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An inversion and a translocation are important in bio sequence analysis and motivate 
researchers to consider the sequence alignment problem using these operations. Based on 
inversion and translocation, we introduce a new alignment problem with non-overlapping 
inversions and translocations—given two strings x and y, find an alignment with non-
overlapping inversions and translocations for x and y. This problem has interesting 
application for finding a common sequence from two mutated sequences. We, in particular, 
consider the alignment problem when non-overlapping inversions and translocations are 
allowed for both x and y. We design an efficient algorithm that determines the existence 
of such an alignment and retrieves an alignment, if exists.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modern biology, it is important to determine exact orders of DNA sequences, retrieve relevant information of DNA 
sequences and align these sequences [2,9,15,16]. A chromosomal inversion occurs when a single chromosome undergoes 
breakage and rearrangement within itself [14]. A chromosomal translocation is to relocate a piece of the DNA sequence from 
one place to another and, thus, rearrange the sequence [12]. The chromosomal inversion and translocation are crucial in 
DNAs since these operations alter a DNA sequence and often cause genetic diseases [11,13]. Fig. 1 shows an example of chro-
mosomal inversion and translocation. String matching with inversion and translocation is defined as follows: given a text T
and a pattern P , the string matching problem is to find all matching of a given pattern P in a text T allowing inversion 
and translocation. We can also consider an alignment problem that transforms given string x to another string y allowing 
inversion and translocation edit operations. Many researchers investigated efficient algorithms for the pattern matching and 
alignment problem with inversion and translocation [1–6,8,10,16,17]. See Table 1 for summary of related research.

Schöniger and Waterman [16] introduced the alignment problem with non-overlapping inversions under the assumption 
that all regions are not allowed to overlap. They presented an O (n6) algorithm that computes local alignments with inver-
sions between two strings of length n and m based on the dynamic programming, where n ≥ m. Gao et al. [5] designed 
a space-efficient dynamic programming algorithm for computing optimal alignment with inversions between two DNA se-
quences. Their algorithm maintains all possible ending positions of inversions and finds all alignments in O (n2m2) time 
using O (nm) space. Chen et al. [4] designed an O (n2m2) algorithm that computes an optimal alignment between a pair of 
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vol. 8344, 261–272, 2014.
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Fig. 1. An example of chromosomal inversion and translocation: the left image describes the chromosome inversion and the right image describes the 
chromosome translocation.

Table 1
Related research.

Problem Authors Time Space

Alignment with inversions Schöniger and Waterman (1992) [16] O (n6) O (n2)

Gao et al. (2003) [5] O (n2m2) O (nm)

Chen et al. (2004) [4] O (n2m2) O (nm)

Alves et al. (2005) [1] O (n3 logn) O (n2)

Vellozo et al. (2006) [17] O (n2m) O (n2)

Pattern matching with inversions Cantone et al. (2013) [2] O (nm) O (m2)

Pattern matching with inversions and translocations Cantone et al. (2010) [3] O (nm2) O (m2)

Grabowski et al. (2011) [6] O (nm2) O (m)

Fig. 2. An example of non-overlapping inversions and translocations on both strings x and y, where Ox = {θ(1,2), τ(5,8), τ(n−3,n)} and Oy =
{τ(2,5), θ(7,9), θ(n−2,n)}. Note that Ox and Oy are sets of non-overlapping inversions and translocations, θ(i, j) denotes an inversion from position i to j, 
and τ(i, j) denotes a translocation that relocates the subsequence (i, j−i+1

2 ) to ( j−i+1
2 + 1, j).

DNA sequences with inversion operations. Vellozo et al. [17] presented an O (n2m) algorithm and improved the previous 
algorithm by Schöniger and Waterman [16]. Recently, Cantone et al. [2] introduced an O (nm) algorithm using O (m2) space 
for the string matching problem, which is to find all locations of a pattern of length m with respect to a text of length n
based on non-overlapping inversions. Furthermore, for the pattern matching problem allowing inversions and translocations, 
Cantone et al. [3] designed the first algorithm with O (nm2) time and O (m2) space. Grabowski et at. [6] investigated the 
previous problem and obtained an O (n) average runtime algorithm.

Many diseases are often caused by genetic mutations, which can be inherited through generations and produce new 
sequences from a normal gene [7]. In other words, we may have two different sequences from a normal gene by different 
mutations. This motivates us to examine the problem of deciding whether or not two gene sequences are mutated from the 
same gene sequence. In particular, we consider an inversion and translocation mutation. See Fig. 2 for an example.

Our problem is different from the previous problem [17], where a non-overlapping inversion occurs only in one string 
and transforms the string to the other string. Our problem considers two non-overlapping operations (inversions and translo-
cations) allowed on both x and y simultaneously. We first determine all existences of inversions and translocations on both 
strings. Once we know the existences, we retrieve the corresponding alignment efficiently. We rely on two set (a formal def-
inition is provided in Section 2) O1 and O2 of non-overlapping inversions and translocations, and a string O1(x) obtained 
by applying all inversions and translocations in O1 to a string x. Note that our problem is equivalent to searching two sets 
O1 and O2 of non-overlapping inversions and translocations such that y = O2(O1(x)).

