
Theoretical Computer Science 575 (2015) 90–101
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Alignment with non-overlapping inversions and translocations

on two strings ✩

Da-Jung Cho, Yo-Sub Han ∗, Hwee Kim

Department of Computer Science, Yonsei University, Seoul 120-749, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 April 2014
Received in revised form 22 September
2014
Accepted 21 October 2014
Available online 27 October 2014

Keywords:
Sequence alignment
Non-overlapping inversion
Translocation

An inversion and a translocation are important in bio sequence analysis and motivate
researchers to consider the sequence alignment problem using these operations. Based on
inversion and translocation, we introduce a new alignment problem with non-overlapping
inversions and translocations—given two strings x and y, find an alignment with non-
overlapping inversions and translocations for x and y. This problem has interesting
application for finding a common sequence from two mutated sequences. We, in particular,
consider the alignment problem when non-overlapping inversions and translocations are
allowed for both x and y. We design an efficient algorithm that determines the existence
of such an alignment and retrieves an alignment, if exists.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modern biology, it is important to determine exact orders of DNA sequences, retrieve relevant information of DNA
sequences and align these sequences [2,9,15,16]. A chromosomal inversion occurs when a single chromosome undergoes
breakage and rearrangement within itself [14]. A chromosomal translocation is to relocate a piece of the DNA sequence from
one place to another and, thus, rearrange the sequence [12]. The chromosomal inversion and translocation are crucial in
DNAs since these operations alter a DNA sequence and often cause genetic diseases [11,13]. Fig. 1 shows an example of chro-
mosomal inversion and translocation. String matching with inversion and translocation is defined as follows: given a text T
and a pattern P , the string matching problem is to find all matching of a given pattern P in a text T allowing inversion
and translocation. We can also consider an alignment problem that transforms given string x to another string y allowing
inversion and translocation edit operations. Many researchers investigated efficient algorithms for the pattern matching and
alignment problem with inversion and translocation [1–6,8,10,16,17]. See Table 1 for summary of related research.

Schöniger and Waterman [16] introduced the alignment problem with non-overlapping inversions under the assumption
that all regions are not allowed to overlap. They presented an O (n6) algorithm that computes local alignments with inver-
sions between two strings of length n and m based on the dynamic programming, where n ≥ m. Gao et al. [5] designed
a space-efficient dynamic programming algorithm for computing optimal alignment with inversions between two DNA se-
quences. Their algorithm maintains all possible ending positions of inversions and finds all alignments in O (n2m2) time
using O (nm) space. Chen et al. [4] designed an O (n2m2) algorithm that computes an optimal alignment between a pair of

✩ A preliminary version of this paper appeared in Proceedings of the 8th International Workshop on Algorithms and Computation, WALCOM 2014, LNCS,
vol. 8344, 261–272, 2014.

* Corresponding author.
E-mail addresses: dajung@cs.yonsei.ac.kr (D.-J. Cho), emmous@cs.yonsei.ac.kr (Y.-S. Han), kimhwee@cs.yonsei.ac.kr (H. Kim).
http://dx.doi.org/10.1016/j.tcs.2014.10.036
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.10.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:dajung@cs.yonsei.ac.kr
mailto:emmous@cs.yonsei.ac.kr
mailto:kimhwee@cs.yonsei.ac.kr
http://dx.doi.org/10.1016/j.tcs.2014.10.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.10.036&domain=pdf

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 91
Fig. 1. An example of chromosomal inversion and translocation: the left image describes the chromosome inversion and the right image describes the
chromosome translocation.

Table 1
Related research.

Problem Authors Time Space

Alignment with inversions Schöniger and Waterman (1992) [16] O (n6) O (n2)

Gao et al. (2003) [5] O (n2m2) O (nm)

Chen et al. (2004) [4] O (n2m2) O (nm)

Alves et al. (2005) [1] O (n3 logn) O (n2)

Vellozo et al. (2006) [17] O (n2m) O (n2)

Pattern matching with inversions Cantone et al. (2013) [2] O (nm) O (m2)

Pattern matching with inversions and translocations Cantone et al. (2010) [3] O (nm2) O (m2)

Grabowski et al. (2011) [6] O (nm2) O (m)

Fig. 2. An example of non-overlapping inversions and translocations on both strings x and y, where Ox = {θ(1,2), τ(5,8), τ(n−3,n)} and Oy =
{τ(2,5), θ(7,9), θ(n−2,n)}. Note that Ox and Oy are sets of non-overlapping inversions and translocations, θ(i, j) denotes an inversion from position i to j,
and τ(i, j) denotes a translocation that relocates the subsequence (i, j−i+1

2) to (j−i+1
2 + 1, j).

DNA sequences with inversion operations. Vellozo et al. [17] presented an O (n2m) algorithm and improved the previous
algorithm by Schöniger and Waterman [16]. Recently, Cantone et al. [2] introduced an O (nm) algorithm using O (m2) space
for the string matching problem, which is to find all locations of a pattern of length m with respect to a text of length n
based on non-overlapping inversions. Furthermore, for the pattern matching problem allowing inversions and translocations,
Cantone et al. [3] designed the first algorithm with O (nm2) time and O (m2) space. Grabowski et at. [6] investigated the
previous problem and obtained an O (n) average runtime algorithm.

Many diseases are often caused by genetic mutations, which can be inherited through generations and produce new
sequences from a normal gene [7]. In other words, we may have two different sequences from a normal gene by different
mutations. This motivates us to examine the problem of deciding whether or not two gene sequences are mutated from the
same gene sequence. In particular, we consider an inversion and translocation mutation. See Fig. 2 for an example.

