [19]—due to its expressive power, researchers proposed
several applications based on Relax NG schema language [1,15]. League and
Eng [15] proposed a compression technique of XML data with a Relax NG
schema and showed its effectiveness, especially, for highly tagged and nested
data.

We study the problem of inferring a concise Relax NG schema from XML
documents based on the genetic algorithm approach. Note that a XML document
can be described as an ordered tree. Then a Relax NG schema is a regular tree
language. Therefore, we use normalized regular hedge grammars (NRHGs) [18]
as theoretical tools for representing Relax NG schema since NRHGs exactly
captures the class of regular tree languages. We employ a genetic algorithm
for learning NRHGs from a set of trees and design a conversion algorithm for
obtaining a concise Relax NG schema from NRHGs.

The main idea of inferring a Relax NG schema consists of the following three
steps:

1. construct an initial NRHG that only generates all positive instances,
2. reduce the size of the NRHG using genetic algorithm while considering all

negative examples, and
3. convert the obtained NRHG into a concise Relax NG schema with the help

of state elimination algorithm and variable dependency computation.

We present experimental results with three benchmark schemas and show the
preciseness and conciseness of our approach. Our Relax NG inference system suc-
cessfully infers three benchmark schemas with instances randomly generated by
a Java library called xmlgen. We measure the accuracy of our inference algorithm
by validating XML documents generated from the original schema against the
inferred schema. The inferred schema accepts about 90 % of positive examples
and rejects about 80 % of negative examples.

We give some basic notations and definitions in Sect. 2, and present a tech-
nique for inferring an NRHG from a set of positive examples in Sect. 3. In Sect. 4,
we present a conversion algorithm that converts an NRHG into a Relax NG
schema. Experimental results are presented in Sect. 5.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet Σ
including the empty string λ. The size |Σ| of Σ is the number of characters in
Σ. For a string w ∈ Σ∗, we denote the length of w by |w| and the ith character
of w by wi. A language over Σ is any subset of Σ∗.

Let t be a tree, tn be the number of nodes in t and te be the number of edges
in t. We define the size |t| of a tree t to be tn + te, which is the number of nodes
and edges in t. The root node of t is denoted by troot. Let v be a node of a tree.
Then, we denote the parent node of v by vparent, the left sibling of v by vsibling,
and the ith child of v by v[i]. We also denote the number of children of the node
v by |vchild| and the label of a node v by label(v).

402 G.-H. Kim et al.

A regular expression over Σ is ∅, λ, or a ∈ Σ, or is obtained by applying the
following rules finitely many times. For two regular expressions R1 and R2, the
union R1 + R2, the catenation R1 · R2, and the star R∗

1 are regular expressions.
A nondeterministic finite-state automaton (NFA) A is specified by a

tuple (Q,Σ, δ, s, F), where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q is a multi-valued transition function, s ∈ Q is the initial state
and F ⊆ Q is a set of final states. The transition function δ can be extended
to a function Q × Σ∗ → 2Q that reflects sequences of inputs. A string w over
Σ is accepted by A if there is a labeled path from s to a state in F such that
this path spells out the string w; namely, δ(s, w) ∩ F �= ∅. The language L(A)
recognized by A is the set of all strings that are spelled out by paths from s to
a final state in F : L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

A normalized regular hedge grammar (NRHG) G is specified by a quintu-
ple (Σ,VT , VF , P, s), where Σ is an alphabet, VT is a finite set of tree variables,
VF is a finite set of forest variables, s ∈ VT is the starting symbol, and P is a
set of production rules, each of which takes one of the following four forms:

(a) vt → x, where vt is a tree variable in VT , and x is a terminal in Σ,
(b) vt → x〈vf 〉, where vt is a tree variable in VT , x is a terminal in Σ and vf is

a forest variable in VF ,
(c) vf → vt, where vf is a forest variable and vt is a tree variable,
(d) vf → vtv

′
f , where vf and v′

f are forest variables and vt is a tree variable.