2. Preliminaries

Let A[a1][a2] · · · [an] be an n-dimensional array, where the size of each dimension is ai for 1 ≤ i ≤ n. Let A[i1][i2] · · · [in]
be the element of A with indices (i1, i2, . . . , in). Given a finite set Σ of characters and a string s over Σ , we use 
|s| to denote the length of s and s[i] to denote the symbol of s at position i. We use s[i : j] to denote a substring 
s[i]s[i + 1] · · · s[ j], where 1 ≤ i ≤ j ≤ |s|. We consider an inversion θ and denote by θ(s) the reversal1 of a string s; namely, 
θ(s) = s[n]s[n − 1] · · · s[2]s[1], where n = |s|.

1 In biology, inversion is a composition of a reversal operation and a complement operation. However, inversion is often regarded as reversal in the string 
matching and alignment literature for the simplicity of analysis. We also follow this convention.
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We define an inversion operation θ(i, j) for a given range i, j as follows:

θ(i, j)(s) = θ
(
s[i : j]).

We also consider a translocation τ and define τ (s) = s2s1, where s = s1s2 and |s1| = |s2|. We define a translocation 
operation τ(i, j) for a given range i, j as follows:

τ(i, j)(s) = τ
(
s[i : j]).

We say that i+ j
2 is the center of the operation for θ(i, j) or τ(i, j) . Given a positive constant n, we define a set O of non-

overlapping inversions and translocations to be

O = {
θ(ik,ik+1−1) or τ(ik,ik+1−1)

∣∣ ik ∈R, 1 ≤ k ≤ |R| − 1
}
,

where R = {ik | ik < ik+1 for 1 ≤ k ≤ |R| − 1, i1 = 1, i|R| = n}. Then, for a string s of size n, we have O(s) = s′ , where

s′[i : j] =
{

θ(s[i : j]) if θ(i, j) ∈ O,

τ (s[i : j]) if τ(i, j) ∈ O.

From now on, we use a set of operations instead of a set of non-overlapping inversions and translocations since we only 
consider sets of non-overlapping inversions and translocations.

Definition 2.1. We define a new alignment problem with non-overlapping inversions and translocations on two strings as 
follows: given two strings x and y of the same length, find two sets Ox and Oy of operations such that Ox(x) = Oy(y), if 
such two sets exist.

3. The algorithm

Before we present an algorithm, we first introduce some definitions, which lead to the definition of a legal sequence, and 
prove that finding an alignment on two strings is equivalent to finding legal sequences on two strings. Then, we design an 
algorithm that finds legal sequences on two strings (and their alignments).

3.1. Reformulating the problem using legal sequences

We use x = AGCTCA and y = CAGATC as our example strings for explaining the algorithm. Remark that θ(AG)τ (CTCA) =
GACACT = τ (CAGA)θ(TC) and, thus, we have two sets Ox = {θ(1,2), τ(3,6)} and Oy = {τ(1,4), θ(5,6)}.

We start from building two tables in which each cell contains a pair of a range and a character. First, we define an 
inversion fragment table Tx[n][n] (IFT for short) for x as follows:

Tx[i][ j] =
{

(( j, i), x[ j]) if j ≤ i,
((i, j), x[ j]) if j > i.

Next, we define a translocation fragment table Ux[n][� n
2 �][2] (TFT for short) for x as follows:

Ux[i][ j][k] =
{

((i − j − 1, i + j), x[i + j]) if k = 1 and i + j ≤ n,

((i − 2 j + 1, i), x[i − j]) if k = 2 and 0 ≤ i − j.

We call all elements in Tx inversion fragments (IFs for short) of x and all elements in Ux translocation fragments (TFs for 
short) of x. We use fragments to mean both IFs and TFs. For a fragment F = ((p, q), σ), we say that F yields the character σ , 
p+q

2 is the center of the fragment and q − p + 1 is the length of the fragment. For a sequence of fragments F1, . . . , Fn , where 
Fi yields σi , we say that the sequence yields a string σ1 · · ·σn . Figs. 3 and 4 show examples of IFT and TFT.

IFs become useful for computing a substring created by an inversion because of the following property of the inversion 
operation:

Observation 3.1. For a string x and its Tx ,

(1) θ(i, j)(x) = θ(x[ j])θ(x[ j − 1]) · · · θ(x[i + 1])θ(x[i]),
(2) A sequence Tx[i][ j], Tx[i + 1][ j − 1], . . . , Tx[ j − 1][i + 1], Tx[ j][i] of IFs yields θ(i, j)(x). IFs in the sequence have the same 

center i+ j
2 .

Fig. 3 shows an example of Observation 3.1(2). From Observation 3.1, we know that if we apply θ(min(i, j),max(i, j)) to x, 
then σ yielded by Tx[i][ j] becomes the ith character of the result string. Similarly, TFs are useful for computing a substring 
created by a translocation because of the following property of the translocation operation:
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Fig. 3. IFT Tx for x = AGCTCA. Shaded cells denote IFs for the inversion θ(2,5) .

