
Pseudo-inversion: closure properties and decidability

Da-Jung Cho1 • Yo-Sub Han1 • Shin-Dong Kang1 • Hwee Kim1
• Sang-Ki Ko1 •

Kai Salomaa2

Published online: 19 May 2015

� Springer Science+Business Media Dordrecht 2015

Abstract We consider a pseudo-inversion operation in-

spired by biological events, such as DNA sequence trans-

formations, where only parts of a string are reversed. We

define the pseudo-inversion of a string w ¼ uxv to be the

set of all strings vRxuR, where uv 6¼ k and consider the

operation from a formal language theoretic viewpoint. We

show that regular languages are closed under the pseudo-

inversion operation whereas context-free languages are not.

Furthermore, we study the iterated pseudo-inversion op-

eration and show that the iterated pseudo-inversion of a

context-free language is recognized by a nondeterministic

reversal-bounded multicounter machine. Finally, we in-

troduce the notion of pseudo-inversion-freeness and

examine closure properties and decidability problems for

regular and context-free languages. We demonstrate that

pseudo-inversion-freeness is decidable in polynomial time

for regular languages and undecidable for context-free

languages.

Keywords Pseudo-inversion � Bio-inspired operation �
Closure properties � Decidability � Formal languages �
Reversal-bounded multicounter machines

1 Introduction

There have been many studies that relate biological phe-

nomena and formal languages (Deaton et al. 1996; Garzon

et al. 1998). Several researchers investigated the algebraic

and code-theoretic properties of DNA encoding based on

formal language theory (Hussini et al. 2003; Jonoska et al.

2008, 2005; Kari and Mahalingam 2006). For instance,

Jonoska et al. (2008) introduced involution codes based on

the Watson-Crick complementarity, and Kari and Ma-

halingam (2006) investigated the algebraic properties of

DNA languages that avoid intermolecular cross hy-

bridization. Kari et al. (2006) also studied the DNA hair-

pin-free structure with respect to algebraic and decision

properties.

A DNA sequence undergoes various transformations

from the primitive sequence through several biological

operations such as insertions, deletions, substitutions, in-

versions, translocations and duplications. This motivates

researchers to investigate the genetic operations for tracing

the evolution process on a DNA sequence (Cantone et al.

2013; Cho et al. 2015a, 2015b; Daley et al. 2003, 2004;

Dassow et al. 2002; Ibarra 2014; Schöniger and Waterman

1992; Yokomori and Kobayashi 1995. For the DNA

A preliminary version appeared in Proceedings of Unconventional

Computation & Natural Computation 2014, UCNC 2014, LNCS,

vol. 8553, Springer-Verlag, 2014, pp. 93–104.

& Yo-Sub Han

emmous@cs.yonsei.ac.kr

Da-Jung Cho

dajung@cs.yonsei.ac.kr

Shin-Dong Kang

shindong1992@cs.yonsei.ac.kr

Hwee Kim

kimhwee@cs.yonsei.ac.kr

Sang-Ki Ko

narame7@cs.yonsei.ac.kr

Kai Salomaa

ksalomaa@cs.queensu.ca

1 Department of Computer Science, Yonsei University, 50,

Yonsei-Ro, Seodaemun-Gu, Seoul 120–749,

Republic of Korea

2 School of Computing, Queen’s University, Kingston,

ON K7L 3N6, Canada

123

Nat Comput (2016) 15:31–39

DOI 10.1007/s11047-015-9502-9

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9502-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9502-9&domain=pdf

evolutionary analysis, an inversion—an operation to re-

verse an infix (substring) of a sequence—is one of the well-

studied operations in both DNA computing and formal

language theory. Yokomori and Kobayashi (1995) showed

that the inversion can be simulated by a set of primitive

operations and languages using GSM mapping. Dassow

et al. (2002) observed that regular and context-free lan-

guages are closed under the inversion. They also proved

that regular and context-free languages are not closed un-

der the iterated inversion. Daley et al. (2003, 2004) in-

vestigated the closure and decidability properties of some

language classes with respect to biological operations in-

cluding the hairpin-inversion, which is an extended variant

of the inversion. Recently, Ibarra (2014) established the

closure and decidability properties of some classes of

languages under hairpin-inversion, pseudo-inversion and

other bio-operations using reversal-bounded counters. Re-

searchers also considered the inversion in the string

matching problems; namely an inversion occurs in a pat-

tern or in an input text (Cantone et al. 2013; Schöniger and

Waterman 1992).

We introduce a new operation called a pseudo-inversion

operation. While the inversion operation reverses an infix

of an input sequence, the pseudo-inversion operation re-

verses only the outermost parts of the sequence and the

middle part of the sequence is not reversed. We notice that

there are two possible situations where a pseudo-inversion

occurs in practice. See Fig. 1 for an example.

(i) The first case is—an inversion operation itself is a

mutational process—that the inversion process may

not be completed in the sense that the sequence of

the central part is not fully reversed in the process.

(ii) The second case is that an inversion is carried out

once and the central part of the reversed part is

reversed once again; this makes the sequence of the

central part, where the inversion occurs twice, the

same as the original sequence.

The operation leads us to investigate the problem of de-

termining whether or not, given two strings of the same

length, one string is a pseudo-inversion of the other string.

We tackle the problem and obtain a linear-time algorithm.