We consider a derivation of NRHGs. Given a sequence of variables, we repeat-
edly replace variables with productions on the right-hand side.

1. for a production rule vt → x, a node labeled by x ∈ Σ is derived from the
tree variable vt,

2. for a production rule vt → x〈vf 〉, a tree with a root node labeled by x and
its child node vf is derived from vt,

3. for a production rule vf → vt, a node vt is derived from vf , and
4. for a production vf → vtv

′
f , a sequence of nodes vt and v′

f is derived from vf .

The language generated by G is the set of trees derived from s. Given an
NRHG G = (Σ,VT , VF , P, s), the size |G| of G to be |VT |+ |VF |+ |P |. Note that
the NRHGs generate regular tree languages of unranked trees. Thus an NRHG
can be converted into an unranked tree automaton and vice versa [6].

For more knowledge in automata and formal language theory, the reader may
refer to the textbooks [12,22].

3 Inference of an NRHG from Trees

A XML document is useful to store a structured information and, often, repre-
sented as a labeled and ordered tree. Given a set of positive examples (trees)
and a set of negative examples, we aim at learning an NRHG that generates all
positive examples and does not generate all negative examples.

Inferring a Relax NG Schema from XML Documents 403

Let T be a given set of examples, T+ ⊆ T denote the set of positive examples
and T− ⊆ T be a set of negative examples. First, we construct primitive NRHGs
from positive examples; For each tree t ∈ T+, we construct an NRHG Gt that
only accepts the tree t. Namely, L(Gt) = {t}. Then, we take the union of all
primitive NRHGs and construct an NRHG GT+ that only accepts all positive
examples, that is,

L(GT+) =
⋃

t∈T+

L(Gt).

We reduce the size of the resulting NRHG by merging variables using a genetic
algorithm. Note that the problem of minimizing the NRHG is at least as hard as
any PSPACE-complete problem as the problem of minimizing NFAs is PSPACE-
complete [13]. Therefore, we rely on the genetic algorithm approach to reduce
the size of very large primitive NRHGs as much as possible.

3.1 Primitive NRHG Construction

We present a linear-time algorithm for constructing a primitive NRHG that only
accepts a given tree t. Our algorithm runs recursively from the root node of t to
the leaf nodes.

For each node of t, we recursively construct an NRHG according to the
number of children of t. If a node v labeled by x has no child, then we create
a production rule T → x. If a node v labeled by x has more than one child,
then we create a production rule T → x〈F 〉. Then, we make a forest variable F
to generate the sequence of subtrees of v. Let us assume that v has n subtrees
from t1 to tn and a tree variable Ti generates a subtree ti. Then, by creating
the following variables and production rules, we let F generate the sequence of
subtrees: F → T1F1, F1 → T2F2, · · · Fn−2 → Tn−1Fn−1, Fn−1 → Tn. Since
each node in t is represented by a tree variable, each edge in t is represented
by a forest variable and left side of each production rule is a tree variable or a
forest variable, |VT | = tn, |VF | = te and |P | = |t| = tn + te. Therefore, it is easy
to verify that the algorithm produces an NRHG G = (Σ,VT , VF , P, s) in O(|t|)
time such that L(G) = t, where |VT | = tn, |VF | = te, and |P | = |t|.

Suppose that we have n positive examples from t1 to tn. We first construct
n primitive NRHGs called G1 to Gn, where L(Gi) = {ti}, 1 ≤ i ≤ n. From the n
primitive NRHGs, we take the union of the NRHGs and obtain a single NRHG
G such that L(G) = ∪n

i=1Gi. Let Gi = (Σi, VTi
, VFi

, Pi, si) be an NRHG that
accepts ti. Then, we construct a new NRHG G = (Σ,VT , VF , P, s) that accepts
all instances as follows :

Σ =
n⋃

i=1

Σi, VT =
n⋃

i=1

VTi
, VF =

n⋃

i=1

VFi
, and P =

n⋃

i=1

Pi.