Our problem is different from the previous problem [17], where a non-overlapping inversion occurs only in one string
and transforms the string to the other string. Our problem considers two non-overlapping operations (inversions and translo-
cations) allowed on both x and y simultaneously. We first determine all existences of inversions and translocations on both
strings. Once we know the existences, we retrieve the corresponding alignment efficiently. We rely on two set (a formal def-
inition is provided in Section 2) O1 and O2 of non-overlapping inversions and translocations, and a string O1(x) obtained
by applying all inversions and translocations in O1 to a string x. Note that our problem is equivalent to searching two sets
O1 and O2 of non-overlapping inversions and translocations such that y = O2(O1(x)).

2. Preliminaries

Let A[a1][a2] · · · [an] be an n-dimensional array, where the size of each dimension is ai for 1 ≤ i ≤ n. Let A[i1][i2] · · · [in]
be the element of A with indices (i1, i2, . . . , in). Given a finite set Σ of characters and a string s over Σ , we use
|s| to denote the length of s and s[i] to denote the symbol of s at position i. We use s[i : j] to denote a substring
s[i]s[i + 1] · · · s[j], where 1 ≤ i ≤ j ≤ |s|. We consider an inversion θ and denote by θ(s) the reversal1 of a string s; namely,
θ(s) = s[n]s[n − 1] · · · s[2]s[1], where n = |s|.

1 In biology, inversion is a composition of a reversal operation and a complement operation. However, inversion is often regarded as reversal in the string
matching and alignment literature for the simplicity of analysis. We also follow this convention.

92 D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101
We define an inversion operation θ(i, j) for a given range i, j as follows:

θ(i, j)(s) = θ
(
s[i : j]).

We also consider a translocation τ and define τ (s) = s2s1, where s = s1s2 and |s1| = |s2|. We define a translocation
operation τ(i, j) for a given range i, j as follows:

τ(i, j)(s) = τ
(
s[i : j]).

We say that i+ j
2 is the center of the operation for θ(i, j) or τ(i, j) . Given a positive constant n, we define a set O of non-

overlapping inversions and translocations to be

O = {
θ(ik,ik+1−1) or τ(ik,ik+1−1)

∣∣ ik ∈R, 1 ≤ k ≤ |R| − 1
}
,

where R = {ik | ik < ik+1 for 1 ≤ k ≤ |R| − 1, i1 = 1, i|R| = n}. Then, for a string s of size n, we have O(s) = s′ , where

s′[i : j] =
{

θ(s[i : j]) if θ(i, j) ∈ O,

τ (s[i : j]) if τ(i, j) ∈ O.

From now on, we use a set of operations instead of a set of non-overlapping inversions and translocations since we only
consider sets of non-overlapping inversions and translocations.

Definition 2.1. We define a new alignment problem with non-overlapping inversions and translocations on two strings as
follows: given two strings x and y of the same length, find two sets Ox and Oy of operations such that Ox(x) = Oy(y), if
such two sets exist.

3. The algorithm

Before we present an algorithm, we first introduce some definitions, which lead to the definition of a legal sequence, and
prove that finding an alignment on two strings is equivalent to finding legal sequences on two strings. Then, we design an
algorithm that finds legal sequences on two strings (and their alignments).

3.1. Reformulating the problem using legal sequences

We use x = AGCTCA and y = CAGATC as our example strings for explaining the algorithm. Remark that θ(AG)τ (CTCA) =
GACACT = τ (CAGA)θ(TC) and, thus, we have two sets Ox = {θ(1,2), τ(3,6)} and Oy = {τ(1,4), θ(5,6)}.

We start from building two tables in which each cell contains a pair of a range and a character. First, we define an
inversion fragment table Tx[n][n] (IFT for short) for x as follows:

Tx[i][j] =
{

((j, i), x[j]) if j ≤ i,
((i, j), x[j]) if j > i.

Next, we define a translocation fragment table Ux[n][� n
2 �][2] (TFT for short) for x as follows:

Ux[i][j][k] =
{

((i − j − 1, i + j), x[i + j]) if k = 1 and i + j ≤ n,

((i − 2 j + 1, i), x[i − j]) if k = 2 and 0 ≤ i − j.

We call all elements in Tx inversion fragments (IFs for short) of x and all elements in Ux translocation fragments (TFs for
short) of x. We use fragments to mean both IFs and TFs. For a fragment F = ((p, q), σ), we say that F yields the character σ ,
p+q

2 is the center of the fragment and q − p + 1 is the length of the fragment. For a sequence of fragments F1, . . . , Fn , where
Fi yields σi , we say that the sequence yields a string σ1 · · ·σn . Figs. 3 and 4 show examples of IFT and TFT.

IFs become useful for computing a substring created by an inversion because of the following property of the inversion
operation:

Observation 3.1. For a string x and its Tx ,

(1) θ(i, j)(x) = θ(x[j])θ(x[j − 1]) · · · θ(x[i + 1])θ(x[i]),
(2) A sequence Tx[i][j], Tx[i + 1][j − 1], . . . , Tx[j − 1][i + 1], Tx[j][i] of IFs yields θ(i, j)(x). IFs in the sequence have the same

center i+ j
2 .

Fig. 3 shows an example of Observation 3.1(2). From Observation 3.1, we know that if we apply θ(min(i, j),max(i, j)) to x,
then σ yielded by Tx[i][j] becomes the ith character of the result string. Similarly, TFs are useful for computing a substring
created by a translocation because of the following property of the translocation operation:

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 93
Fig. 3. IFT Tx for x = AGCTCA. Shaded cells denote IFs for the inversion θ(2,5) .

Fig. 4. TFT Ux for x = AGCTCA. Shaded cells denote TFs for the translocation τ(2,5) .

Fig. 5. Graphical representation of Observation 3.2(1).

Observation 3.2. For a string x and its Ux ,

(1) Let w = τ(i, j)(x). Then τ(i+1, j+1)(x) = w[2 : j−i+1
2]x[j + 1]w[j−i+5

2 : j − i + 1]x[j−i+3
2].