We also introduce an iterated pseudo-inversion op-

eration based on the pseudo-inversion. We establish some

closure properties of the pseudo-inversion and the iterated

pseudo-inversion on regular languages and context-free

languages. Moreover, we demonstrate that the iterated

pseudo-inversion of a context-free language is recognized

by a nondeterministic reversal-bounded multicounter ma-

chine. Furthermore, we investigate various decision prob-

lems for the operations. In particular, we study the question

whether a given language L is pseudo-inversion-free, that

is, no string of L contains a pseudo-inversion of another

string of L as a substring. Analogous properties have been

studied in the theory of codes (Jürgensen and Konstan-

tinidis 1997) and pseudo-inversion-free languages have

potential applications in DNA encoding.

We give definitions and notations in Sect. 2. We define

the pseudo-inversion and the iterated pseudo-inversion, and

establish some closure properties in Sect. 3. Then, we

consider the decision problems—whether or not a given

language is pseudo-inversion-free—and the closure prop-

erties of pseudo-inversion-free languages in Sect. 4 and

conclude the paper in Sect. 5.

2 Preliminaries

We briefly present definitions and notations. Let N be the

set of positive integers and N0 be the set of non-negative

integers. Let S be a set and k be a positive integer. We use

½S�k to denote the set of all k-tuples ðs1; s2; . . .; skÞ, where
si 2 S. Let R be a finite alphabet and R� be the set of all

strings over R. A language over R is any subset of R�. The

symbol ; denotes the empty language, the symbol k de-

notes the empty string and Rþ denotes R� n fkg. Given a

string w, we denote the reversal of w by wR. Let jwj be the
length of w. For each a 2 R, we denote the number of

occurrences of a in w by jwja. Given a language L 2 R�, �L

denotes the complement of L; �L ¼ R� n L. Given an

(a) first case (b) second case

incomplete
inversion

complete
inversion

partial
inversion

Fig. 1 An example of two possible situations where a pseudo-

inversion occurs in practice. a describes the pseudo-inversion that

occurs as a consequence of incomplete inversion. Note that the middle

part is not reversed. b shows the pseudo-inversion resulted from two

inversions, where the first inversion occurs for the whole sequence

and the second inversion occurs in the middle part. Compared with

the original sequence in both cases, the middle part of the resulting

sequence is not reversed

32 D.-J. Cho et al.

123

Author's personal copy

alphabet R ¼ fa1; a2; . . .; akg, let W : R� ! ½N0�k be a

mapping defined by WðwÞ ¼ ðjwja1 ; jwja2 ; . . .; jwjakÞ. This
function is called the Parikh mapping and WðwÞ is called
the Parikh vector of w. We denote the symbol of the

string w at position i by w½i� and the sub-

string w½i�w½iþ 1� � � �w½j� of w by w½i � � � j�, where

1� i� j� jwj. We say that languages L1 and L2 are letter-

equivalent if fWðwÞ j w 2 L1g ¼ fWðwÞ j w 2 L2g.
A nondeterministic finite automaton with k-transitions

(k-NFA) is a five-tuple A ¼ ðQ;R; d;Q0;FÞ where Q is a

finite set of states, R is a finite alphabet, d is a multi-valued

transition function from Q � ðR [kÞ into 2Q, Q0 � Q is

the set of initial states and F � Q is the set of final states.

Given a transition dðp; aÞ ¼ q, we say that p has an out-

transition and q has an in-transition. By an NFA we mean a

nondeterministic automaton without k-transitions, that is, A
is an NFA if d is a function from Q � R into 2Q. The

automaton A is deterministic (a DFA) if Q0 is a singleton

set and d is a (single-valued) function Q� R ! Q. The

language LðAÞ recognized by A is the set of strings w such

that some sequence of transitions spelling out w takes an

initial state of A to a final state.

A context-free grammar (CFG) G is a four-tuple

G ¼ ðV;R;R; SÞ, where V is a set of variables, R is a set of

terminals, R � V � ðV [RÞ� is a finite set of productions

and S 2 V is the start variable. Let aAb be a string over

V [R, where A 2 V and A ! c 2 R. Then, we say that A

can be rewritten as c and the corresponding derivation step

is denoted by aAb) acb. The reflexive, transitive closure

of) is denoted by)
�

and the context-free language

generated by G is LðGÞ ¼ fw 2 R� j S)
�
wg.

A context-sensitive grammar (CSG) G is a four-tuple

G ¼ ðV;R;R; SÞ, where V is a set of variables, R is a set of

terminals, S 2 V is the start variable and every production

in R is of the form aBc ! abc for some a; c 2 ðV [RÞ�,
b 2 ðV [RÞþ and B 2 V .

A nondeterministic reversal-bounded multicounter ma-

chine (NCM) (Chiniforooshan et al. 2012; Ibarra 1978)

consists of a finite state control that reads input one-way

from the input tape and a finite number of counters, that is a

pushdown store over a one-letter alphabet. Furthermore,

the counters are reversal-bounded, that is, the number of

alternations between the non-decreasing and the non-in-

creasing mode for each counter is bounded by a constant.1

Thus an NCM is a k-NFA equipped with a finite number of

reversal-bounded counters.

The reader may refer to the textbooks (Hopcroft and

Ullman 1979; Shallit 2009; Wood 1986) for more details

on formal language theory.