Fig. 4. TFT Ux for x = AGCTCA. Shaded cells denote TFs for the translocation τ(2,5) .

Fig. 5. Graphical representation of Observation 3.2(1).

Observation 3.2. For a string x and its Ux ,

(1) Let w = τ(i, j)(x). Then τ(i+1, j+1)(x) = w[2 : j−i+1
2 ]x[ j + 1]w[ j−i+5

2 : j − i + 1]x[ j−i+3
2 ].

(2) A sequence Ux[i][ l
2 ][1], Ux[i + 1][ l

2 ][1], . . . , Ux[i + l
2 ][ l

2 ][1], Ux[i + l
2 + 1][ l

2 ][2], Ux[i + l
2 + 2][ l

2 ][2], . . . , Ux[ j][ l
2 ][2] of 

TFs yields τ(i, j)(x), where l = j − i − 1. TFs in the sequence have the same length l.

Fig. 5 shows an example of Observation 3.2(1). Fig. 4 shows an example of Observation 3.2(2). From Observation 3.2, 
we know that if we apply a translocation of length 2 j to x, then σ yielded by Ux[i][ j][k] becomes the ith character of the 
result string if index i is in the kth half of the translocation.

It is easy to verify from the construction that we can construct Tx and Ux in O (n2) time and the size of Tx and Ux is 
O (n2), where |x| = n. We also construct T y and U y for y. Next, we define an agreed sequence and a partially agreed sequence
of fragments.

Definition 3.3. Given a sequence F1, F2, . . . , Fl of l fragments of a string x, we say that the sequence is an agreed sequence
from index i1 to i2 = i1 + l − 1 of x if one of the following conditions holds:

(1) Fh = Tx[i1 + h − 1][i1 + l − h] for all h or

(2) Fh = Ux[i1 + h − 1][ l
2 ][1] if h ≤ i1 + l

2 − 1 and Ux[i1 + h − 1][ l
2 ][2] if h ≥ i1 + l

2 .

We also say that for an agreed sequence F1, F2, . . . , Fl , a sequence F1, F2, . . . , Fm is a partially agreed sequence if m ≤ l.

Shaded cells in Figs. 3 and 4 represent two agreed sequences. From Observations 3.1 and 3.2, we establish the following 
result:

Lemma 3.4. If a sequence is an agreed sequence of IFs of x from index i1 to i2 , then the sequence yields θ(i1,i2)(x). If a sequence is an 
agreed sequence of TFs of x from index i1 to i2 , then the sequence yields τ(i1,i2)(x).

Next, we define a connected sequence and a partially connected sequence of fragments.

Definition 3.5. A connected sequence is defined recursively as follows:
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(1) If a sequence is an agreed sequence from i1 to i2, then the sequence is a connected sequence from i1 to i2.
(2) If a sequence F1, F2, . . . , Fl1 is a connected sequence from i1 to i2 and another sequence F

′
1, F

′
2, . . . , F

′
l2

is a connected 
sequence from i2 + 1 to i3, then the sequence F1, . . . , Fl1 , F

′
1, . . . , F

′
l2

is a connected sequence from i1 to i3.

We also define a partially connected sequence: if a sequence F1, F2, . . . , Fl1 is a connected sequence from i1 to i2 and 
another sequence F

′
1, F

′
2, . . . , F

′
l2

is a partially agreed sequence from i2 + 1 to i3, then the sequence F1, . . . , Fl1 , F
′
1, . . . , F

′
l2

is a partially connected sequence from i1 to i3.

Finally, we define a legal sequence of fragments.

Definition 3.6. A sequence is a legal sequence of fragments of x (or y, respectively) if the sequence is a connected sequence 
from 1 to n = |x| and there exists a connected sequence of fragments of y (or x, respectively) from 1 to n that yields the 
same string as the sequence.

From Lemma 3.4, Definitions 3.5 and 3.6, we have:

Lemma 3.7. Given two strings x and y of the same length, there exist two sets Ox and Oy of operations such that s =Ox(x) =Oy(y)

if and only if there exist two legal sequences Sx and Sy that yield s for x and y, respectively.

It follows from Lemma 3.7 that we have an alignment for x and y if and only if we find two legal sequences Sx and Sy
for x and y.

3.2. Searching for legal sequences

The main idea of our algorithm is to keep tracking of all possible agreed sequences, append them to connected se-
quences and ensure that connected sequences of fragments of x and y generate the same substring. Assume that we inspect 
the (i + 1)th index and the agreed sequence that we track is Fi1 , Fi1+1, · · · , Fi2 from i1 to i2, where i1 ≤ i ≤ i2. Note that 
the agreed sequence is a part of a connected sequence from 1 to i2. For index i + 1, we need to check the following five 
cases to build a partially connected sequence from 1 to i + 1 (see Fig. 6 for an illustration):

1. i = i2: since the agreed sequence that we have tracked ends at i, we append the first fragment of a new agreed sequence 
to the agreed sequence that we have tracked to construct a partially connected sequence from 1 to i + 1. Note that we 
can add an inversion or a translocation starting from i + 1 to a set of operations equivalent to a connected sequence 
from 1 to i. For an inversion, we can choose IF Tx[i + 1][ j] = ((i + 1, j), x[ j]) for a new agreed sequence of IFs from 
i + 1 to j where j ≥ i + 1. For a translocation, we can choose TF Ux[i + 1][ j][1] = ((i − j + 2, i + j + 1), x[i + j + 1]) for 
a sequence of TFs from i + 1 to i + 2 j where j ≥ i + 1 and i + 2 j ≤ n.