(2) A sequence Ux[i][l
2][1], Ux[i + 1][l

2][1], . . . , Ux[i + l
2][l

2][1], Ux[i + l
2 + 1][l

2][2], Ux[i + l
2 + 2][l

2][2], . . . , Ux[j][l
2][2] of

TFs yields τ(i, j)(x), where l = j − i − 1. TFs in the sequence have the same length l.

Fig. 5 shows an example of Observation 3.2(1). Fig. 4 shows an example of Observation 3.2(2). From Observation 3.2,
we know that if we apply a translocation of length 2 j to x, then σ yielded by Ux[i][j][k] becomes the ith character of the
result string if index i is in the kth half of the translocation.

It is easy to verify from the construction that we can construct Tx and Ux in O (n2) time and the size of Tx and Ux is
O (n2), where |x| = n. We also construct T y and U y for y. Next, we define an agreed sequence and a partially agreed sequence
of fragments.

Definition 3.3. Given a sequence F1, F2, . . . , Fl of l fragments of a string x, we say that the sequence is an agreed sequence
from index i1 to i2 = i1 + l − 1 of x if one of the following conditions holds:

(1) Fh = Tx[i1 + h − 1][i1 + l − h] for all h or

(2) Fh = Ux[i1 + h − 1][l
2][1] if h ≤ i1 + l

2 − 1 and Ux[i1 + h − 1][l
2][2] if h ≥ i1 + l

2 .

We also say that for an agreed sequence F1, F2, . . . , Fl , a sequence F1, F2, . . . , Fm is a partially agreed sequence if m ≤ l.

Shaded cells in Figs. 3 and 4 represent two agreed sequences. From Observations 3.1 and 3.2, we establish the following
result:

Lemma 3.4. If a sequence is an agreed sequence of IFs of x from index i1 to i2 , then the sequence yields θ(i1,i2)(x). If a sequence is an
agreed sequence of TFs of x from index i1 to i2 , then the sequence yields τ(i1,i2)(x).

Next, we define a connected sequence and a partially connected sequence of fragments.

Definition 3.5. A connected sequence is defined recursively as follows:

94 D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101
(1) If a sequence is an agreed sequence from i1 to i2, then the sequence is a connected sequence from i1 to i2.
(2) If a sequence F1, F2, . . . , Fl1 is a connected sequence from i1 to i2 and another sequence F

′
1, F

′
2, . . . , F

′
l2

is a connected
sequence from i2 + 1 to i3, then the sequence F1, . . . , Fl1 , F

′
1, . . . , F

′
l2

is a connected sequence from i1 to i3.

We also define a partially connected sequence: if a sequence F1, F2, . . . , Fl1 is a connected sequence from i1 to i2 and
another sequence F

′
1, F

′
2, . . . , F

′
l2

is a partially agreed sequence from i2 + 1 to i3, then the sequence F1, . . . , Fl1 , F
′
1, . . . , F

′
l2

is a partially connected sequence from i1 to i3.

Finally, we define a legal sequence of fragments.

Definition 3.6. A sequence is a legal sequence of fragments of x (or y, respectively) if the sequence is a connected sequence
from 1 to n = |x| and there exists a connected sequence of fragments of y (or x, respectively) from 1 to n that yields the
same string as the sequence.

From Lemma 3.4, Definitions 3.5 and 3.6, we have:

Lemma 3.7. Given two strings x and y of the same length, there exist two sets Ox and Oy of operations such that s =Ox(x) =Oy(y)

if and only if there exist two legal sequences Sx and Sy that yield s for x and y, respectively.

It follows from Lemma 3.7 that we have an alignment for x and y if and only if we find two legal sequences Sx and Sy
for x and y.

3.2. Searching for legal sequences

The main idea of our algorithm is to keep tracking of all possible agreed sequences, append them to connected se-
quences and ensure that connected sequences of fragments of x and y generate the same substring. Assume that we inspect
the (i + 1)th index and the agreed sequence that we track is Fi1 , Fi1+1, · · · , Fi2 from i1 to i2, where i1 ≤ i ≤ i2. Note that
the agreed sequence is a part of a connected sequence from 1 to i2. For index i + 1, we need to check the following five
cases to build a partially connected sequence from 1 to i + 1 (see Fig. 6 for an illustration):

1. i = i2: since the agreed sequence that we have tracked ends at i, we append the first fragment of a new agreed sequence
to the agreed sequence that we have tracked to construct a partially connected sequence from 1 to i + 1. Note that we
can add an inversion or a translocation starting from i + 1 to a set of operations equivalent to a connected sequence
from 1 to i. For an inversion, we can choose IF Tx[i + 1][j] = ((i + 1, j), x[j]) for a new agreed sequence of IFs from
i + 1 to j where j ≥ i + 1. For a translocation, we can choose TF Ux[i + 1][j][1] = ((i − j + 2, i + j + 1), x[i + j + 1]) for
a sequence of TFs from i + 1 to i + 2 j where j ≥ i + 1 and i + 2 j ≤ n.

2. i < i2 and the agreed sequence is for an inversion: if Fi = Tx[i][j], then Fi+1 = Tx[i + 1][j − 1] from Definition 3.3.
3. i < i1+i2−1

2 and the agreed sequence is for a translocation: the current index i + 1 is in the first half of the translocation
that the sequence represents. If Fi = Ux[i][j][1], then Fi+1 = Ux[i + 1][j][1] from Definition 3.3.