3 Pseudo-inversion

The inversion operation is one of the most common op-

erations on biosequences. When the inversion occurs in a

biosequence w, sometimes the whole w may not be com-

pletely inversed because of various reasons in practice. This

gives rise to a partial inversion of w where a middle part of w

is not inversed. We call this process a pseudo-inversion.

Figure 2 depicts an example of a pseudo-inversion of a string.

Definition 1 For a string w 2 R�, we define the pseudo-

inversion of w to be

PIðwÞ ¼ fvRxuR j u; x; v 2 R�;w ¼ uxv and vu 6¼ kg:

As a special case, PIðkÞ ¼ ;. We can extend the pseudo-

inversion to languages. Given a language L,

PIðLÞ ¼
[

w2L
PIðwÞ:

We define an iterated pseudo-inversion operation as fol-

lows: Given a string w, we let PI
1ðwÞ ¼ PIðwÞ and

PI
iþ1ðwÞ ¼ PIðPIiðwÞÞ for a positive integer i[0.

Definition 2 Given a string w and a language L, we de-

fine the iterated pseudo-inversion PI
�ðwÞ and the iterated

pseudo-inversion PI
�ðLÞ to be

PI
�ðwÞ ¼

[1

i¼1

PI
iðwÞ and PI

�ðLÞ ¼
[

w2L
PI

�ðwÞ:

Next we introduce a pseudo-inversion-free language L

(or code), where there is no pair of strings in L such that a

string is a pseudo-inversion of a substring of the other string.

Definition 3 Let L � R� be a language. We define L to be

pseudo-inversion-free if no string in L is a pseudo-inver-

sion of a substring of any other string in L. In other words,

L is pseudo-inversion-free if R� � PIðLÞ � R� \ L ¼ ;.

3.1 Closure properties of pseudo-inversion

It is well-known that regular languages are closed under the

reversal operation. Given an NFA recognizing a regular

1 Unrestricted two-counter machines accept all recursively enumer-

able languages (Ginsburg 1975).

w[1] w[i] w[j] w[n]w

(w) w[n] w[j] w[1]w[i]

u x v

vR x uR

Fig. 2 Given a string w ¼ uxv, the pseudo-inversion PIðwÞ of w

inverses u and v (outer parts) from w but not x (middle part)

Pseudo-inversion: closure properties and decidability 33

123

Author's personal copy

language L, we can easily obtain an NFA of the same size

for the reversal of L by flipping the transition directions and

exchanging the set of initial states and the final states

(Hopcroft and Ullman 1979; Wood 1986). We may need

one more state if we do not allow multiple initial states. We

show that regular languages are closed under pseudo-

inversion.

Theorem 1 Regular languages are closed under pseudo-

inversion.

Proof Let A ¼ ðQ;R; d;Q0;FÞ be a k-NFA for a regular

language L. We show that there is a k-NFA that accepts

PIðLÞ. Without loss of generality, we assume that A has

only one initial state and one final state, and the initial state

has no in-transitions and the final state has no out-transi-

tions. Thus Q0 ¼ fq0g and F ¼ fqf g are singleton sets. We

define a k-NFA B ¼ ðP;R; c;P0;FBÞ for PIðLðAÞÞ, where

– P ¼ Q3 [Q [~Q, where ~Q ¼ f~q j q 2 Qg,
– P0 ¼ fqf g,
– FB ¼ fq0; ~q0g, and
the transition function c is as follows:

(i) For all q; p 2 Q and a 2 R, if p 2 dðq; aÞ, then
q 2 cðp; aÞ and ~q 2 cð~p; aÞ:

(ii) For all q; p 2 Q; ðq; q; pÞ 2 cðp; kÞ, for p 6¼ qf or

q 62 FB.

(iii) For all q; p; r1; r2 2 Q and a 2 R, if r2 2 dðr1; aÞ;
then ðq; r2; pÞ 2 cððq; r1; pÞ; aÞ:

(iv) For all q; p 2 Q; ~q 2 cððq; p; pÞ; kÞ.
The automaton B operates as follows. The transition ðiÞ
simulates a computation of A in reverse, beginning from a

final state of A. We choose a state q 2 Q nondeterministi-

cally using a k-transition, and we reach a state ðq; q; pÞ by
the transition ðiiÞ. In the rules ðiiÞ the conditions p 6¼ qf or

q 62 FB, together with the assumptions that A has no in-

transitions to p0 nor out-transitions from qf guarantee that

B on input string s simulates the computation of A on an

input s0 such that s is obtained from s0 by inverting a

nonempty string. The transition ðiiiÞ allows B to simulate

the original computation of A from q to p. After B reaches

the state ðq; p; pÞ, it can make a k-transition to state ~q, and

using the transition ðiÞ, B continues the reverse computa-

tion of A. Eventually, B accepts a string vRwuR if A has an

accepting computation for uwv. Figure 3 illustrates an ex-

ample computation of the k-NFA B. h

Theorem 1 shows that regular languages are closed

under the pseudo-inversion operation. Based on the result,

we have the following corollary.

Corollary 1 Given a regular language L, PI
nðLÞ is

regular for any integer n� 1.

Notice that context-free languages are closed under the

reversal operation (Hopcroft and Ullman 1979). However,

we demonstrate that context-free languages are not closed

under the pseudo-inversion operation.

Theorem 2 Context-free languages are not closed under

pseudo-inversion.

Proof We prove the statement by the context-free

pumping lemma (Hopcroft and Ullman 1979; Wood 1986).