Namely, L(G) = {t1, t2, . . . , tn}. Then, we merge all occurrences of starting
symbols from s1 to sn and denote the merge symbol by s.

404 G.-H. Kim et al.

3.2 Grammar Optimization by Merging Indistinguishable Variables

Now we have an NRHG G = (Σ,VT , VF , P, s) that only generates all positive
examples. Since we aim at retrieving a concise Relax NG schema, we need to
reduce the size of G as much as possible. As a first step, we find redundant
structures from G by identifying indistinguishable variables. Given a variable v,
which is either in VT or VF , we define RS(v) to be the set of variables that appear
in the right-hand side of production rules, where v appears in the left-hand side.
Similarly, we define LS(v) to be the set of variables that appear in the left-hand
side of production rules,where v appears in the right-hand side.

RS(v) =

{
{x | v → x ∈ P} ∪ {(x, vf) | v → x〈vf 〉 ∈ P}, if v ∈ VT ,

{vt | v → vt ∈ P} ∪ {(vt, vf) | v → vtvf ∈ P}, if v ∈ VF .

We say that two variables v1 and v2, where v1, v2 ∈ VT or v1, v2 ∈ VF are
right-indistinguishable if and only if RS(v1) = RS(v2). It is easy to see that we
do not change the language of G if we replace the occurrences of v1 and v2 with
a new variable v′ since two variables generate exactly the same structures.

LS(v) =

{
{vf | vf → v ∈ P} ∪ {(vf1 , vf2) | vf1 → vvf2 ∈ P}, if v ∈ VT ,

{(vt, x) | vt → x〈v〉 ∈ P}, if v ∈ VF .

We also define two variables v1 and v2 to be left-indistinguishable if and only
if LS(v1) = LS(v2). We say that two variables v1 and v2 are indistinguishable if
they are right-indistinguishable or left-indistinguishable. Here we show that the
language of the resulting NRHG does not change when we merge indistinguish-
able variables into a single variable.

Theorem 1. Given two indistinguishable variables v1 and v2 of an NRHG G =
(Σ,VT , VF , P, s), let G′ be a new NRHG where all indistinguishable variables are
merged according to indistinguishable classes of G. Then, L(G) = L(G′).

We repeat the merging process until there is no pair of indistinguishable
variables in the NRHG. Empirically, we have obtained about 80 % size reduc-
tion by merging indistinguishable variables in primitive NRHGs. We show the
experimental evidence in Sect. 5.

3.3 Genetic Algorithm

We now have a primitive NRHG from a set of positive examples without any
indistinguishable variables. Next, we need to make it as small as possible while
considering a set of negative examples. Recall that our main goal is to compute
a concise NRHG that generates all positive examples and does not generate all
negative examples.

We employ a genetic algorithm (GA), which involves an evolutionary process,
to find a small NRHG from a given primitive NRHG. In a genetic algorithm,
we first make a population of candidate solutions called individuals and make

Inferring a Relax NG Schema from XML Documents 405

it evolve to the population of better solutions by the help of genetic operators
such as structural crossover and structural mutation.

We explain how these genetic operators work in our schema inference algo-
rithm. We assume that every individual in the first population is indeed an
NRHG with seven variables and thus encoded as a string of length 7.

– structural crossover: In the population, we randomly select two encoded indi-
viduals p1 and p2 as parents. We use p1 = 1324133 and p2 = 2234144 as a
running example for explaining our approach.

p1 = 1324133 and p2 = 2234144.

These strings encode two partitions πp1 and πp2 as follows:

πp1 : {1, 5}, {3}, {2, 6, 7}, {4} and πp2 : {5}, {1, 2}, {3}, {4, 6, 7}.