4. i = i1+i2−1
2 and the agreed sequence is for a translocation: the current index i + 1 is the start index of the second half

of the translocation that the sequence represents. If Fi = Ux[i][j][1], then Fi+1 = Ux[i + 1][j][2] from Definition 3.3.
5. i1+i2+1

2 ≤ i < i2 and the agreed sequence is for a translocation: the current index i + 1 is in the second half of the
translocation that the sequence represents. If Fi = Ux[i][j][2], then Fi+1 = Ux[i + 1][j][2] from Definition 3.3.

We use tables Si
x[2][n] and Ri

x[2][� n
2 �][2] to record all partial agreed sequences of IFs and TFs that we are tracking,

respectively. Namely, if (i1, σ1σ2) ∈ Si
x[2][j], then there is a partially agreed sequence of IFs from i1 to i, where the last IF of

the sequence is Tx[i][j] and the last two IFs yield σ1σ2. Similarly, if (i1, σ1σ2) ∈ Ri
x[2][j][k], then there is a partially agreed

sequence of TFs from i1 to i, where the last TF of the sequence is Ux[i][j][k] and the last two TFs yield σ1σ2. We ensure that
these partially agreed sequences are appended to any connected sequence from 1 to i1 − 1 and, thus, we now have partially
connected sequences from 1 to i by checking the first case (the case when i = i2; See Case 1 in Fig. 6). For an element
(i1, σ1σ2) ∈ Si

x[2][j] or Ri
x[2][j][k], we say that the element is a sequence indicator (indicator for short) with a start index i1

and the sequence indicator yields σ1σ2. For each index, we also need to check whether or not partially connected sequences
of fragments of x and y generate the same set of substrings. We use a table C i

x[|Σ |][|Σ |] to record two characters yielded
by the ith and (i + 1)th fragments of partially connected sequences of x. Moreover, we use tables Ix[n][n] and Hx[n][n] to
record inversions and translocations corresponding to agreed sequences in partially connected sequences. Namely, if Ix[i][j]
(Hx[i][j]) is true, then θ(i, j) (τ(i, j)) corresponds to an agreed sequence in a partially connected sequence. We design an
algorithm that computes Si

x , Ri
x , Si

y and Ri
y for each index and checks whether or not there exist legal sequences for x

and y.
Before the algorithm starts, we set initial data for S1

x and R1
x ; we add (1, Aσ) to S1

x [1][j] if Tx[1][j] yields σ and set
Ix[1][j] true. We also add (1, Aσ) to R1

x [1][j][1] if Ux[1][j][1] yields σ and set Hx[1][2 j] true. We also set S1
y , I y , R1

y and

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 95
Fig. 6. The five cases to build a partially connected sequence from 1 to i + 1. Shaded cells in Tx denote IFs for the inversion θ(i1,i2) and shaded cells in Ux

denote TFs for the translocation τ(i1,i2) .

H y similarly. Note that each cell of Si
x and Ri

x is a sequence with O (n) indicators. The algorithm sorts indicators in each cell
of Si

x and Ri
x in ascending order with respect to the start index, which is crucial in the runtime analysis. Now we execute

the following steps from index 1 to n − 1 for x and y. We only illustrate the case for x. (The case for y is similar.)
The first two steps process agreed sequences of IFs.

STEP-1. We check all agreed sequences of IFs ending at i and record the first fragment of a new agreed sequence that
can be appended to any connected sequence from 1 to i. When (j, σ0σ1) ∈ Si

x[1][j], we execute the following procedure
(see Fig. 7 for an illustration):

1. Append (i + 1, σ1σ2) to Si
x[2][j′] and set I[i + 1][j′] true for j′ ≥ i + 1, where Tx[i + 1][j′] yields σ2.

2. Append (i + 1, σ1σ2) to Ri
x[2][j′][1] and set H[i + 1][i + 2 j′] true for j′ ≥ i + 1 and i + 2 j′ ≤ n, where Ux[i + 1][j′][1]

yields σ2.

STEP-2. We check all agreed sequences of IFs not ending at i (which are partially agreed sequences) and find IFs for all
partially connected sequences from 1 to i + 1. When (i1, σ0σ1) ∈ Si

x[1][j] and i1 	= j, we prepend (i1, σ1σ2) to Si
x[2][j − 1],

where Tx[i + 1][j − 1] yields σ2 (see Fig. 8 for an illustration).

The next two steps process agreed sequences of TFs.

STEP-3. We check all agreed sequences of TFs ending at i and record the first fragment of a new agreed sequence that
can be appended to any connected sequence from 1 to i. When (i − 2 j + 1, σ0σ1) ∈ Ri

x[1][j][2], we execute the following
procedure (see Fig. 9 for an illustration):

1. Append (i + 1, σ1σ2) to Si
x[2][j′] and set I[i + 1][j′] true for j′ ≥ i + 1, where Tx[i + 1][j′] yields σ2.

2. Append (i + 1, σ1σ2) to Ri
x[2][j′][1] and set H[i + 1][i + 2 j′] true for j′ ≥ i + 1 and i + 2 j′ ≤ n, where Ux[i + 1][j′][1]

yields σ2.
STEP-4. We check all agreed sequences of TFs not ending at index i (which are partially agreed sequences) and find TFs
for all partially connected sequences from 1 to i + 1. Then, we check the following three conditions (see Fig. 10 for an
illustration):

1. If (i1, σ0σ1) ∈ Ri
x[1][j][1] and i < i1 + j − 1: prepend (i1, σ1σ2) to Ri

x[2][j][1] where Ux[i + 1][j][1] yields σ2.
2. If (i1, σ0σ1) ∈ Ri

x[1][j][1] and i = i1 + j − 1: prepend (i1, σ1σ2) to Ri
x[2][j][2] where Ux[i + 1][j][2] yields σ2.

3. If (i1, σ0σ1) ∈ Ri
x[1][j][1] and i < i1 + 2 j − 1: prepend (i1, σ1σ2) to Ri

x[2][j][2] where Ux[i + 1][j][2] yields σ2.

