
Online Multiple Palindrome Pattern Matching�,��

Hwee Kim and Yo-Sub Han

Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{kimhwee,emmous}@cs.yonsei.ac.kr

Abstract. A palindrome is a string that reads the same forward and
backward. We say that two strings of the same length are pal-equivalent
if for each possible center they have the same length of the maximal
palindrome. Given a text T of length n and a set of patterns P1, . . . , Pk,
we study the online multiple palindrome pattern matching problem that
finds all pairs of an index i and a pattern Pj such that T [i−|Pj |+1 : i] and
Pj are pal-equivalent. We solve the problem in O(mkM) preprocessing
time and O(mkn) query time using O(mkM) space, where M is the sum
of all pattern lengths and mk is the longest pattern length.

1 Introduction

A palindrome is a string that reads the same forward and backward. If a substring
of a string is a palindrome, we say that the string has a palindromic substring
or palindromic structure. It is crucial to find palindromes and identify similar
palindromic structures in bio sequence analysis [8]. Many researchers examined
the properties of palindromic structures in strings [2–6] and proposed efficient
algorithms on palindromic structures [7, 10, 12]. We focus on the palindrome
pattern matching problem introduced by I et al. [11]—they define two strings
of the same length to be pal-equivalent if for each possible center they have
the same length of the maximal palindrome. Given a text T of length n and a
pattern P of length m, the palindrome pattern matching problem is to find all
indices i such that T [i−m+1 : i] and P are pal-equivalent. I et al. [11] presented
two algorithms that solve the palindrome pattern matching for an arbitrary size
alphabet: One solves the problem in O(n + m) time and the other solves the
problem in O((n +m) log σ + r) time, where σ is the alphabet size and r is the
number of matching occurrences.

We notice that both algorithms by I et al. [11] require a preprocessing step of
T , which makes algorithms unsuitable for an extremely large text or a stream
text. This motivates us to consider the online pattern matching, where we should
report the matching for each index i while reading T online. We tackle the

� This research was supported by the Basic Science Research Program through NRF
funded by MEST (2012R1A1A2044562).

�� Kim was supported by NRF (National Research Foundation of Korea) Grant funded
by the Korean Government (NRF-2013-Global Ph.D. Fellowship Program).

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 173–178, 2014.
c© Springer International Publishing Switzerland 2014

174 H. Kim and Y.-S. Han

online multiple palindrome pattern matching based on a modification of the
Aho-Corasick automaton [1]. For multiple patterns P1, . . . , Pk, our algorithm
requires O(mkM) preprocessing time and runs in O(mkn) query time using

O(mkM) space, where M =

k∑

i=1

|Pi| and mk = max(|Pi|).

2 Preliminaries

Given a finite set Σ of characters and a string w over Σ, let |w| be the length
of w and w[i] be the symbol of w at position i, for 1 ≤ i ≤ |w|. We de-
fine the empty string λ as a string of length 0. We use w[i : j] to denote
a substring w[i]w[i+1] · · ·w[j], where 1 ≤ i ≤ j ≤ |w|. A language over Σ
is a set of strings over Σ. A finite-state automaton (FA) A is specified by
A = (Q,Σ, δ, s, F), where Q is a set of states, Σ is an alphabet, δ ⊆ Q×Σ ×Q
is a set of transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states.
A string w is accepted by A if there is a labeled path from s to a state in F
such that the path spells out w. The language L(A) of an FA A is the set of all
strings accepted by A. For more background knowledge in automata theory, the
reader may refer to textbooks [9, 13].

For a string w, let wR denote the reversed string of w. A string w is called

a palindrome if w = wR. The radius of a palindrome w is |w|
2 . The center of a

palindromic substring w[i : j] of a string w is i+j
2 . We call a palindromic substring

w[i : j] the maximal palindrome at the center i+j
2 if no other palindromes at the

center i+j
2 have a larger radius than w[i : j]. Let Pals(w) be the set of pairs of

the center and the radius of all center-distinct maximal palindromes [10]. For
two strings w and z of the same length, we say that w and z are pal-equivalent
if Pals(w) = Pals(z).

Definition 1 (Online Multiple Palindrome Pattern Matching). Given a
text T of length n and patterns P1, . . . , Pk of lengthm1, . . . ,mk, find all pairs of an
index i and a corresponding pattern Pj such that Pals(Pj) = Pals(T [i−mj+1 : i])
after reading each character T [i].

For the online pattern matching, we call the time to preprocess the patterns
preprocessing time, and the time to read the text to find matchings query time.