Consider a context-free language L ¼ faibjcjdi j i; j� 1g:
We pick a string w ¼ d2nc2nanb2nan 2 PIðLÞ, where n is

the pumping constant. See Fig. 4 for an illustration. By the

pumping lemma, we split w into five parts, w ¼ uvxyz,

where substrings u; v; x; y and z satisfy the conditions of the

pumping lemma. It follows that jvxyj � n, and hence, vxy

cannot contain both a’s and d’s, and vxy cannot contain

both b’s and c’s.

Notice that if w 2 PIðLÞ, then jwja ¼ jwjd and jwjb ¼
jwjc should hold. However, since vy 6¼ k, the string uv2xy2z

does not satisfy this condition. Thus uv2xy2z 62 PIðLÞ and

we conclude that PIðLÞ is not context-free. h

3.2 Iterated pseudo-inversion

We investigate the closure properties of the iterated pseu-

do-inversion operation. It turns out that the iterated pseudo-

inversion operation is equivalent to the permutation op-

eration. Given a string w, let pðwÞ be the set of all per-

mutations of w, that is, pðwÞ ¼ fu 2 R� j ð8a 2 RÞ
juja ¼ jwjag.

p1 p2 p3 p4λ-NFA A

λ-NFA B p4

p̃4

p3

p̃3

p2

p̃2

p1

p̃1

u x v

xR uR

vR xR uR

(p2, p2, p3)

· · · · · ·

· · · · · · · · ·

· · · · · · · · ·

(p2, p3, p3)

λ

λ

x

vR

· · ·

Fig. 3 An illustrative example of constructing a k-NFA B recogniz-

ing PIðLðAÞÞ. Note that if the k-NFA A accepts a string uxv, then B

accepts all vRxuR 2 PIðLðAÞÞ

a2n b2n c2n d2n

d2n c2n an anb2n

Fig. 4 For a language L ¼ aibjcjdi j i; j� 1, we pick a

string d2nc2nanb2nan 2 PIðzÞ, where z ¼ a2nb2nc2nd2n 2 L

34 D.-J. Cho et al.

123

Author's personal copy

Theorem 3 Given a string w over R, the iterated pseu-

do-inversion of w is the same as the set of all possible

permutations of w; namely, PI�ðwÞ ¼ pðwÞ.

Proof We first show that PI�ðwÞ � pðwÞ. For the sake of

contradiction, assume that a string u 2 PI
�ðwÞ is not in

pðwÞ. This implies that there exists a character a 2 R such

that juja 6¼ jwja. However, the pseudo-inversion operation

does not affect the number of character occurrences—it

does not insert or delete a character but only relocates

characters of w. Therefore, it is impossible to have a

string u 2 PIðwÞ such that juja 6¼ jwja—a contradiction.

Next we show that pðwÞ � PI
�ðwÞ; any permutation of

w is in PI
�ðwÞ. Let u be an arbitrary string from pðwÞ. We

claim that w can be transformed to u by applying exactly n

pseudo-inversions. Let wi be the string obtained after i

pseudo-inversions. We assume that u½1 � � � i	 1�R ¼
wi	 1½n	 iþ 2 � � � n� if i is odd and u½1 � � � i	 1� ¼
wi	 1½1 � � � i	 1� otherwise. We prove that there exists a

sequence of pseudo-inversions that satisfies the assump-

tion. For the ith pseudo-inversion, assume that

wi	 1½j� ¼ u½i�.

(i) i is odd: We have the following string wi 2 PI
iðwÞ

wi	v1½n	iþ2 � � �n�R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inversed

wi	1½j � � �n	 iþ1�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
non	inversed

wi	1½1 � � �j	1�R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
inversed

¼ u½1 � � �i	1�u½i�wi	1½jþ1 � � �n	iþ1�wi	1½1 � � �j	1�R:

After the pseudo-inversion, u½1 � � � i� ¼ wi½1 � � � i�.
(ii) i is even: We have the following string wi 2 PI

iðwÞ
wi	 1½jþ 1 � � � n�R|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

inversed

wi	 1½i � � � j�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
non	inversed

wi	 1½1 � � � i	 1�R|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
inversed

¼ wi	 1½jþ 1 � � � n�Rwi	 1½i � � � j	 1�u½i�u½1 � � � i	 1�R:

After the pseudo-inversion, u½1 � � � i�R ¼ wi½n	 iþ
1 � � � n�.

Figure 5 shows an example of this process. From these

pseudo-inversions, we can transform w to u in n steps if n is

odd. When n is even, we set wi	1½j� ¼ u½n	 iþ 1� instead
of u½i�. The rest of the process is similar to the odd case. h

Based on Theorem 3, we show that regular and context-

free languages are not closed under the iterated pseudo-

inversion operation.

Lemma 1 Regular languages and context-free lan-

guages are not closed under the iterated pseudo-inversion

operation. Furthermore, the iterated pseudo-inversion of a

regular language is not necessarily context-free.

Proof Let L ¼ LððabcÞ�Þ. The iterated pseudo-inver-

sion PI
�ðLÞ of L is

PI
�ðLÞ ¼ fw 2 fa; b; cg� j jwja ¼ jwjb ¼ jwjcg:

Note that

PI
�ðLÞ \ a�b�c� ¼ faibici j i� 0g

is not context-free. Since the regular languages and the

context-free languages are closed under intersection with

regular languages, the claim holds. h

Below in Proposition 1, we see that the family of con-

text-sensitive languages is closed under the iterated pseu-

do-inversion, and consequently it follows that the iterated

pseudo-inversion of a regular or a context-free language is

always context-sensitive.