96 D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101
Fig. 7. An illustration of STEP-1 for x = ACTCGA.

Fig. 8. An illustration of STEP-2 for x = ACTCGA.

From STEPS-1 to 4, we find all partially connected sequences from 1 to i + 1. The next two steps ensure that these
partially connected sequences of fragments of x and y yield the same set of substrings.

STEP-5. For all (i1, σ1σ2) ∈ Si
x[2][j] or Ri

x[2][j], where 1 ≤ j ≤ n, we set C i
x[σ1][σ2] true.

We, then, run the same procedures from STEP-1 to STEP-5 for a string y before we start STEP-6.

STEP-6. We set C ′ i
x as follows:

C ′ i
x [σ1][σ2] =

{
true if C i

x[σ1][σ2] = true and C i
y[σ1][σ2] = true,

false otherwise.

Once we compute C ′ i
x , for each (i1, σ1σ2) ∈ Si

x[2][j], we remove (i1, σ1σ2) from Si
x[2][j] and set Ix[i1][i + j +

1 − i1] false if C ′ i
x [σ1][σ2] = false. Moreover, for each (i1, σ1σ2) ∈ Ri

x[2][j][k], we remove (i1, σ1σ2) from Ri
x[2][j][k] and

set Hx[i1][i1 + 2 j − 1] false if C ′ i
x [σ1][σ2] = false (see Fig. 11 for an illustration).

After we finish calculating Si
x , Ri

x , Si
y and Ri

y using STEPS-1 to 6 from index 1 to n − 1, we check whether or not the
second columns of Sn−1

x , Rn−1
x , Sn−1

y and Rn−1
y are empty. If they are not empty, then there exist connected sequences

for x and y that yield the same string and, thus, we have legal sequences. Otherwise—they are empty—there are no legal
sequences for x and y.

We are now ready to present the whole procedure of our algorithm. Algorithm 1 is a pseudo description of the proposed
algorithm.

We first prove the correctness of the algorithm.

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 97
Fig. 9. An illustration of STEP-3 for x = ACTCGA.

Fig. 10. An illustration of STEP-4 for x = ACTCGA.

Lemma 3.8. If Algorithm 1 returns true, then there exist two sets Ox and Oy of operations such that Ox(x) = Oy(y). Moreover, we
can retrieve Ox and Oy as follows; let Rx = {(ik, ik+1 − 1)} be a sequence of ranges covering the index 1 to n where Ix[ik][ik+1 − 1] =
true or Hx[ik][ik+1 − 1] = true. Then Ox = {θ(i, j) | (i, j) ∈ Rx and Ix[i][j] = true} ∪ {τ(i, j) | (i, j) ∈ Rx and Hx[i][j] = true}. Oy is
generated similarly.

Proof. For (i +1, σ1σ2) added to Si
x[2][j′] in lines 8 or 19, indicators with the same start index are maintained till i reaches

j′ (in line 6). Similarly, for (i + 1, σ1σ2) added to Ri
x[2][j′][1] in lines 11 or 22, indicators with the same start index are

maintained till i reaches i + 2 j − 1 (in line 17). Therefore, if Algorithm 1 returns true, there exist an index i such that
Ix[i][n] = true or Hx[i][n] = true and, thus, Ox and Oy exist.

Since σ1 and σ2 in lines 36 and 40 are yielded by fragments in Tx and Ux , there exist two sequences Sx and Sy of
fragments that yield the same string s. For each operation in Ox , we have two cases to consider:

1. For θ(ik,ik+1−1) , Ix[ik][ik+1 −1] = true. This follows that Tx[i][ik + ik+1 −1 − i] yields s[i] (from line 15) for ik ≤ i ≤ ik+1 −1
(from line 6). Therefore, θ(ik,ik+1−1) yields s[ik : ik+1 − 1].

2. For τ(ik,ik+1−1) , Hx[ik][ik+1 − 1] = true. Let j = ik+1−ik
2 . This implies that Ux[i][j][1] yields s[i] for ik ≤ i ≤ ik + j − 1 (from

line 26) and Ux[i][j][2] yields s[i] for ik + j ≤ i ≤ ik + 2 j − 1 = ik+1 − 1 (from lines 26, 28 and 17). Therefore, τ(ik,ik+1−1)

yields s[ik : ik+1 − 1].

From the analysis of two cases for x and y, we conclude that Ox(x) =Oy(y) = s. �
Lemma 3.9. If there exist two sets Ox and Oy of operations such that Ox(x) = Oy(y), then Algorithm 1 returns true. Moreover,
Ix[i][j] = true for θ(i, j) ∈Ox and Hx[i][j] = true for τ(i, j) ∈Ox (similar for Oy).

98 D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101
Fig. 11. An illustration of STEP-6 for x = ACTCGA and y = CAGATC.

Proof. Since Ox(x) = Oy(y), there exist corresponding legal sequences Sx and Sy that yield the same string, say s. If the
second columns of both Si

x and Ri
x are empty after line 44 for an index i, these legal sequence cannot exist. Therefore, the

second columns of Sn−1
x and Rn−1

x should be not empty and Algorithm 1 returns true. For each operation in Ox, we consider
two cases.

1. For θ(ik,ik+1−1) , (ik, σ1σ2) is added to Sik−1
x [2][ik+1 − 1] and I[ik − 1 + 1][ik+1 − 1] becomes true from lines 8, 9, 19

and 20.
2. For τ(ik,ik+1−1) , (ik, σ1σ2) is added to Rik−1

x [2][ik+1−ik
2][1] and T [ik − 1 + 1][ik + 2 · ik+1−ik

2] becomes true from lines 11,
12, 22 and 23.

For all two cases, the statement holds. �
Next, we prove that indicators in each cell of Si

x and Ri
x are sorted by ascending order with respect to the start index.