Namely, the ith number of p1 implies the index of the block where the ith
variable of p1 belongs. For example, the third number of p1 is 2, and therefore,
the variable 3 belongs to the second block #2 of πp1 . Now we randomly select
two blocks, say #2 and #4. The #2 block is copied from p1 to p2 by taking
the union of #2 blocks in p1 and p2 and #2 block to be moved from p1, and
#4 block is copied from p2 to p1 in the same way. We obtain the following
results:

πp′
1

: {1, 5}, {3}, {2}, {4, 6, 7} πp′
2

: {5}, {1, 2}, ∅, {3, 4, 6, 7}
In this way, the number of blocks of each partition can diminish by merging
randomly selected blocks.

– structural mutation: We randomly select an individual p = 1324133 and
replace a character in the string by some random number. For example, if we
replace the second character by 4, then the following offspring is produced:

πp′ : {1, 5}, {3}, {2, 6, 7}, {2, 4}.

We employ the GA approach for inferring a concise NRHG from a set of
positive examples and a set of negative examples as follows:

1. Initialize the population of candidate solutions. Here we set the population
size to, 1000. The initial candidate solutions are the primitive NRHGs reduced
by merging indistinguishable variables.

2. Select some pairs of individuals according to the crossover rate (0.4) and
construct new pairs of individuals by applying the crossover operator to the
selected pairs.

3. Select some individuals according to the mutation rate (0.03) and modify the
selected individuals by applying the mutation operator.

4. Calculate a fitness value f(p) for each individual p by the fitness function.
Let p be an individual encoding for an NRHG G = (Σ,VT , VF , P, s). Then,
the fitness value f(p) of p is defined as follows:

f(p) =

⎧
⎨

⎩

1
|VF | + |VT | +

1
|P | +

|{w ∈ U+ | w ∈ L(G)}|
|U+| , if U− ∩ L(G) = ∅,

0 otherwise.

406 G.-H. Kim et al.

where U+ is the set of positive examples and U− is the set of negative
examples.

5. Generate a next generation by roulette-wheel selection from the current pop-
ulation of solutions. Note that we retain the individuals from the best 10 %
of the current population unchanged in the next generation and select only
the remaining 90 % by roulette-wheel selection.

6. Iterate 1–5 steps until the fitness value of the best individual reaches the given
threshold.

4 Converting NRHG into Relax NG Schema

Here we present a conversion algorithm from an NRHG into a corresponding
Relax NG schema. A Relax NG schema uses references to named pattern using
the define elements. Now tree or forest variables in NRHGs can be directly
converted into the define elements for being used as references.

4.1 Horizontal NFA Construction

Given an NRHG G = (Σ,VT , VF , P, s), let us consider the starting symbol s.
Without loss of generality, we assume that there is a production rule s → x〈vf 〉 ∈
P , where x ∈ Σ and vf ∈ VF . Then, we convert s into the corresponding define
element in the resulting Relax NG schema. Now it remains to convert the forest
variable vf into the corresponding element in the schema.

We construct an NFA that accepts all possible sequences of tree variables that
can be generated by vf . We call this procedure the horizontal NFA construction
for vf . For each forest variable vf ∈ VF , where vt → x〈vf 〉 ∈ P , we construct a
horizontal NFA Avf

= (Q,Σ, δ, q0, qf) as follows:

1. Q = VF ∪ {qf} is a finite set of states,
2. Σ = VT is an input alphabet,
3. q0 = vf is the initial state, and
4. the transition function δ is defined as follows:

(a) q′ ∈ δ(q, vt) for each q → vtq
′ ∈ P , and

(b) qf ∈ δ(q, vt) for each q → vt ∈ P .

For example, Fig. 1 shows how we construct horizontal NFAs from a sim-
ple NRHG. From the first two production rules, we know that F0 generates
a sequences of sub-elements of records and F1 generates a sequences of sub-
elements of car. Therefore, we generate two horizontal NFAs AF0 and AF1 with
the initial states are F0 and F1, respectively.

4.2 State Elimination for Obtaining Regular Expressions

Recall that a Relax NG schema can specify a regular tree language when we
consider the tree structures of XML documents captured by the schema. When a
Relax NG schema describes a set of possible sequences of trees, we use several
elements such as choice, group, zeroOrMore, and so on.