As a consequence of Theorem 3, we see that the iterated

pseudo-inversion of a context-free language can be rec-

ognized by a nondeterministic reversal-bounded multi-

counter machine (NCM) that defines a considerably more

restricted language family than the context-sensitive lan-

guages. The Parikh set of any language recognized by an

NCM is semi-linear and the emptiness problem for NCMs

is decidable (Ibarra 1978). Furthermore, NCMs cannot

recognize, for example, the set of marked palindromes

fw#wR j w 2 f0; 1g�g (Chiniforooshan et al. 2012).

Corollary 2 If L is a context-free language over R,
PI

�ðLÞ can be recognized by an NCM with jRj counters
each of which makes only one reversal.

u

wi−1

(ii) i is even

inversednon-inversedinversed

(i) i is odd

inversed

······

non-inversed inversed

· · ·

· · ·

······

· · ·

u

uu

u[i]

u[i]

wi−1[j]

wi−1[j]

wi

wi−1 wi

1 2 3 6

1 2 3 6 6 123

51 2 3 4

5 4 123

51 2 3 4

1 2 3 4 5

4 5

4 5

· · ·1 2 3 64 5

45

Fig. 5 The ith pseudo-inversion

that transforms w to u. For

better readability, we set u ¼
1234 � � � n in the figure

Pseudo-inversion: closure properties and decidability 35

123

Author's personal copy

Proof There exists a regular language L0 that is letter-

equivalent to L (Salomaa 1973, part I, Theorem 7.2). Let A

be an NFA for L0. On an input w, the NCM stores the value

jwja for each a 2 R in the available counters. After that,

using k-transitions, the NCM simulates A. For a transition

of A on input b 2 R, the counter corresponding to symbol b

is decremented and at the end of the computation the NCM

checks that all the counters are empty. By Theorem 3, the

NCM recognizes the language PI
�ðLÞ. h

Corollary 2 uses only Theorem 3 and the observation

that the Parikh set of a context-free language is semi-linear,

which means that the corollary can be stated as:

Corollary 3 If the Parikh set of L is semi-linear, then

PI
�ðLÞ can be recognized by a nondeterministic reversal-

bounded multicounter machine.

Corollary 3 implies, in particular, that the family of

languages recognized by nondeterministic reversal-bound-

ed multicounter machines is closed under iterated pseudo-

inversion. We examine the closure properties for context-

sensitive languages and establish the following result.

Dassow et al. (2002) established a similar result for in-

version of context-sensitive languages.

Proposition 1 Given a context-sensitive language L,

PI
�ðLÞ is context-sensitive.

4 Pseudo-inversion-freeness

We investigate the decidability problem for pseudo-inver-

sion-freeness and establish the closure properties of pseu-

do-inversion-free languages.

4.1 Decidability of pseudo-inversion-freeness

We say that a language L is pseudo-inversion-free if no

string in L is a pseudo-inversion of a substring of any other

string in L. We consider the decidability problem of

pseudo-inversion-freeness when L is regular or context-

free.

We first consider a simple case when we are given two

strings of the same length. We determine whether or not a

string is a pseudo-inversion of the other string. In other

words, given two strings u and v, is v in PIðuÞ? We present

a linear-time algorithm in the size of u. We rely on the

following observation to simplify the presentation of the

algorithm.

Observation 1 Let u and v be two strings of the same

length. Then, v 2 PIðuÞ if and only if u ¼ wxy and

vR ¼ wxRy, where wy 6¼ k.

The main idea of the linear-time algorithm is to scan two

strings vR and u from both end-sides until we find an index

where two strings have different characters. Let ML denote

the left maximum matching index, where the first discrep-

ancy occurs and MR denote the right maximum matching

index, where the last discrepancy occurs. Lastly, we check

whether or not u½ML � � �MR�R ¼ vR½ML � � �MR�. See Al-

gorithm 1 for the whole procedure.

Lemma 2 Given two strings u and v, v 2 PIðuÞ if Al-

gorithm 1 returns true.

Proof Suppose that Algorithm 1 returns true, and let

ML ¼ i and MR ¼ j. This implies that there exist following

three substrings:

(i) u½1 � � � i� ¼ vR½1 � � � i�,
(ii) u½j � � � n	 1� ¼ vR½j � � � n	 1� and
(iii) u½iþ 1 � � � j	 1� ¼ vR½iþ 1 � � � j	 1�R.

Let u ¼ wxy, where w ¼ u½1 � � � i�; x ¼ u½iþ 1 � � � j	 1�
and y ¼ ½j � � � n�. Then a string vR ¼ wxRy, therefore,

v 2 PIðuÞ. h

Lemma 3 Let ML ¼ i and MR ¼ j for 1� s\i\
j\k� n	 1. If a substring u½s � � � t� is the reversal of

vR½s � � � t�, then u½iþ 1 � � � j	 1� and vR½iþ 1 � � � j	 1� are

the reversal of each other.