Lemma 3.10. In Algorithm 1, indicators (i2, σ1σ2) in each cell of Si
x[2][j] are sorted by ascending order with respect to i2 and i2 ≤ i +1

after line 33 for every i.

Proof. We prove the statement by induction on i. Note that cells of Si
x[2][j] are updated in lines 8, 15 and 19 of Algorithm 1.

Base Case Since i = 1, (2, σ1σ2) is appended to S1
x [2][j′] in lines 8 and 19. In line 15, i1 is always 1 from the initialization

of S1
x and (1, σ1σ2) is appended to S1[2][j − 1]. Therefore, indicators in each cell of S1

x [2][j] are sorted by ascending
order after line 33. The maximum value of start indices is 2, which is i + 1.

Induction Hypothesis Assume indicators (i2, σ1σ2) in each cell of Si
x[2][j] are sorted by ascending order with respect to i2

and i2 ≤ i + 1 after line 33 for an index i.

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 99
Algorithm 1: FindLegalSequences.
Input: Strings x and y
Output: Boolean (whether or not there exist Ox and Oy such that Ox(x) = Oy(y).)
/* time complexity: O (n3), space complexity: O (n2) */

1 make Tx , Ux , T y , U y

2 initialize S1
x , R1

x , S1
y , R1

y , Ix , Hx , I y and H y

3 for i ← 1 to n − 1 do
4 for strings x and y do
5 for j ← 1 to n do // STEP-1
6 if (j, σ0σ1) ∈ Si

x[1][j] then
7 for j′ ← i + 1 to n do
8 append (i + 1, σ1σ2) to Si

x[2][j′], where σ2 is yielded by Tx[i + 1][j′]
9 Ix[i + 1][j′] ← true

10 for j′ ← 2 to �n/2� do
11 append (i + 1, σ1σ2) to Ri

x[2][j′][1], where σ2 is yielded by Ux[i + 1][j′][1]
12 Hx[i + 1][i + 2 j′] ← true

13 for j ← 2 to n do // STEP-2
14 for each (i1, σ0σ1) ∈ Si

x[1][j], i1 in descending order except j do
15 prepend (i1, σ1σ2) to Si

x[2][j − 1], where Tx[i + 1][j − 1] yields σ2

16 for j ← 1 to n do // STEP-3
17 if (i − 2 j + 1, σ0σ1) ∈ Ri

x[1][j][2] then
18 for j′ ← i + 1 to n do
19 append (i + 1, σ1σ2) to Si

x[2][j′], where σ2 is yielded by Tx[i + 1][j′]
20 Ix[i + 1][j′] ← true

21 for j′ ← 2 to �n/2� do
22 append (i + 1, σ1σ2) to Ri

x[2][j′][1], where σ2 is yielded by Ux[i + 1][j′][1]
23 Hx[i + 1][i + 2 j′] ← true

24 for j ← 1 to n do // STEP-4
25 for each (i1, σ0σ1) ∈ Ri

x[1][j][1], i1 in descending order except i − 2 j + 1 do
26 if i < i1 + j − 1 then prepend (i1, σ1σ2) to Ri

x[2][j][1], where Ux[i + 1][j][1] yields σ2 else prepend (i1, σ1σ2) to Ri
x[2][j][2],

where Ux[i + 1][j][2] yields σ2

27 for each (i1, σ0σ1) ∈ Ri
x[1][j][2], i1 in ascending order except i − 2 j + 1 do

28 if i < i1 + 2 j − 1 then append (i1, σ1σ2) to the end of Ri
x[2][j][2], where Ux[i + 1][j][2] yields σ2

29 clear C i
x

30 for j ← 1 to n do // STEP-5
31 for each (i1, σ1σ2) ∈ Si

x[2][j] or Ri
x[2][j] do C i

x[σ1][σ2] ← true

32 C ′ i
x , C ′ i

y ← C i
x ∧ C i

y // STEP-6

33 for strings x and y do
34 for j ← 1 to n do
35 for each (i1, σ1σ2) ∈ Si

x[2][j] do
36 if C ′ i

x [σ1][σ2] = false then
37 remove (i1, σ1σ2)

38 Ix[i1][i + j + 1 − i1] ← false

39 for each (i1, σ1σ2) ∈ Ri
x[2][j][k] do

40 if C ′ i
x [σ1][σ2] = false then

41 remove (i1, σ1σ2)

42 Hx[i1][i1 + 2 j − 1] ← false

43 copy the second columns of Si
x , Ri

x , Si
y and Ri

y to the first columns of Si+1
x , Ri+1

x , Si+1
y and Ri+1

y .

44 return the second columns of Sn−1
x , Rn−1

x , Sn−1
y and Rn−1

y are not empty

Inductive Step For an index i + 1, indicators (i1, σ0σ1) in each cell of Si+1
x [1][j] is sorted by ascending order with respect

to i1 from the induction hypothesis and line 43. In lines 8 and 19, (i + 2, σ1σ2) is appended to Si+1
x [2][j′]. In line 15,

(i1, σ1σ2) is prepended to Si+1
x [2][j − 1] in descending order with respect to i1, where i1 ≤ i + 1 from the induction

hypothesis. Therefore, indicators (i2, σ1σ2) in each cell of Si+1
x [2][j] are sorted by ascending order with respect to i2

after line 33. The maximum value of i2 is i + 2, which is (i + 1) + 1. �
Lemma 3.11. In Algorithm 1, indicators (i2, σ1σ2) in each cell of Ri

x[2][j][k] are sorted by ascending order with respect to i2 and
i2 ≤ i + 1 after line 33 for every i.

100 D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101
Proof. We prove the statement by induction on i. Note that cells of Ri
x[2][j][k] are updated in lines 11, 22, 26 and 28.