2. i < i2 and the agreed sequence is for an inversion: if Fi = Tx[i][ j], then Fi+1 = Tx[i + 1][ j − 1] from Definition 3.3.
3. i < i1+i2−1

2 and the agreed sequence is for a translocation: the current index i + 1 is in the first half of the translocation 
that the sequence represents. If Fi = Ux[i][ j][1], then Fi+1 = Ux[i + 1][ j][1] from Definition 3.3.

4. i = i1+i2−1
2 and the agreed sequence is for a translocation: the current index i + 1 is the start index of the second half 

of the translocation that the sequence represents. If Fi = Ux[i][ j][1], then Fi+1 = Ux[i + 1][ j][2] from Definition 3.3.
5. i1+i2+1

2 ≤ i < i2 and the agreed sequence is for a translocation: the current index i + 1 is in the second half of the 
translocation that the sequence represents. If Fi = Ux[i][ j][2], then Fi+1 = Ux[i + 1][ j][2] from Definition 3.3.

We use tables Si
x[2][n] and Ri

x[2][� n
2 �][2] to record all partial agreed sequences of IFs and TFs that we are tracking, 

respectively. Namely, if (i1, σ1σ2) ∈ Si
x[2][ j], then there is a partially agreed sequence of IFs from i1 to i, where the last IF of 

the sequence is Tx[i][ j] and the last two IFs yield σ1σ2. Similarly, if (i1, σ1σ2) ∈ Ri
x[2][ j][k], then there is a partially agreed 

sequence of TFs from i1 to i, where the last TF of the sequence is Ux[i][ j][k] and the last two TFs yield σ1σ2. We ensure that 
these partially agreed sequences are appended to any connected sequence from 1 to i1 − 1 and, thus, we now have partially 
connected sequences from 1 to i by checking the first case (the case when i = i2; See Case 1 in Fig. 6). For an element 
(i1, σ1σ2) ∈ Si

x[2][ j] or Ri
x[2][ j][k], we say that the element is a sequence indicator (indicator for short) with a start index i1

and the sequence indicator yields σ1σ2. For each index, we also need to check whether or not partially connected sequences 
of fragments of x and y generate the same set of substrings. We use a table C i

x[|Σ |][|Σ |] to record two characters yielded 
by the ith and (i + 1)th fragments of partially connected sequences of x. Moreover, we use tables Ix[n][n] and Hx[n][n] to 
record inversions and translocations corresponding to agreed sequences in partially connected sequences. Namely, if Ix[i][ j]
(Hx[i][ j]) is true, then θ(i, j) (τ(i, j)) corresponds to an agreed sequence in a partially connected sequence. We design an 
algorithm that computes Si

x , Ri
x , Si

y and Ri
y for each index and checks whether or not there exist legal sequences for x

and y.
Before the algorithm starts, we set initial data for S1

x and R1
x ; we add (1, Aσ) to S1

x [1][ j] if Tx[1][ j] yields σ and set 
Ix[1][ j] true. We also add (1, Aσ) to R1

x [1][ j][1] if Ux[1][ j][1] yields σ and set Hx[1][2 j] true. We also set S1
y , I y , R1

y and 
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Fig. 6. The five cases to build a partially connected sequence from 1 to i + 1. Shaded cells in Tx denote IFs for the inversion θ(i1,i2) and shaded cells in Ux

denote TFs for the translocation τ(i1,i2) .

H y similarly. Note that each cell of Si
x and Ri

x is a sequence with O (n) indicators. The algorithm sorts indicators in each cell 
of Si

x and Ri
x in ascending order with respect to the start index, which is crucial in the runtime analysis. Now we execute 

the following steps from index 1 to n − 1 for x and y. We only illustrate the case for x. (The case for y is similar.)
The first two steps process agreed sequences of IFs.

STEP-1. We check all agreed sequences of IFs ending at i and record the first fragment of a new agreed sequence that 
can be appended to any connected sequence from 1 to i. When ( j, σ0σ1) ∈ Si

x[1][ j], we execute the following procedure 
(see Fig. 7 for an illustration):

1. Append (i + 1, σ1σ2) to Si
x[2][ j′] and set I[i + 1][ j′] true for j′ ≥ i + 1, where Tx[i + 1][ j′] yields σ2.

2. Append (i + 1, σ1σ2) to Ri
x[2][ j′][1] and set H[i + 1][i + 2 j′] true for j′ ≥ i + 1 and i + 2 j′ ≤ n, where Ux[i + 1][ j′][1]

yields σ2.