36 D.-J. Cho et al.

123

Author's personal copy

Proof Since ML ¼ i and MR ¼ j, it is immediate that

u½1 � � � i� ¼ vR½1 � � � i� and u½j � � � n� ¼ vR½j � � � n�. Then,
u½s � � � i� ¼ vR½s � � � i� ¼ u½j � � � t� ¼ vR½j � � � t�

because u½s � � � t� ¼ vR½s � � � t�R. It implies that

u½iþ 1 � � � j	 1� and vR½iþ 1 � � � j	 1� are the reversal of

each other. h

Lemma 4 If there exists a string v 2 PIðuÞ, then Algo-

rithm 1 returns true.

Proof Suppose that there exists a string v 2 PIðuÞ. Con-
sider a string u ¼ wxy, where w ¼ u½1 � � � i�; x ¼
u½iþ 1 � � � j	 1� and y ¼ u½j � � � n� for 1� i\j� n. This

implies that v ¼ yRxwR, ML ¼ i and MR ¼ j. Therefore,

Algorithm 1 returns true since there exist substrings

u½1 � � � i� ¼ vR½1 � � � i�, u½j � � � n� ¼ vR½j � � � n� and u½iþ 1 � � �
j	 1� ¼ vR½iþ 1 � � � j	 1�R. Note that even if a sub-

string u½s � � � t� is a reversal of vR½s � � � t� for 1� s\i\
j\k� n, Algorithm 1 still returns true by Lemma 3. h

Theorem 4 Given two strings u and v of length n, we

can determine whether or not v 2 PIðuÞ in OðnÞ time.

We can also determine if v 2 PI
�ðuÞ by checking whe-

ther or not the two Parikh vectors WðuÞ and WðvÞ are the

same.

Corollary 4 Given two strings u and v of length n, we

can determine whether or not v 2 PI
�ðuÞ in OðnÞ time.

Recalling from Definition 3 the notion of pseudo-in-

version-freeness, we can also decide whether or not a

regular language L is pseudo-inversion-free by checking

whether or not R� � PIðLÞ � R� \ L ¼ ;.

Theorem 5 Given an FA of size n recognizing a regular

language L, we can determine whether or not L is pseudo-

inversion-free in Oðn4Þ time.

Proof Based on the NFA construction in Theorem 1, we

can construct a k-NFA of size Oðn3Þ recognizing PIðLÞ.
Since we can check the intersection emptiness of two k-
NFAs of size m and n in OðmnÞ time (Wood 1986), we can

determine whether or not L is pseudo-inversion-free in

Oðn3 � nÞ ¼ Oðn4Þ time. h

Theorem 5 shows that it is decidable whether or not a

regular language L is pseudo-inversion-free in polynomial

time. Next, we prove that pseudo-inversion-freeness is

undecidable for context-free languages.

First we recall the following undecidability result. An

instance of the Post’s Correspondence Problem (PCP) (Post

1946) consists of n 2 N and two ordered n-tuples of strings

ðU;VÞ, where U ¼ ðu0; u1; . . .; un	1Þ and V ¼ ðv0; v1;
. . .; vn	1Þ, ui; vi 2 R�, 0� i� n 	 1 . A solution for the PCP

instance ðU;VÞ is a sequence of integers i1; . . .; ik,

0� ij � n 	 1, j ¼ 1; . . .; k, k� 1, such that

ui1ui2 � � � uik ¼ vi1vi2 � � � vik :

Proposition 2 (Post 1946) The decision problem of de-

termining whether or not a given PCP instance has a so-

lution is unsolvable.

Now we can prove that deciding the pseudo-inversion-

freeness of a given context-free language is undecidable by

reducing PCP to this problem.

Theorem 6 It is undecidable to determine whether or

not a given context-free language L is pseudo-inversion-

free.

Proof Let R be an alphabet and ðU;VÞ be an instance of

Post’s Correspondence Problem, where U ¼
ðu0; u1; . . .; un	1Þ and V ¼ ðv0; v1; . . .; vn	1Þ. Assume that

the symbols 0; 1;#; $;%;/; \ and [are not in R. Let

R0 ¼ R [f0; 1;#; $;%;/; \; [g. For any nonnegative inte-

ger i, let bi be the shortest binary representation of i.

We define a linear grammar G ¼ ðN;R0;R; SÞ, where

– N ¼ fS; TU ; TVg is a nonterminal alphabet,

– R0 is a terminal alphabet,

– S is the sentence symbol, and

– R has the following rules:

– S ! bi/TUui##%[\\ j \\%[##vRi TV/bi,
– TU ! bi/TUui j bi$ui, and
– TV ! vRi TV/bi j vRi $bi
for i 2 f0; 1; . . .; n	 1g.

Then LðGÞ consists of the following strings:

bin	1
/ � � �/bi0$ui0 � � � uin	2

uin	1
##%[\\ ð1Þ

and

\\%[##vRin	1
vRin	2

� � � vRi0$bi0/ � � �/bin	1
: ð2Þ

We now show that LðGÞ is not pseudo-inversion-free if and
only if the PCP instance ðU;VÞ has a solution. We prove

that LðGÞ is not pseudo-inversion-free if the PCP instance

ðU;VÞ has a solution. Assume that the PCP instance ðU;VÞ
has a solution. Let z ¼ vwx and z0 ¼ uxRwvRy, where

xv 6¼ k. Then, L is not pseudo-inversion-free if both z0 and z
exist in L. Since the PCP instance has a solution by the

assumption, there should be a sequence i0; i1; . . .; in	2; in	1

satisfying

ui0 � � � uin	2
uin	1

¼ vi0 � � � vin	2
vin	1

:

Now we decompose (1) into uvwxy such that

– v ¼ bin	1
/ � � �/bi0$ui0 � � � uin	2

uin	1
##,

– w ¼ %[,

Pseudo-inversion: closure properties and decidability 37

123

Author's personal copy

– x ¼ \\, and

– u; y ¼ k.

