
Sequence analysis

OMPPM: online multiple palindrome pattern

matching

Hwee Kim and Yo-Sub Han*

Department of Computer Science, Yonsei University, Seoul 120-749, Republic of Korea

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on 23 August 2015; revised on 11 December 2015; accepted on 12 December 2015

Abstract

Motivation: A palindrome is a string that reads the same forward and backward. Finding palin-

dromic substructures is important in DNA, RNA or protein sequence analysis. We say that two

strings of the same length are pal-equivalent if, for each possible centre, they have the same length

of the maximal palindrome. Given a text T of length n and a pattern P of length m, we study the pal-

indrome pattern matching problem that finds all indices i such that P and T ½i �m þ 1 : i � are pal-

equivalent.

Results: We first solve the online palindrome pattern matching problem in O(m2) preprocessing

time and O(mn) query time using O(m2) space. We then extend the problem for multiple patterns

and solve the online multiple palindrome pattern matching problem in Oðmk MÞ preprocessing

time and Oðmk n þ cÞ query time using Oðmk MÞ space, where M is the sum of all pattern lengths,

mk is the longest pattern length and c is the number of pattern occurrences.

Availability and implementation: The source code for all algorithms is freely available at http://toc.

yonsei.ac.kr/OMPPM

Contact: kimhwee@cs.yonsei.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Finding motifs and patterns in bio strings has been one of the most

popular topics in both computer science and biology (Adebiyi et al.,

2001; Buhler, 2001; Parisi et al., 2003; Prüfer et al., 2008;

Rigoutsos and Floratos, 1998). A palindrome is a string that reads

the same forward and backward. Namely, a string w is a palindrome

if w ¼ wR, where wR denotes the reversal of w. If a substring of a

string is a palindrome, we say that the string has a palindromic sub-

string or palindromic structure. It is important to find palindromes

and identify similar palindromic structures in DNA, RNA or protein

sequence analysis (Gusfield, 1997). Since palindromic structures in

bio data reflect the capability of molecules to fold and form double-

stranded stems (Kolpakov and Kucherov, 2009), bio data with simi-

lar palindromic structures may have similar secondary structures.

Moreover, palindromic sequences are closely associated with DNA

breakage during gene conversion (Krawinkel et al., 1986), and pal-

indromic substructures are presented in CRISPR/Cas9 (Kunin et al.,

2007), which has been used for gene editing and gene regulation in

species (Mali et al., 2013). Therefore, it is useful to identify palin-

dromic substructures and palindromic equivalence efficiently.

We focus on the palindrome pattern matching problem intro-

duced by I et al. (2013). Given a text T of length n and a pattern P

of length m, the palindrome pattern matching problem is to find all

indices i such that P and T½i�mþ 1 : i� have the same set of all cen-

tre-distinct maximal palindromes. See Figure 1 for an example.

I et al. (2013) presented two algorithms that solve the palin-

drome pattern matching for an arbitrary size alphabet. We notice

that both algorithms by I et al. (2013) require a preprocessing step

of T. This may slow down the whole process when T is an extremely

large text and I/O for T is considerably slow due to the large but

slow storages. Moreover, these algorithms might not be applicable if

T is a stream data. Many researchers designed online string algo-

rithms to avoid these problems, where each character in T is given

online, and we want to report intermediate results without reading

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1151

Bioinformatics, 32(8), 2016, 1151–1157

doi: 10.1093/bioinformatics/btv738

Advance Access Publication Date: 16 December 2015

Original Paper

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://toc.yonsei.ac.kr/OMPPM
http://toc.yonsei.ac.kr/OMPPM
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
Deleted Text: introduction
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text: r
Deleted Text:)
Deleted Text:)
http://www.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

whole T (Ahmad et al., 2003; Paten et al., 2009). For the palin-

drome pattern matching problem, we want to report all matching in-

dices i while reading T online. Based on the Knuth–Morris–Pratt

algorithm (Knuth et al., 1977), we first build an automaton A from

P and process T using A. For a text T of length n and a pattern P of

length m, our algorithm requires O(m2) preprocessing time and runs

in O(mn) query time using O(m2) space. We, furthermore, tackle

the online multiple palindrome pattern matching based on a modifi-

cation of the Aho–Corasick automaton (Aho and Corasick, 1975).