STEP-2. We check all agreed sequences of IFs not ending at i (which are partially agreed sequences) and find IFs for all 
partially connected sequences from 1 to i + 1. When (i1, σ0σ1) ∈ Si

x[1][ j] and i1 	= j, we prepend (i1, σ1σ2) to Si
x[2][ j − 1], 

where Tx[i + 1][ j − 1] yields σ2 (see Fig. 8 for an illustration).

The next two steps process agreed sequences of TFs.

STEP-3. We check all agreed sequences of TFs ending at i and record the first fragment of a new agreed sequence that 
can be appended to any connected sequence from 1 to i. When (i − 2 j + 1, σ0σ1) ∈ Ri

x[1][ j][2], we execute the following 
procedure (see Fig. 9 for an illustration):

1. Append (i + 1, σ1σ2) to Si
x[2][ j′] and set I[i + 1][ j′] true for j′ ≥ i + 1, where Tx[i + 1][ j′] yields σ2.

2. Append (i + 1, σ1σ2) to Ri
x[2][ j′][1] and set H[i + 1][i + 2 j′] true for j′ ≥ i + 1 and i + 2 j′ ≤ n, where Ux[i + 1][ j′][1]

yields σ2.
STEP-4. We check all agreed sequences of TFs not ending at index i (which are partially agreed sequences) and find TFs 
for all partially connected sequences from 1 to i + 1. Then, we check the following three conditions (see Fig. 10 for an 
illustration):

1. If (i1, σ0σ1) ∈ Ri
x[1][ j][1] and i < i1 + j − 1: prepend (i1, σ1σ2) to Ri

x[2][ j][1] where Ux[i + 1][ j][1] yields σ2.
2. If (i1, σ0σ1) ∈ Ri

x[1][ j][1] and i = i1 + j − 1: prepend (i1, σ1σ2) to Ri
x[2][ j][2] where Ux[i + 1][ j][2] yields σ2.

3. If (i1, σ0σ1) ∈ Ri
x[1][ j][1] and i < i1 + 2 j − 1: prepend (i1, σ1σ2) to Ri

x[2][ j][2] where Ux[i + 1][ j][2] yields σ2.
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Fig. 7. An illustration of STEP-1 for x = ACTCGA.

Fig. 8. An illustration of STEP-2 for x = ACTCGA.

From STEPS-1 to 4, we find all partially connected sequences from 1 to i + 1. The next two steps ensure that these 
partially connected sequences of fragments of x and y yield the same set of substrings.

STEP-5. For all (i1, σ1σ2) ∈ Si
x[2][ j] or Ri

x[2][ j], where 1 ≤ j ≤ n, we set C i
x[σ1][σ2] true.

We, then, run the same procedures from STEP-1 to STEP-5 for a string y before we start STEP-6.

STEP-6. We set C ′ i
x as follows:

C ′ i
x [σ1][σ2] =

{
true if C i

x[σ1][σ2] = true and C i
y[σ1][σ2] = true,

false otherwise.

Once we compute C ′ i
x , for each (i1, σ1σ2) ∈ Si

x[2][ j], we remove (i1, σ1σ2) from Si
x[2][ j] and set Ix[i1][i + j +

1 − i1] false if C ′ i
x [σ1][σ2] = false. Moreover, for each (i1, σ1σ2) ∈ Ri

x[2][ j][k], we remove (i1, σ1σ2) from Ri
x[2][ j][k] and 

set Hx[i1][i1 + 2 j − 1] false if C ′ i
x [σ1][σ2] = false (see Fig. 11 for an illustration).

After we finish calculating Si
x , Ri

x , Si
y and Ri

y using STEPS-1 to 6 from index 1 to n − 1, we check whether or not the 
second columns of Sn−1

x , Rn−1
x , Sn−1

y and Rn−1
y are empty. If they are not empty, then there exist connected sequences 

for x and y that yield the same string and, thus, we have legal sequences. Otherwise—they are empty—there are no legal 
sequences for x and y.

We are now ready to present the whole procedure of our algorithm. Algorithm 1 is a pseudo description of the proposed 
algorithm.

We first prove the correctness of the algorithm.
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Fig. 9. An illustration of STEP-3 for x = ACTCGA.

Fig. 10. An illustration of STEP-4 for x = ACTCGA.

Lemma 3.8. If Algorithm 1 returns true, then there exist two sets Ox and Oy of operations such that Ox(x) = Oy(y). Moreover, we 
can retrieve Ox and Oy as follows; let Rx = {(ik, ik+1 − 1)} be a sequence of ranges covering the index 1 to n where Ix[ik][ik+1 − 1] =
true or Hx[ik][ik+1 − 1] = true. Then Ox = {θ(i, j) | (i, j) ∈ Rx and Ix[i][ j] = true} ∪ {τ(i, j) | (i, j) ∈ Rx and Hx[i][ j] = true}. Oy is 
generated similarly.