Base Case Since i = 1, (2, σ1σ2) is appended to R1
x [2][j][1] in lines 11 and 22. In line 26, i1 is always 1 from the initializa-

tion of R1
x and (1, σ1σ2) is appended to R1[2][j][k]. In line 28, there is no indicator in R1

x [1][j][2]. Therefore, indicators
in each cell of R1

x [2][j][k] are sorted by ascending order after line 33. The maximum value of start indices is 2, which
is i + 1.

Induction Hypothesis Assume indicators (i2, σ1σ2) in each cell of Ri
x[2][j][k] are sorted by ascending order with respect

to i2 and i2 ≤ i + 1 after line 33 for an index i.

Inductive Step For an index i + 1, indicators (i1, σ0σ1) in each cell of Ri+1
x [1][j][k] is sorted by ascending order with

respect to i1 from the induction hypothesis and line 43. In lines 11 and 22, (i + 2, σ1σ2) is appended to Ri+1
x [2][j′][1].

In lines 26 and 28, (i1, σ1σ2) is prepended to Ri[2][j][k] in descending order with respect to i1, where i1 ≤ i + 1 from
the induction hypothesis. Therefore, indicators (i2, σ1σ2) in each cell of Ri+1

x [2][j][k] are sorted by ascending order
with respect to i2 after line 33. The maximum value of i2 is i + 2, which is (i + 1) + 1. �

Before we analyze the time and space complexity of Algorithm 1, we establish the following results.

Lemma 3.12. In Algorithm 1, the maximum value of start indices of indicators in Si
x[1][j] in line 6 is at most j.

Proof. From Lemma 3.10, the maximum value of start indices of indicators in Si
x[2][j] after line 33 is i + 1. Moreover,

(i + 1, σ1σ2) is added to Si
x[2][j′] in lines 9 and 19, where i + 1 ≤ j′ . Therefore, when j ≤ i, the maximum value of start

indices of indicators in Si
x[2][j] is less than j. When j ≥ i + 1, the maximum value of start indices of indicators in Si

x[2][j]
is j. From line 43, the maximum value of start indices of indicators in Si

x[1][j] in line 6 is at most j. �
Lemma 3.13. In Algorithm 1, the minimum value of start indices of indicators in Ri[1][j][2] in line 17 is at least i − 2 j + 1.

Proof. The if-statement in line 17 checks the existence of (i − 2 j + 1, σ0σ1) in Ri
x[1][j][2] and (i − 2 j + 1, σ0σ1) increases

as i increases for fixed j. Therefore, if (i′ − 2 j + 1, σ0σ1) ∈ Ri
x[1][j][2] where i′ ≤ i, then the indicator should have been

checked for the index i′ and removed from Ri
x[1][j][2]. �

Now we are ready to analyze the time and space complexity of Algorithm 1.

Theorem 3.14. Algorithm 1 runs in O (n3) time using O (n2) space, where n = |x| = |y|.

Proof. From Lemmas 3.10 and 3.12, we need to check only the last indicator in Si
x[1][j] at line 6. Therefore, STEP-1 requires

O (n3) time. From Lemmas 3.11 and 3.13, we need to check only the first indicator in Ri
x[1][j][2] at line 17. Therefore, STEP-3

also requires O (n3) time. It is clear from iterations that STEPS-2, -4, -5, -6 require at most O (n3) time. Therefore, the time
complexity of Algorithm 1 is O (n3). For the space requirement, Tx, Ux, Si

x, Ri
x, Ix, Hx requires O (n2) space. Therefore, the

space complexity of Algorithm 1 is O (n2). �
Algorithm 2 is a pseudo description of retrieving an alignment from Ix , Hx , I y and H y after Algorithm 1 finishes, based

on Lemmas 3.8 and 3.9.

Lemma 3.15. Algorithm 2 runs in O (n) time using O (n) space.

Proof. For each iteration from line 4 to 13, i decreases by at least 1. Since i = n before the iteration and the end condition
is i = 0, the iteration runs in O (n) time. Therefore, Algorithm 2 runs in O (n) time. For the space requirement, Ox and Oy
requires O (n) space. Therefore, the space complexity of Algorithm 2 is O (n). �

Based on Lemmas 3.8 and 3.9 and Algorithm 2, we establish the following result:

Theorem 3.16. We can determine the existence of an alignment with non-overlapping inversions and translocations on two strings x
and y in O (n3) time using O (n2) space, where n is the size of input strings. Moreover, we can find two sets Ox and Oy of operations
such that Ox(x) =Oy(y) in O (n) time using O (n) space if there exists an alignment.

4. Conclusions

An inversion and a translocation are important for bio sequences including DNAs or RNAs and these operations are
closely related to mutations. We have, in particular, considered non-overlapping inversions and translocations on both se-
quences, which is crucial to find the original common sequence from two mutated sequences. We have introduced a new

D.-J. Cho et al. / Theoretical Computer Science 575 (2015) 90–101 101
Algorithm 2: RetrieveAlignments.
Input: Array Ix[n][n], Hx[n][n], I y [n][n] and H y [n][n] from Algorithm 1
Output: Sets Ox and Oy of operations such that Ox(x) = Oy(y)

/* time complexity: O (n), space complexity: O (n) */
1 make empty sets Ox and Oy

2 for strings x and y do
3 i, j ← n
4 repeat
5 if Ix[i][j] = true then
6 add θ(i, j) to Ox

7 i, j ← i − 1

8 else if Hx[i][j] = true then
9 add τ(i, j) to Ox

10 i, j ← i − 1

11 else
12 i ← i − 1

13 until i = 0

14 return Ox and Oy

problem, alignment with non-overlapping inversions and translocations on two strings, and presented a polynomial algo-
rithm for the problem. Given two strings x and y, based on the properties of inversions and translocations, our algorithm
decides whether or not there exist two sets Ox and Oy of operations for x and y such that Ox(x) = Oy(y) in O (n3) time
using O (n2) space, where n = |x| = |y|. Once we know the existence of such Ox and Oy , we can retrieve Ox and Oy

in O (n) time using O (n) space. One future work is to improve the current running time O (n3). As far as we are aware,
this algorithm is the first try to find an alignment with non-overlapping inversions and translocations on both strings. Our
alignment problem can be extended to approximate pattern matching or edit distance problem.