Inferring a Relax NG Schema from XML Documents 407

F0

F1

f

F2

T1

T1

T2

T3

T0 → records〈F0〉, T1 → car〈F1〉,
F1 → T2F2,

F0 → T1, F2 → T3,

F0 → T1F0,

T2 → countryT3 → record,

NFA AF0

NFA AF1

Fig. 1. Since two forest variables F0 and F1 are used for generating sequences of sub-
elements of records and car, respectively, we construct two horizontal NFAs AF0 and
AF1 . Note that the final states of AF0 and AF1 are merged into a single final state f .

The choice element implies that one of the sub-elements inside the element
can be chosen. Therefore, we can say that the role of the choice element in Relax
NG corresponds to the role of the union operator in regular expression. Similarly,
the group element implies that the sub-elements inside the element should appear
in exactly the same order. Thus, the group element corresponds to the catenation
operator in regular expression. For this reason, we need to convert the obtained
horizontal NFAs into the corresponding regular expressions since regular expres-
sions are described in a very similar manner with the Relax NG schema.

State elimination is an intuitive algorithm that computes a regular expression
from a finite-state automaton (FA) [9]. There are several heuristics of state
elimination for obtaining shorter regular expressions from FAs [7–10]. Delgado
et al. [7] observed that an order in eliminating states is crucial for obtaining a
shorter regular expression. They defined the weight of a state to be the size of
new transition labels that are created as a result of eliminating the state. We
borrow their idea and define the weight of a state q in an FA A = (Q,Σ, δ, s, F)
as follows:

IN∑

i=1

(Win(i) × OUT) +
OUT∑

i=1

(Wout(i) × IN) + Wloop × (IN × OUT),

where IN is the number of in-transitions excluding self-loops, OUT is the number
of out-transitions excluding self-loops, Win(i) is the size of the transition label
on the ith in-transition, Wout(i) is the size of the transition label on the ith
out-transition, and Wloop is the size of the self-loop label. After calculating the
weights of all states, we eliminate the state with the smallest weight and calculate
the state weights again. We repeat this procedure until there are only the initial
state and the single final state.

4.3 Schema Refinement

Now we have regular expressions for forest variables of an NRHG and are ready
to convert these regular expressions into the form of Relax NG schema. We also
use several additional techniques for converting an NRHG into a Relax NG
schema.

408 G.-H. Kim et al.

– Replacing zeroOrMore elements by oneOrMore elements: The zeroOrMore ele-
ment is used when there is optionally a repetition of a certain pattern like the
Kleene star ∗ operator in regular expression. For example, a regular expres-
sion a∗ can be converted using a zeroOrMore element and an element named
a inside the zeroOrMore element. In some cases such as a∗ · a or a · a∗, we
can describe the pattern using the Kleene plus operator a+. Since Relax NG
schema supports the oneOrMore element that corresponds to the Kleene plus
in regular expression, we can make the resulting schema smaller in some cases.

– Checking the dependency of forest variables: Consider two forest variables v1
and v2, where v2 can be derived from v1, but v1 cannot be derived from v2. If
we construct regular expressions for two forest variables, then there should be
some redundancy in two regular expression since the pattern described for v2
is already contained in the pattern described for v1. Therefore, we can write
the pattern for v2 by just referring to the pattern for v1 instead of writing two
redundant patterns.

5 Experimental Results

We conduct experiments for inferring a Relax NG schema from a given XML
data. For the experiments, we use a Java library xmlgen developed as a part
of Sun Multi-Schema XML Validator1 from randomly generating positive and
negative XML instances for an input Relax NG schema.

5.1 Experimental Setup

We use three benchmark Relax NG schemas—XENC, XML-DSig, IBTWSH—to
evaluate the performance of our Relax NG inference algorithm.

We aim at inferring only the relationship between elements from XML data.
Therefore, we ignore the descriptions for attributes of XML data from benchmark
schemas. Moreover, we manually replace the elements defined by the anyName
name by the elements with the name anyName since otherwise randomly gener-
ated instances may have too many elements with arbitrary names. We also limit
the maximum number of appearing sub-elements in the zeroOrMore elements to
2 since otherwise we may have very large XML instances compare to the size of
input schema.