For multiple patterns P1; . . . ;Pk of length m1; . . . ;mk, our algo-

rithm requires OðmkMÞ preprocessing time and runs in Oðmknþ cÞ
query time using OðmkMÞ space, where M is the sum of all pattern

lengths, mk is the longest pattern length and c is the number of pat-

tern occurrences. Note that the second algorithm considers multiple

patterns and has the same query time as the first algorithm except

the number of pattern occurrences.

2 Methods

2.1 Strings, palindromes and finite automata
A finite-state automaton (FA) A is specified by A ¼ ðQ;R; d; s; FÞ,
where Q is a set of states, R is an alphabet, d : Q� R! Q is a tran-

sition function, s 2 Q is the start state and F � Q is a set of final

states. A string w is accepted by A if there is a labeled path from s to

a state in F such that the path spells out w. For complete background

knowledge in automata theory, the reader may refer to textbooks

(Hopcroft and Ullman, 1979; Wood, 1986).

For a string w, let wR denote the reversed string of w. A string w

is called a palindrome if w ¼ wR. The radius of a palindrome w is
jwj
2 . The centre of a palindromic substring w½i : j� of a string w is iþj

2 .

A palindromic substring w½i : j� is called the maximal palindrome at

the centre iþj
2 if no other palindromes at the centre iþj

2 have a larger

radius than w½i : j�; in other words, if w½i� 1� 6¼ w½jþ 1�, i ¼ 1 or

j ¼ jwj. Let Pals(w) be the set of all centre-distinct maximal palin-

dromes where each element is encoded by a pair of its centre and ra-

dius (I et al., 2010). Namely, given a string w,

PalsðwÞ ¼ ðc; rÞ
��� w½c� rþ 0:5 : cþ r� 0:5� is a maximal

palindrome at centre c ¼ 1; 1:5; 2; . . . ;n

()
:

For example, if w ¼ abbacabbba, we have

PalsðwÞ ¼ fð1; 0:5Þ; ð1:5;0Þ; ð2;0:5Þ; ð2:5; 2Þ; ð3; 0:5Þ;

ð3:5;0Þ; ð4;0:5Þ; ð4:5; 0Þ; ð5; 3:5Þ; ð5:5;0Þ;

ð6; 0:5Þ; ð6:5;0Þ; ð7;0:5Þ; ð7:5; 1Þ; ð8; 2:5Þ;

ð8:5;1Þ; ð9;0:5Þ; ð9:5; 0Þ; ð10; 0:5Þg:

For two strings w and z of the same length, we say that w and z

are pal-equivalent if PalsðwÞ ¼ PalsðzÞ. Manacher (1975) proved

that for a string w of length m, we can compute Pals(w) in O(m)

time. From now on, we assume that the elements of Pals(w) are

sorted in increasing order of centrers c—the algorithm of Manacher

(1975) computes the elements of Pals(w) in this order.

We first tackle the palindrome pattern matching problem in

Definition 2.1. Note that while I et al. (2013) find start positions of

matching occurrences, we search for end positions of matching

occurrences.

Definition 2.1 (Palindrome Pattern Matching, Pal-Matching in

Short): Given a text T of length n and a pattern P of length m,

compute all positions i such that PalsðPÞ ¼ PalsðT½i�mþ 1 : i�Þ.

We then define the multiple palindrome pattern matching prob-

lems as follows:

Definition 2.2 (Multiple Palindrome Pattern Matching, MPal-Matching

in Short): Given a text T of length n and patterns P1; . . . ;Pk of

length m1; . . . ;mk, compute all pairs of a position i and a corres-

ponding pattern Pj such that PalsðPjÞ ¼ PalsðT½i�mj þ 1 : i�Þ.