Proof. For (i +1, σ1σ2) added to Si
x[2][ j′] in lines 8 or 19, indicators with the same start index are maintained till i reaches 

j′ (in line 6). Similarly, for (i + 1, σ1σ2) added to Ri
x[2][ j′][1] in lines 11 or 22, indicators with the same start index are 

maintained till i reaches i + 2 j − 1 (in line 17). Therefore, if Algorithm 1 returns true, there exist an index i such that 
Ix[i][n] = true or Hx[i][n] = true and, thus, Ox and Oy exist.

Since σ1 and σ2 in lines 36 and 40 are yielded by fragments in Tx and Ux , there exist two sequences Sx and Sy of 
fragments that yield the same string s. For each operation in Ox , we have two cases to consider:

1. For θ(ik,ik+1−1) , Ix[ik][ik+1 −1] = true. This follows that Tx[i][ik + ik+1 −1 − i] yields s[i] (from line 15) for ik ≤ i ≤ ik+1 −1
(from line 6). Therefore, θ(ik,ik+1−1) yields s[ik : ik+1 − 1].

2. For τ(ik,ik+1−1) , Hx[ik][ik+1 − 1] = true. Let j = ik+1−ik
2 . This implies that Ux[i][ j][1] yields s[i] for ik ≤ i ≤ ik + j − 1 (from 

line 26) and Ux[i][ j][2] yields s[i] for ik + j ≤ i ≤ ik + 2 j − 1 = ik+1 − 1 (from lines 26, 28 and 17). Therefore, τ(ik,ik+1−1)

yields s[ik : ik+1 − 1].

From the analysis of two cases for x and y, we conclude that Ox(x) =Oy(y) = s. �
Lemma 3.9. If there exist two sets Ox and Oy of operations such that Ox(x) = Oy(y), then Algorithm 1 returns true. Moreover, 
Ix[i][ j] = true for θ(i, j) ∈Ox and Hx[i][ j] = true for τ(i, j) ∈Ox (similar for Oy).
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Fig. 11. An illustration of STEP-6 for x = ACTCGA and y = CAGATC.

Proof. Since Ox(x) = Oy(y), there exist corresponding legal sequences Sx and Sy that yield the same string, say s. If the 
second columns of both Si

x and Ri
x are empty after line 44 for an index i, these legal sequence cannot exist. Therefore, the 

second columns of Sn−1
x and Rn−1

x should be not empty and Algorithm 1 returns true. For each operation in Ox, we consider 
two cases.

1. For θ(ik,ik+1−1) , (ik, σ1σ2) is added to Sik−1
x [2][ik+1 − 1] and I[ik − 1 + 1][ik+1 − 1] becomes true from lines 8, 9, 19 

and 20.
2. For τ(ik,ik+1−1) , (ik, σ1σ2) is added to Rik−1

x [2][ ik+1−ik
2 ][1] and T [ik − 1 + 1][ik + 2 · ik+1−ik

2 ] becomes true from lines 11, 
12, 22 and 23.

For all two cases, the statement holds. �
Next, we prove that indicators in each cell of Si

x and Ri
x are sorted by ascending order with respect to the start index.

Lemma 3.10. In Algorithm 1, indicators (i2, σ1σ2) in each cell of Si
x[2][ j] are sorted by ascending order with respect to i2 and i2 ≤ i +1

after line 33 for every i.

Proof. We prove the statement by induction on i. Note that cells of Si
x[2][ j] are updated in lines 8, 15 and 19 of Algorithm 1.

Base Case Since i = 1, (2, σ1σ2) is appended to S1
x [2][ j′] in lines 8 and 19. In line 15, i1 is always 1 from the initialization 

of S1
x and (1, σ1σ2) is appended to S1[2][ j − 1]. Therefore, indicators in each cell of S1

x [2][ j] are sorted by ascending 
order after line 33. The maximum value of start indices is 2, which is i + 1.

Induction Hypothesis Assume indicators (i2, σ1σ2) in each cell of Si
x[2][ j] are sorted by ascending order with respect to i2

and i2 ≤ i + 1 after line 33 for an index i.
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Algorithm 1: FindLegalSequences.
Input: Strings x and y
Output: Boolean (whether or not there exist Ox and Oy such that Ox(x) = Oy(y).)
/* time complexity: O (n3), space complexity: O (n2) */

1 make Tx , Ux , T y , U y

2 initialize S1
x , R1

x , S1
y , R1

y , Ix , Hx , I y and H y

3 for i ← 1 to n − 1 do
4 for strings x and y do
5 for j ← 1 to n do // STEP-1
6 if ( j, σ0σ1) ∈ Si

x[1][ j] then
7 for j′ ← i + 1 to n do
8 append (i + 1, σ1σ2) to Si

x[2][ j′], where σ2 is yielded by Tx[i + 1][ j′]
9 Ix[i + 1][ j′] ← true

10 for j′ ← 2 to �n/2� do
11 append (i + 1, σ1σ2) to Ri

x[2][ j′][1], where σ2 is yielded by Ux[i + 1][ j′][1]
12 Hx[i + 1][i + 2 j′] ← true