Then, xRwvR ¼ \\%[##uin	1
uin	2

� � � ui0$bi0/ � � � /bin	1
2

LðGÞ. Therefore, LðGÞ is not pseudo-inversion-free. Next,
we show that if LðGÞ is not pseudo-inversion-free, then

there exist two strings z ¼ vwx and z0 ¼ uxRwvRy in LðGÞ,
where xv 6¼ k. Then, there are two possible decompositions

as follows:

C1.

u ¼ k; v ¼ bin	1
/ � � �/bi0$ui0 � � �

uni	1
##;w ¼ %[; x ¼ \\, and y ¼ k.

C2.

u ¼ k; v ¼ \\;w ¼ %[;

x ¼ ##vRin	1
vRin	2

� � � vRi0$bi0/ � � � /bin	1
, and y ¼ k.

It implies that the PCP instance ðU;VÞ has a solution since

v ¼ bin	1
/ � � �/bi0$ui0 � � � uni	1

##

should be equal to

xR ¼ bin	1
/ � � �/bi0$vi0 � � � vni	1

##:

Thus LðGÞ is not pseudo-inversion-free if and only if the

PCP instance ðU;VÞ has a solution. Since PCP is unde-

cidable (Post 1946), it is also undecidable whether or not L

is pseudo-inversion-free when L is context-free. h

4.2 Closure properties of pseudo-inversion-free

languages

We first consider closure properties of the pseudo-inver-

sion-free languages under some basic operations.

Theorem 7 Pseudo-inversion-free languages are closed

under intersection but not under catenation or union.

Proof We consider the three cases separately:

(i) Intersection: Assume that L ¼ L1 \ L2 is not

pseudo-inversion-free whereas L1 and L2 are

pseudo-inversion-free. Then, there are two strings

z ¼ uvwxy and z0 ¼ xRwvR in L, where vx 6¼ k and

u;w; y 2 R�. Since two strings z; z0 exist in both L1
and L2, this implies that L1 and L2 are not pseudo-

inversion-free—a contradiction.

(ii) Catenation: Let L1 ¼ fabcc; cbccg and L2 ¼
fabbc; abbag over R ¼ fa; b; cg. Then, abccabbc
and cbccabba 2 L1 � L2, which implies that L1 � L2
is not pseudo-inversion-free. Note that a

string abccabbc 2 L1 � L2 is a pseudo-inversion

of a substring of a string cbccabba 2 L1 � L2.
Therefore, pseudo-inversion-free languages are

not closed under catenation.

(iii) Union: Let L1 ¼ fab; aag and L2 ¼ fba; ccg over

R ¼ fa; b; cg. Since ab 2 PIðbaÞ, L1 [L2 ¼
fab; aa; ba; ccg is not pseudo-inversion-free. Thus

pseudo-inversion-free languages are not closed

under union.

h

Next, we show that the complementation or the Kleene

star of any pseudo-inversion-free language is not pseudo-

inversion-free.

Theorem 8 For any pseudo-inversion-free lan-

guage L � R� where jRj � 1, �L is not pseudo-inversion-

free.

Proof If L ¼ ;, �L is not pseudo-inversion-free since

r; rr 2 �L for some r 2 R. If L is not empty, assume that �L

is pseudo-inversion-free. We consider a string z ¼ uvw 2 L.

Then, for a character r 2 R, z0 ¼ rwRvuR 2 �L since

z 2 PIðwRvuRÞ. Now, consider a string z00 ¼ wRvuRr. Since
z 2 PIðwRvuRÞ, z00 62 L. On the other hand, since

z0 2 PIðwRvuRrÞ, z0 62 �L—a contradiction. Therefore, we

conclude that �L is not pseudo-inversion-free. h

Theorem 9 For a nonempty language L � R� n fkg,
Lm [Ln is not pseudo-inversion-free, for 1�m\n.

Moreover, L� is not pseudo-inversion-free, either.

Proof Let w ¼ au be a string in L, where a 2 R and

u 2 R�. Then, we have wm 2 Lm and wn 2 Ln. Then, wm ¼
av and wn ¼ avwn	m, where v ¼ uwm	1. Since w ¼ au,

wn ¼ avauwn	m	1 in which va appears as a substring.

Since va 2 PIðwmÞ, Lm [Ln is not pseudo-inversion-free. It

is easy to see that L� is not pseudo-inversion-free since

L� ¼ L0 [L1 [L2 [� � �.
Note that if L is ; or fkg (here, L is pseudo-inversion-

free), then both Lm [Ln and L� are pseudo-inversion-free

as well. h

5 Conclusions

We have defined a biologically inspired operation called

the pseudo-inversion. Given a string w ¼ uxv, we have

defined the pseudo-inversion of w to be a set of strings

vRxuR, where uv 6¼ k.
We have investigated the closure properties of the

pseudo-inversion operation and the iterated pseudo-inver-

sion operation. While regular languages are closed under

the pseudo-inversion, context-free languages are not

closed. Moreover, we have established that the iterated

pseudo-inversion is equivalent to the permutation op-

eration. We also have considered the problem of deciding

whether or not a given language is pseudo-inversion-free.