For a pattern matching problem, we can consider an environment

where we want to report all matching occurrences at position i after

reading each character T½i�. This often requires a preprocessing step

of the pattern P—we call such a problem an online pattern matching

problem. We call the time to preprocess P preprocessing time, and the

time to read T and find all matching occurrences query time.

2.2 The algorithm for Pal-matching
We start from designing an algorithm for Pal-Matching in

Definition 2.1. The main idea of our algorithm is to design a special

automaton simulating the Knuth–Morris–Pratt algorithm (Knuth

et al., 1977). Before we design an algorithm, we have the following

observation (See Figure. 2 for an illustration): For two strings w, z

and an index i, if there exists ðc; rÞ 2 PalsðwÞ such that c � i and

cþ r� 0:5 � i, then z½i� ¼ z½2c� i�. If there is no (c, r) satisfying the

condition, then z½i� 62 fz½2r� i�jðc; rÞ 2 PalsðwÞ and cþ r� 0:5 ¼
i� 1g. Note that z½i� is computed based on z½j�’s for j < i, instead of

characters in w. This leads us to define z to be a new sequence of

variables, where we can assign characters to variables based on

equality and inequality conditions, and the result string is pal-

equivalent to w. Based on the observation, we define a variable pat-

tern of P as follows:

Definition 2.3: For a pattern P of length m over R of size t, a vari-

able pattern P0 is defined by an array A½m� of variables and an array

B½m� of inequality conditions satisfying the following conditions:

1. P0½i� ¼ A½li� for 1 � i; li � m.

2. If there exists ðc; rÞ 2 PalsðPÞ where c � i and cþ r� 0:5 � i,

then li ¼ l2c�i, and thus, P0½i� ¼ P0½2c� i�.
3. Otherwise, for all j 2 f2r� ijðc; rÞ 2 PalsðPÞ and cþ r� 0:5 ¼

i� 1g; P0½i� 6¼ P0½j�. For P0½i� ¼ A½li� and P0½j� ¼ A½lj�, we use

B½li� ¼ lj and B½j� ¼ i to denote P0½i� 6¼ P0½j�.

Namely, if we assign characters to A based on inequality condi-

tions, then PalsðP0Þ ¼ PalsðPÞ. Initially, we have no variables for

constructing P0. The inequality condition of Definition 2.3 implies

that for every index i where every maximal palindrome with a centre

c � i ends before i, we need to introduce a new variable satisfying in-

equality conditions with respect to the previously-used variables.

We construct an array A½m� of variables. We also construct an array

B½m� that represents the inequality conditions between all pairs of

Fig. 1. An example of the palindrome pattern matching. Stripped boxes below

a string represent the set of all centre-distinct maximal palindromes with the

length at least 1. Note that the pattern on the left is matched, while the pattern

on the right is not matched due to the red-stripped box

1152 H.Kim and Y.-S.Han

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text:)
Deleted Text:)
Deleted Text: -
Deleted Text: -
Deleted Text:)
Deleted Text: -
Deleted Text:)
Deleted Text: methods
Deleted Text: strings
Deleted Text:)
Deleted Text:)
Deleted Text: <italic>r</italic>
Deleted Text: r
Deleted Text: r
Deleted Text: r
Deleted Text: r
Deleted Text:)
Deleted Text:)
Deleted Text: —
Deleted Text:)
Deleted Text:)
Deleted Text: —
Deleted Text: the
Deleted Text: -
Deleted Text: -
Deleted Text:)
Deleted Text: .
Deleted Text: 1.
Deleted Text: center
http://bioinformatics.oxfordjournals.org/

variables. Thus, if j 2 B½i�, then the condition A½i� 6¼ A½j� holds. Now

we construct P0 as described in Algorithm 1. Figure 3 shows P0 and

B for P ¼AGCGTA.