5.2 Size Reduction of NRHGs by Optimization

We show that the optimization process helps to reduce the size of primitive
NRHGs generated by positive instances.

Table 1 exhibits that the optimization process reduce 84.15 %, 82.13 %,
77.04 % of redundancy from the primitive NRHGs constructed from the pos-
itive instances of XENC, XML-DSig and IBTWSH, respectively. Note that the
optimization process contributes to the speedup of the genetic process as the
size of initial population also decreases substantially.
1 The Oracle Multi-Schema XML Validator (MSV). https://msv.java.net/.

https://msv.java.net/

Inferring a Relax NG Schema from XML Documents 409

Table 1. The compression ratio ([size of NRHG before optimization]/[size of NRHG
before optimization]) achieved by merging indistinguishable variables from primitive
NRHGs.

Benchmark schema XENC XML-DSig IBTWSH

Before After Before After Before After

of tree variables 755.17 123.67 1048.73 123.20 1222.86 162.57

of forest variables 705.17 187.17 998.73 176.93 1122.86 208.29

of production rules 1460.33 359.83 2047.47 349.13 2345.71 467.29

Average size of NRHG 4094.93 649.27 4691.43 838.14 2920.67 670.67

Compression ratio (%) 15.85 17.87 22.96

5.3 Precision of Inferred Schema

For three benchmark schemas, we generate 50 positive instances and 25 negative
instances by xmlgen. Note that we set the error rate to 1/100 when generat-
ing negative instances. Then we run our inference algorithm to infer Relax NG
schemas for the instances. We repeat the process 100 times and calculate the
average value.

We evaluate the precision of our inference system in two directions. First,
we validate the inferred schema against 1,000 positive instances generated from
the original benchmark schema. Second, we validate the inferred schema against
1,000 negative instances generated from the original benchmark schema. We
expect that the inferred schema should generate the positive instances and
not generate the negative instances if they are inferred closely to the original
schemas.

Table 2. The precision of our Relax NG schema inference system

Benchmark schema XENC XML-DSig IBTWSH IBTWSH

(50/25) (100/50)

Precision for positive instances (%) 91.98 93.50 46.05 96.87

Precision for negative instances (%) 82.43 83.85 83.45 74.67

Table 2 shows the precision of our inference algorithm. Note that the fourth
column shows the results for the benchmark IBTWSH with 100 positive and 50
negative instances. Speaking of the first two results, precisions for positive and
negative instances are very similar. The inferred schemas generate more than
90 % of positive instances of the original schemas and do not generate more than
80 % of negative instances. The performance is good considering that we infer
schemas with only a small number of instances.

For the benchmark IBTWSH, only 46.05 % of positive instances can be gener-
ated by the inferred schema. The inference precision improves significantly when

410 G.-H. Kim et al.

we double the number of instances to 100 positive and 50 negative instances.
We suspect that the reason why the precision for the benchmark IBTWSH is
especially low is because IBTWSH schema has several interleave elements that
allow the sub-elements to occur in any order. Since our inference system does not
support the inference of interleave elements, it seems more difficult to infer
schemas with interleave elements.

6 Conclusions

XML schemas are formal languages that describe structures and constraints
about XML instances. They are crucial to maintain and manipulate XML doc-
uments efficiently—an XML document should conform a specific XML schema.
However, in practice, we may not have a valid schema or have an incorrect
schema. This has led many researchers to design an efficient schema inference
algorithm.

We have presented an Relax NG schema—one of the most powerful XML
schema languages—inference algorithm based on 1) a genetic algorithm for learn-
ing process and 2) state elimination heuristics for retrieving a concise Relax NG
schema. We have implemented the proposed algorithm and measured the pre-
ciseness and conciseness of the algorithm using well-know benchmark schemas.
Our experiments have showed that the proposed algorithm has 90 % precise-
ness for accepting positive examples and 80 % preciseness for rejecting negative
examples. In future, we plan to consider other learning approaches for better
performance and more Relax NG specifications such as interleave.