13 for j ← 2 to n do // STEP-2
14 for each (i1, σ0σ1) ∈ Si

x[1][ j], i1 in descending order except j do
15 prepend (i1, σ1σ2) to Si

x[2][ j − 1], where Tx[i + 1][ j − 1] yields σ2

16 for j ← 1 to n do // STEP-3
17 if (i − 2 j + 1, σ0σ1) ∈ Ri

x[1][ j][2] then
18 for j′ ← i + 1 to n do
19 append (i + 1, σ1σ2) to Si

x[2][ j′], where σ2 is yielded by Tx[i + 1][ j′]
20 Ix[i + 1][ j′] ← true

21 for j′ ← 2 to �n/2� do
22 append (i + 1, σ1σ2) to Ri

x[2][ j′][1], where σ2 is yielded by Ux[i + 1][ j′][1]
23 Hx[i + 1][i + 2 j′] ← true

24 for j ← 1 to n do // STEP-4
25 for each (i1, σ0σ1) ∈ Ri

x[1][ j][1], i1 in descending order except i − 2 j + 1 do
26 if i < i1 + j − 1 then prepend (i1, σ1σ2) to Ri

x[2][ j][1], where Ux[i + 1][ j][1] yields σ2 else prepend (i1, σ1σ2) to Ri
x[2][ j][2], 

where Ux[i + 1][ j][2] yields σ2

27 for each (i1, σ0σ1) ∈ Ri
x[1][ j][2], i1 in ascending order except i − 2 j + 1 do

28 if i < i1 + 2 j − 1 then append (i1, σ1σ2) to the end of Ri
x[2][ j][2], where Ux[i + 1][ j][2] yields σ2

29 clear C i
x

30 for j ← 1 to n do // STEP-5
31 for each (i1, σ1σ2) ∈ Si

x[2][ j] or Ri
x[2][ j] do C i

x[σ1][σ2] ← true

32 C ′ i
x , C ′ i

y ← C i
x ∧ C i

y // STEP-6

33 for strings x and y do
34 for j ← 1 to n do
35 for each (i1, σ1σ2) ∈ Si

x[2][ j] do
36 if C ′ i

x [σ1][σ2] = false then
37 remove (i1, σ1σ2)

38 Ix[i1][i + j + 1 − i1] ← false

39 for each (i1, σ1σ2) ∈ Ri
x[2][ j][k] do

40 if C ′ i
x [σ1][σ2] = false then

41 remove (i1, σ1σ2)

42 Hx[i1][i1 + 2 j − 1] ← false

43 copy the second columns of Si
x , Ri

x , Si
y and Ri

y to the first columns of Si+1
x , Ri+1

x , Si+1
y and Ri+1

y .

44 return the second columns of Sn−1
x , Rn−1

x , Sn−1
y and Rn−1

y are not empty

Inductive Step For an index i + 1, indicators (i1, σ0σ1) in each cell of Si+1
x [1][ j] is sorted by ascending order with respect 

to i1 from the induction hypothesis and line 43. In lines 8 and 19, (i + 2, σ1σ2) is appended to Si+1
x [2][ j′]. In line 15, 

(i1, σ1σ2) is prepended to Si+1
x [2][ j − 1] in descending order with respect to i1, where i1 ≤ i + 1 from the induction 

hypothesis. Therefore, indicators (i2, σ1σ2) in each cell of Si+1
x [2][ j] are sorted by ascending order with respect to i2

after line 33. The maximum value of i2 is i + 2, which is (i + 1) + 1. �
Lemma 3.11. In Algorithm 1, indicators (i2, σ1σ2) in each cell of Ri

x[2][ j][k] are sorted by ascending order with respect to i2 and 
i2 ≤ i + 1 after line 33 for every i.
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Proof. We prove the statement by induction on i. Note that cells of Ri
x[2][ j][k] are updated in lines 11, 22, 26 and 28.

Base Case Since i = 1, (2, σ1σ2) is appended to R1
x [2][ j][1] in lines 11 and 22. In line 26, i1 is always 1 from the initializa-

tion of R1
x and (1, σ1σ2) is appended to R1[2][ j][k]. In line 28, there is no indicator in R1

x [1][ j][2]. Therefore, indicators 
in each cell of R1

x [2][ j][k] are sorted by ascending order after line 33. The maximum value of start indices is 2, which 
is i + 1.

Induction Hypothesis Assume indicators (i2, σ1σ2) in each cell of Ri
x[2][ j][k] are sorted by ascending order with respect 

to i2 and i2 ≤ i + 1 after line 33 for an index i.

Inductive Step For an index i + 1, indicators (i1, σ0σ1) in each cell of Ri+1
x [1][ j][k] is sorted by ascending order with 

respect to i1 from the induction hypothesis and line 43. In lines 11 and 22, (i + 2, σ1σ2) is appended to Ri+1
x [2][ j′][1]. 

In lines 26 and 28, (i1, σ1σ2) is prepended to Ri[2][ j][k] in descending order with respect to i1, where i1 ≤ i + 1 from 
the induction hypothesis. Therefore, indicators (i2, σ1σ2) in each cell of Ri+1

x [2][ j][k] are sorted by ascending order 
with respect to i2 after line 33. The maximum value of i2 is i + 2, which is (i + 1) + 1. �

Before we analyze the time and space complexity of Algorithm 1, we establish the following results.