3 The Algorithm

The basic idea of the algorithm is to process multiple patterns at once with a
single automaton based on the idea of the Aho-Corasick automaton [1]. Assume
that given patterns P1, . . . , Pk of length m1, . . . ,mk are sorted by ascending
order with respect to the length of the pattern and M is the sum of all pattern
lengths. Before we design an algorithm, we have the following observation:

Online Multiple Palindrome Pattern Matching, 175

Observation 1. For strings w, z and an index i, if there exists (c, r) ∈ Pals(w)
where c ≤ i and c+r−0.5 ≥ i, then z[i] = z[2r−i]. If there is no (c, r) satisfying
the condition, then z[i] /∈ {z[2r−i] | (c, r) ∈ Pals(w) and c+ r − 0.5 = i− 1}.

Note that z[i] is computed based on z[l]’s for l < i, instead of characters in w.
Based on Observation 1, we define a variable pattern of a pattern P as follows:

Definition 2. For a pattern P of length m over Σ of size t, a variable pat-
tern P ′ is defined by an array A[m] of variables and an array B[m] of unequal
conditions satisfying the following conditions:

1. P ′[i] = A[li] for 1 ≤ i, li ≤ m.
2. If there exists (c, r) ∈ Pals(P) where c ≤ i and c+r−0.5 ≥ i, then li = l2r−i,

and thus, P ′[i] = P ′[2r−i].
3. Otherwise, for all j ∈ {2r − i | (c, r) ∈ Pals(P) and c + r − 0.5 = i − 1},

B[i] = j and B[j] = i, and thus, P ′[i] �= P ′[j].

Now we construct P ′
1, . . . , P

′
k simultaneously by Algorithm 1. All variable

patterns share A while each variable pattern P ′
j has a distinct array B[j][m] of

unequal conditions in the algorithm. Fig. 1 shows an example of P ′ and B.

A[1]A[2]A[3]A[2]A[4]A[5]P ′ =

A G C G T AP = B

1

2

3

4

5

1, 3, 4, 5

1, 2, 4

1, 2, 3, 5

2, 4

A[4] �= A[1],A[2],A[3],A[5] ⇒

2, 3, 4

Fig. 1. A variable pattern P ′ and an array B of unequal conditions for P = AGCGTA

Based on Observation 1 and Definition 2, we establish the following result:

Lemma 1. After running Algorithm 1, if there is a surjection of A to Σ where
A[i] �= A[j] holds for all i, j such that j ∈ B[l][i], then Pals(P ′

l) = Pals(Pl).
Moreover, given a string w such that Pals(w) = Pals(Pl), there exists a surjec-
tion of A to Σ such that P ′

l = w.

Once we have P ′
1, . . . , P

′
k, we can construct a special automaton B = (Q,A ∪

{#}, δ : Q × A → Q, s, F,Σ,B, δf : Q → Q,H : Q → 2A×(A∪{#}), δp : Q → Q).
Note that five parameters—Σ,B, δf ,H, δp—are added to the definition of a tra-
ditional FA. The automaton B simulates the Aho-Corasick algorithm [1], using
P ′
1, . . . , P

′
k as patterns. In the Aho-Corasick algorithm, when there occurs a mis-

match, the algorithm checks the longest suffix of the prefix of T read so far. The
automaton B simulates the process by δf , and additionally, changes surjection
of A to Σ according to H. The suffix transition function δp contains transitions
to find multiple matching occurrences on a single state. Algorithm 2 constructs

176 H. Kim and Y.-S. Han

B. We use a supplementary function StateForVP to return the state denoting
the end of a given variable pattern. Fig. 2 shows an example of B.

Algorithm 1. ConstructMultiVariablePattern

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: P ′

1, . . . , P
′
k,A[mk],B[k][mk]

1 for j ← 1 to k do
2 compute Pals(Pj) // we insert (0.5, 0) to Pals(Pj) for convenience

3 c ← 0.5, d ← 0, s ← 0
4 for i ← 1 to mj do
5 find r such that (c, r) ∈ Pals(Pj)
6 if d ≥ i then P ′

j [i] ← P ′
j [2r−i] else

7 s ← s+ 1, P ′
j [i] ← A[s]

8 for each (c′, r′) ∈ Pals(Pj) do
9 if c′ + r′ − 0.5 = i− 1 then

10 add 2r′ − i to B[j][i], add i to B[j][2r′−i]

11 find r1, r2 such that (c+ 0.5, r1), (c+ 1, r2) ∈ Pals(Pj)
12 d ← max(d, c+ r1, c+ r2 + 0.5), r ← r + 1

13 return P ′
1, . . . , P

′
k,A,B

Algorithm 2. ConstructMultiAutomaton

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: B = (Q,A ∪ {#}, δ, s, F,Σ,B, δf ,H, δp)