38 D.-J. Cho et al.

123

Author's personal copy

We have designed a polynomial-time algorithm for regular

languages and established an undecidability result for lin-

ear context-free languages.

In practice, various genetic errors occur frequently and

they are closely related to human diseases. We have con-

sidered one of such errors—pseudo-inversion. In view of

the biological implications, we hope that our results are

useful for potential future research including evolution

analysis or gene sequence searching.

Acknowledgments We wish to thank the referees for the careful

reading of the paper and many valuable suggestions. Cho, Han, Kang

and Ko were supported by the Basic Science Research Program

through NRF funded by MEST (2012R1A1A2044562), the Interna-

tional Cooperation Program managed by NRF of Korea (2014K

2A1A2048512) and Yonsei University Future-leading Research Ini-

tiative of 2014, Kim was supported by NRF-2013-Global Ph.D. Fel-

lowship Program and Salomaa was supported by the Natural Sciences

and Engineering Research Council of Canada Grant OGP0147224.

References

Cantone D, Cristofaro S, Faro S (2013) Efficient string-matching

allowing for non-overlapping inversions. Theor Comput Sci

483:85–95

Chiniforooshan E, Daley M, Ibarra OH, Kari L, Seki S (2012) One-

reversal counter machines and multihead automata: revisited.

Theor Comput Sci 454:81–87

Cho DJ, Han YS, Kim H (2015a) Alignment with non-overlapping

inversions and translocations on two strings. Theor Comput Sci

575:90–101

Cho DJ, Han YS, Kim H (2015b) Frequent pattern mining with non-

overlapping inversions. In: Proceedings of the 9th language and

automata theory and applications, vol 8977, pp 121–132

Daley M, Ibarra OH, Kari L (2003) Closure and decidability

properties of some language classes with respect to ciliate bio-

operations. Theor Comput Sci 306(1–3):19–38

Daley M, Kari L, McQuillan I (2004) Families of languages defined

by ciliate bio-operations. Theor Comput Sci 320(1):51–69

Dassow J, Mitrana V, Salomaa A (2002) Operations and language

generating devices suggested by the genome evolution. Theor

Comput Sci 270(1):701–738

Deaton R, Garzon M, Murphy RC, Rose JA, Franceschetti DR,

Stevens SE Jr (1996) Genetic search of reliable encodings for

DNA-based computation. In: Proceedings of the 1st annual

conference on genetic programming, pp 9–15

Garzon M, Deaton R, Nino LF, Stevens E, Wittner M (1998)

Encoding genomes for DNA computing. In: Proceedings of the

3rd annual conference on genetic programming, pp 684–690

Ginsburg S (1975) Algebraic and automata-theoretic properties of

formal languages. North-Holland Publishing Company,

Amsterdam

Hopcroft J, Ullman J (1979) Introduction to automata theory,

languages, and computation, 2nd edn. Addison-Wesley, Reading

Hussini S, Kari L, Konstantinidis S (2003) Coding properties of DNA

languages. Theor Comput Sci 290(3):1557–1579

Ibarra OH (1978) Reversal bounded multicounter machines and their

decision problems. J ACM 25:116–133

Ibarra OH (2014) On decidability and closure properties of language

classes with respect to bio-operations. In: Proceedings of 20th

DNA computing and molecular programming, pp 148–160

Jonoska N, Kari L, Mahalingam K (2008) Involution solid and join

codes. Fundam Inform 86(1,2):127–142

Jonoska N, Mahalingam K, Chen J (2005) Involution codes: with

application to DNA coded languages. Nat Comput 4(2):141–162

Jürgensen H, Konstantinidis S (1997) Codes. In: Rozenberg G,

Salomaa A (eds) Handbook of formal languages, vol I, pp 511–

607. Springer

Kari L, Losseva E, Konstantinidis S, Sosı́k P, Thierrin G (2006) A

formal language analysis of DNA hairpin structures. Fundam

Inform 71(4):453–475

Kari L, Mahalingam K (2006) DNA codes and their properties. In:

Proceedings of the 12th international meeting on DNA comput-

ing, pp 127–142

Post EL (1946) A variant of a recursively unsolvable problem. Bull

Am Math Soc 52(4):264–268

Salomaa A (1973) Formal languages. Academic Press, Waltham

Schöniger M, Waterman MS (1992) A local algorithm for DNA

sequence alignment with inversions. Bul Math Biol 54(4):521–

536

Shallit J (2009) A second course in formal languages and automata

theory. Cambridge University Press, Cambridge

Wood D (1986) Theory of computation. Harper & Row, New York

Yokomori T, Kobayashi S (1995) DNA evolutionary linguistics and

RNA structure modeling: a computational approach. In: Pro-

ceedings of the 1st intelligence in neural and biological systems,

pp 38–45. IEEE Computer Society

Pseudo-inversion: closure properties and decidability 39

123

Author's personal copy

	Pseudo-inversion: closure properties and decidability
	Abstract
	Introduction
	Preliminaries
	Pseudo-inversion
	Closure properties of pseudo-inversion
	Iterated pseudo-inversion

	Pseudo-inversion-freeness
	Decidability of pseudo-inversion-freeness
	Closure properties of pseudo-inversion-free languages

	Conclusions
	Acknowledgments
	References