Lemma 3.12. In Algorithm 1, the maximum value of start indices of indicators in Si
x[1][ j] in line 6 is at most j.

Proof. From Lemma 3.10, the maximum value of start indices of indicators in Si
x[2][ j] after line 33 is i + 1. Moreover, 

(i + 1, σ1σ2) is added to Si
x[2][ j′] in lines 9 and 19, where i + 1 ≤ j′ . Therefore, when j ≤ i, the maximum value of start 

indices of indicators in Si
x[2][ j] is less than j. When j ≥ i + 1, the maximum value of start indices of indicators in Si

x[2][ j]
is j. From line 43, the maximum value of start indices of indicators in Si

x[1][ j] in line 6 is at most j. �
Lemma 3.13. In Algorithm 1, the minimum value of start indices of indicators in Ri[1][ j][2] in line 17 is at least i − 2 j + 1.

Proof. The if-statement in line 17 checks the existence of (i − 2 j + 1, σ0σ1) in Ri
x[1][ j][2] and (i − 2 j + 1, σ0σ1) increases 

as i increases for fixed j. Therefore, if (i′ − 2 j + 1, σ0σ1) ∈ Ri
x[1][ j][2] where i′ ≤ i, then the indicator should have been 

checked for the index i′ and removed from Ri
x[1][ j][2]. �

Now we are ready to analyze the time and space complexity of Algorithm 1.

Theorem 3.14. Algorithm 1 runs in O (n3) time using O (n2) space, where n = |x| = |y|.

Proof. From Lemmas 3.10 and 3.12, we need to check only the last indicator in Si
x[1][ j] at line 6. Therefore, STEP-1 requires 

O (n3) time. From Lemmas 3.11 and 3.13, we need to check only the first indicator in Ri
x[1][ j][2] at line 17. Therefore, STEP-3

also requires O (n3) time. It is clear from iterations that STEPS-2, -4, -5, -6 require at most O (n3) time. Therefore, the time 
complexity of Algorithm 1 is O (n3). For the space requirement, Tx, Ux, Si

x, Ri
x, Ix, Hx requires O (n2) space. Therefore, the 

space complexity of Algorithm 1 is O (n2). �
Algorithm 2 is a pseudo description of retrieving an alignment from Ix , Hx , I y and H y after Algorithm 1 finishes, based 

on Lemmas 3.8 and 3.9.

Lemma 3.15. Algorithm 2 runs in O (n) time using O (n) space.

Proof. For each iteration from line 4 to 13, i decreases by at least 1. Since i = n before the iteration and the end condition 
is i = 0, the iteration runs in O (n) time. Therefore, Algorithm 2 runs in O (n) time. For the space requirement, Ox and Oy
requires O (n) space. Therefore, the space complexity of Algorithm 2 is O (n). �

Based on Lemmas 3.8 and 3.9 and Algorithm 2, we establish the following result:

Theorem 3.16. We can determine the existence of an alignment with non-overlapping inversions and translocations on two strings x
and y in O (n3) time using O (n2) space, where n is the size of input strings. Moreover, we can find two sets Ox and Oy of operations 
such that Ox(x) =Oy(y) in O (n) time using O (n) space if there exists an alignment.

4. Conclusions

An inversion and a translocation are important for bio sequences including DNAs or RNAs and these operations are 
closely related to mutations. We have, in particular, considered non-overlapping inversions and translocations on both se-
quences, which is crucial to find the original common sequence from two mutated sequences. We have introduced a new 
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Algorithm 2: RetrieveAlignments.
Input: Array Ix[n][n], Hx[n][n], I y [n][n] and H y [n][n] from Algorithm 1
Output: Sets Ox and Oy of operations such that Ox(x) = Oy(y)

/* time complexity: O (n), space complexity: O (n) */
1 make empty sets Ox and Oy

2 for strings x and y do
3 i, j ← n
4 repeat
5 if Ix[i][ j] = true then
6 add θ(i, j) to Ox

7 i, j ← i − 1

8 else if Hx[i][ j] = true then
9 add τ(i, j) to Ox

10 i, j ← i − 1

11 else
12 i ← i − 1

13 until i = 0

14 return Ox and Oy

problem, alignment with non-overlapping inversions and translocations on two strings, and presented a polynomial algo-
rithm for the problem. Given two strings x and y, based on the properties of inversions and translocations, our algorithm 
decides whether or not there exist two sets Ox and Oy of operations for x and y such that Ox(x) = Oy(y) in O (n3) time 
using O (n2) space, where n = |x| = |y|. Once we know the existence of such Ox and Oy , we can retrieve Ox and Oy

in O (n) time using O (n) space. One future work is to improve the current running time O (n3). As far as we are aware, 
this algorithm is the first try to find an alignment with non-overlapping inversions and translocations on both strings. Our 
alignment problem can be extended to approximate pattern matching or edit distance problem.
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