Acknowledgements

We wish to thank the referees for the careful reading of the paper and many valuable suggestions.
This research was supported by the Basic Science Research Program through NRF (National Research Foundation)

of Korea funded by MEST (2012R1A1A2044562). Kim was supported by NRF Grant funded by the Korean Government
(NRF-2013-Global Ph.D. Fellowship Program).

References

[1] C.E.R. Alves, A.P. do Lago, A.F. Vellozo, Alignment with non-overlapping inversions in O (n3 logn)-time, in: Proceedings of GRACO 2005, in: Electronic
Notes in Discrete Mathematics, vol. 19, 2005, pp. 365–371.

[2] D. Cantone, S. Cristofaro, S. Faro, Efficient string-matching allowing for non-overlapping inversions, Theoret. Comput. Sci. 483 (2013) 85–95.
[3] D. Cantone, S. Faro, E. Giaquinta, Approximate String Matching Allowing for Inversions and Translocations, 2010, pp. 37–51.
[4] Z.-Z. Chen, Y. Gao, G. Lin, R. Niewiadomski, Y. Wang, J. Wu, A space-efficient algorithm for sequence alignment with inversions and reversals, Theoret.

Comput. Sci. 325 (3) (2004) 361–372.
[5] Y. Gao, J. Wu, R. Niewiadomski, Y. Wang, Z.-Z. Chen, G. Lin, A space efficient algorithm for sequence alignment with inversions, in: Proceedings of

COCOON 2003, in: Lecture Notes in Computer Science, vol. 2697, 2003, pp. 57–67.
[6] S. Grabowski, S. Faro, E. Giaquinta, String matching with inversions and translocations in linear average time (most of the time), Inform. Process. Lett.

111 (11) (2011) 516–520.
[7] Z. Ignatova, K. Zimmermann, I. Martinez-Perez, DNA Computing Models, Advances in Information Security, 2008.
[8] J.D. Kececioglu, D. Sankoff, Exact and approximation algorithms for the inversion distance between two chromosomes, in: Proceedings of CPM 1993,

in: Lecture Notes in Computer Science, vol. 684, 1993, pp. 87–105.
[9] S.C. Li, Y.K. Ng, On protein structure alignment under distance constraint, in: Proceedings of ISAAC 2009, in: Lecture Notes in Computer Science,

vol. 5878, 2009, pp. 65–76.
[10] O. Lipsky, B. Porat, E. Porat, B.R. Shalom, A. Tzur, Approximate string matching with swap and mismatch, in: Proceedings of ISAAC 2007, in: Lecture

Notes in Computer Science, vol. 4835, 2007, pp. 869–880.
[11] J.R. Lupski, Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits, Trends Genet. 14 (10)

(1998) 417–422.
[12] C.M. Ogilvie, P.N. Scriven, Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos, European J. Hum. Genet. 10 (12)

(2009) 801–806.
[13] M. Oliver-Bonet, J. Navarro, M. Carrera, J. Egozcue, J. Benet, Aneuploid and unbalanced sperm in two translocation carriers: evaluation of the genetic

risk, Mol. Hum. Reprod. 8 (10) (2002) 958–963.
[14] T.S. Painter, A new method for the study of chromosome rearrangements and the plotting of chromosome maps, Science 78 (1933) 585–586.
[15] Y. Sakai, A new algorithm for the characteristic string problem under loose similarity criteria, in: Proceedings of ISAAC 2011, in: Lecture Notes in

Computer Science, vol. 7074, 2011, pp. 663–672.
[16] M. Schöniger, M.S. Waterman, A local algorithm for DNA sequence alignment with inversions, Bull. Math. Biol. 54 (4) (1992) 521–536.
[17] A.F. Vellozo, C.E.R. Alves, A.P. do Lago, Alignment with non-overlapping inversions in O (n3)-time, in: Proceedings of WABI 2006, in: Lecture Notes in

Computer Science, vol. 4175, 2006, pp. 186–196.

http://refhub.elsevier.com/S0304-3975(14)00828-7/bib416C7665734C563035s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib416C7665734C563035s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib43616E746F6E6543463133s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib43616E746F6E6546473130s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4368656E474C4E57573034s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4368656E474C4E57573034s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib47616F574E57434C3033s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib47616F574E57434C3033s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib477261626F77736B6946473131s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib477261626F77736B6946473131s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib49676E61746F76615A4D3038s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4B65636563696F676C75533933s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4B65636563696F676C75533933s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C694E3039s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C694E3039s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C6970736B79505053543037s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C6970736B79505053543037s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C7570736B693938s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4C7570736B693938s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4F67696C766965533039s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4F67696C766965533039s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4F6C697665724E4345423032s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib4F6C697665724E4345423032s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib5061696E7465723333s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib53616B61693131s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib53616B61693131s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib5363686F6E69676572573932s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib56656C6C6F7A6F414C3036s1
http://refhub.elsevier.com/S0304-3975(14)00828-7/bib56656C6C6F7A6F414C3036s1

	Alignment with non-overlapping inversions and translocations on two strings
	1 Introduction
	2 Preliminaries
	3 The algorithm
	3.1 Reformulating the problem using legal sequences
	3.2 Searching for legal sequences

	4 Conclusions
	Acknowledgements
	References