1 ConsturctMultiVariablePattern(P1, . . . , Pk)
2 add qλ to Q and let p1, . . . , pk ← qλ
3 for i ← 1 to mk + 1 do
4 for each P ′

j where i ≤ mj + 1 do
5 let P ′

j [i] = A[l] and pj = qs
6 if i �= mj + 1 then δ(qs,A[l]) ← qs·l, add qs·l to Q if i = 2 then

δf (qs) ← qλ, add (A[1] ← #) to H(qs) else if i > 2 then
7 find the smallest i′ and corresponding j′ such that

Pals(P ′
j′ [1 : i−i′]) = Pals(P ′

j [i
′ : i−1])

8 δf (qs) ←StateForVP(P ′
j′ [1 : i−i′])

9 for g ← 1 to i− i′ do
10 add (A[h] ← A[h′]) to H(qs) for P ′

j′ [g] = A[h] and

P ′
j [g+i′−1] = A[h′]

11 for each A[h] in P ′
j [1 : i−1] without injective function in H(qs) do

add (A[h] ← #) to H(qs)

12 if i = mj then add qs·l to F find the largest i′ and corresponding j′

such that Pals(P ′
j′ [1 : i′]) = Pals(P ′

j [i−i′+1 : i])

13 if i′ = mj′ then δp(pj) ←StateForVP(P ′
j′) pj ← qs·l

14 return (Q,A ∪ {#}, δ, qλ, F,Σ,B, δf ,H, δp)

Online Multiple Palindrome Pattern Matching, 177

[
A1←A2
A2←#

]
A1 A2 A1 A3 A4

[
A1←A2
A2←A1

]

A3
[
A1←A2
A2←A3
A3←#

]

A4

⎡
⎣A1←A2
A2←A3
A3←A4
A4←#

⎤
⎦

A2

⎡
⎣A1←A2
A2←A1
A3←#
A4←#

⎤
⎦

[
A1←#

] [
A1←A2
A2←A1

] [
A1←A2
A2←A1

]

Fig. 2. An automaton B for P1 = AGA,P2 = ACTG,P3 = ATAT,P4 = TCTGC.
Variables A[i] are written as Ai for better readability. Dashed transitions are failure
transitions and dotted transitions are suffix transitions.

Algorithm 3. FindMultiPalindromeMatching

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: (i, Pj) such that Pals(Pj) = Pals(T [i−mj+1 : i])

1 ConstructMultiAutomaton(P1, . . . , Pk)
2 for i ← 1 to mk do A[i] ← # ql ← qλ // current state

3 for i ← 1 to n do
4 while one of the following conditions holds for all A[j] such that

δ(ql,A[j]) �= ∅
1. ql ∈ F
2. A[j] �= T [i],#
3. A[j] = # and there exists j′ ∈ B[j][g] such that A[j′] = T [i] and

δ(ql,A[j]) =StateForVP(P ′
g [1 : |l|+1])

5 do
6 for each (A[h] ← A[h′]) ∈ H(ql) do A[h] ← A[h′] ql ← δf (ql)

7 if A[j] = # then A[j] ← T [i] ql ← δ(ql,A[j])
8 if ql ∈ F then return (i, Pj′) where StateForVP(P ′

j′) = ql pl ← ql
9 while δp(pl) �= ∅ do

10 pl ← δp(pl)
11 return (i, Pj′) where StateForVP(P ′

j′) = pl

Now we are ready to design an algorithm that solves the problem using B.
Algorithm 3 processes T in B and reports all matching end-indices and the
corresponding matching patterns.

Lemma 2. Algorithm 3 returns all pairs of an index i and a pattern Pj such
that Pals(Pj) = Pals(T [i−mj+1 : i]).

178 H. Kim and Y.-S. Han

Theorem 2. Given a text T of length n and a pattern P of length m, we can
solve the online multiple palindrome pattern matching problem with O(mkM) pre-
processing time and O(mkn) query time using O(mkM) space.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Communications of the ACM 18(6), 333–340 (1975)

2. Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)

3. Anisiu, M.-C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words.
Discrete Mathematics 310(1), 109–114 (2010)

4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity
of infinite words. International Journal of Foundations of Computer Science 15(2),
293–306 (2004)

5. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de luca and rauzy. Theoretical Computer Science 255(1-2), 539–553 (2001)

6. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European
Journal of Combinatorics 30(2), 510–531 (2009)

7. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Information Processing Letters 110(20), 908–912 (2010)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison–Wesley (1979)

10. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal
palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 135–146. Springer, Heidelberg (2010)

11. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Palindrome pattern matching.
Theoretical Computer Science 483, 162–170 (2013)

12. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)

13. Wood, D.: Theory of Computation. Harper & Row (1986)

	Online Multiple Palindrome Pattern Matching

	1
Introduction
	2
Preliminaries
	3
The Algorithm