References

1. Athan, T., Boley, H.: Design and implementation of highly modular schemas for
XML: customization of RuleML in relax NG. In: Palmirani, M. (ed.) RuleML -
America 2011. LNCS, vol. 7018, pp. 17–32. Springer, Heidelberg (2011)

2. Barbosa, D., Mignet, L., Veltri, P.: Studying the XML web: gathering statistics
from an XML sample. World Wide Web 8(4), 413–438 (2005)

3. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. ACM Trans. Web 4(4),
14 (2010)

4. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: Proceedings of the 32nd International Conference on Very Large
Data Bases, pp. 115–126. VLDB Endowment (2006)

5. Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from
XML data. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, pp. 998–1009. VLDB Endowment (2007)

6. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree
Automata Techniques and Applications (2007). http://www.tata.gforge.inria.fr

7. Delgado, M., Morais, J.J.: Approximation to the smallest regular expression for
a given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S.
(eds.) CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005)

http://www.tata.gforge.inria.fr

Inferring a Relax NG Schema from XML Documents 411

8. Gruber, H., Holzer, M.: Provably shorter regular expressions from deterministic
finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
383–395. Springer, Heidelberg (2008)

9. Han, Y.S.: State elimination heuristics for short regular expressions. Fundam. Inf.
128(4), 445–462 (2013)

10. Han, Y.S., Wood, D.: Obtaining shorter regular expressions from finite-state
automata. Theor. Comput. Sci. 370(1), 110–120 (2007)

11. He, B., Tao, T., Chang, K.C.-C.: Clustering structured web sources: a schema-
based, model-differentiation approach. In: Lindner, W., Fischer, F., Türker, C.,
Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 536–546.
Springer, Heidelberg (2004)

12. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston (1979)

13. Jiang, T., Ravikumar, B.: Minimal nfa problems are hard. SIAM J. Comput. 22(6),
1117–1141 (1993)

14. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling
of event processors and buffer minimization for queries on structured data streams.
In: Proceedings of the 30th International Conference on Very Large Data Bases,
pp. 228–239. VLDB Endowment (2004)

15. League, C., Eng, K.: Schema-based compression of XML data with RELAX NG.
J. Comput. 2(10), 9–17 (2007)

16. Löser, A., Siberski, W., Wolpers, M., Nejdl, W.: Information integration in schema-
based peer-to-peer networks. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS,
vol. 2681, pp. 258–272. Springer, Heidelberg (2003)

17. Mignet, L., Barbosa, D., Veltri, P.: The XML web: a first study. In: Proceedings
of the 12th International Conference on World Wide Web, pp. 500–510 (2003)

18. Murata, M.: Hedge automata: a formal model for XML schemata (1999)
19. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.

16(6), 973–989 (1987)
20. Shvaiko, P.: A classification of schema-based matching approaches (2004)
21. Wang, G., Liu, M., Yu, G., Sun, B., Yu, G., Lv, J., Lu, H.: Effective schema-

based XML query optimization techniques. In: Proceedings of the 7th International
Symposium on Database Engineering and Applications, pp. 230–235 (2003)

22. Wood, D.: Theory of Computation. Harper & Row, New York (1987)

	Inferring a Relax NG Schema from XML Documents
	1 Introduction
	2 Preliminaries
	3 Inference of an NRHG from Trees
	3.1 Primitive NRHG Construction
	3.2 Grammar Optimization by Merging Indistinguishable Variables
	3.3 Genetic Algorithm

	4 Converting NRHG into Relax NG Schema
	4.1 Horizontal NFA Construction
	4.2 State Elimination for Obtaining Regular Expressions
	4.3 Schema Refinement

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Size Reduction of NRHGs by Optimization
	5.3 Precision of Inferred Schema

	6 Conclusions
	References