Based on Definition 2.3, we establish the following result: after

running Algorithm 1, if there is a surjection of A to R where A½i�
6¼ A½j� holds for all i, j such that j 2 B½i�, then PalsðP0Þ ¼ PalsðPÞ.
Moreover, given a string w such that PalsðwÞ ¼ PalsðPÞ, there exists

a surjection of A to R such that P0 ¼ w.

We analyze the time and space complexity of Algorithm 1.

Computing Pals(P) takes O(m) time. Since the for loop from line 6

to line 10 takes O(m) time and line 12 also takes O(m) time, the

time complexity of the algorithm is O(m2). For the space complex-

ity, A½m� and P0 requires O(m) space and B½m� requires O(m2) space.

Therefore, the space complexity is O(m2).

Once we have P0, we can construct a special automaton A ¼ ðQ;

A [f]g; d; s;F;R;B; df ;HÞ that finds all occurrences of P0 in T as

follows:

• Q is the set of states,
• A is the array of variables (which is used as an alphabet in A)

and] is a wildcard variable,
• d : Q� A! Q is the transition function,
• s is the start state,
• F is the set of final states,
• R is the alphabet of the original pattern P,
• B is the array for inequality conditions of variables,
• df : Q! Q is the failure transition function, and
• H : Q! 2A�ðA[f]gÞ is the set of injective functions for variables.

Note that four parameters——R;B; df ;H—are added to the defin-

ition of a traditional FA. The automaton A simulates the Knuth–

Morris–Pratt algorithm, using P0 instead of P as a pattern. In the

Knuth–Morris–Pratt algorithm, when there occurs a mismatch, the al-

gorithm uses the longest suffix of the prefix of T read so far, which is a

prefix of P0. The automaton A simulates the process when a mismatch

occurs by df, and additionally, changes surjection of A to R according

to H. Algorithm 2 constructs an automaton A from P and Figure 4

shows an example automaton constructed from P¼AGCGTA.

We establish the time and space complexity of Algorithm 2 as

follows: We can compute Pals(P) in O(m) time and, based on

Pals(P), line 11 takes O(m) time. Since other lines in the algorithm

Fig. 3. A variable pattern P 0 and an array B of inequality conditions for P ¼
AGCGTA. Variables A½i � are written as Ai in the figure for better readability

(a) (b)

Fig. 2. Two cases in searching pal-equivalent strings. (a) There exists ðc; rÞ
2 Palsðw Þ such that c � i and c þ r � 0:5 � i . (b) There is no (c, r) satisfying

the condition. Stripped boxes represent maximal palindromes

Fig. 4. An automaton A constructed from P ¼ AGCGTA. Variables A½i� are

written as Ai in the figure for better readability. A dashed transition from a

state p is the failure transition df ðpÞ and the label on the failure transition with

square brackets represents the set of injective functionsHðpÞ

OMPPM 1153

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: After
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
http://bioinformatics.oxfordjournals.org/

except for loops require constant time, the total time complexity is

O(m2). For the space complexity, there are O(m) states in A. For

each state, there are one out-transition, one outgoing failure transi-

tion and O(m) injective functions. Therefore, the space complexity

is O(m2).

Now we present an algorithm that solves Pal-Matching using A.

Based on the Knuth–Morris–Pratt algorithm, Algorithm 3 processes

T in A and reports all end-indices of matching occurrences.

We analyze the time and space complexity of Algorithm 3.

Checking the condition in line 5 takes O(m) time, and the for loop

in line 6 takes O(m) time. Note that lines 5–6 runs once for one exe-

cution of line 6, where l decreases. For each i, l increases by 1 in line

7. Since l � 0, the total runtime of the while loop from line 5 to line

6 is O(mn). Combined with Algorithm 2 in line 1, the algorithm re-

quires Oðm2 þmnÞ time and O(m2) space. Thus, given a text T of

length n and a pattern P of length m, we can solve the online palin-

drome pattern matching problem with O(m2) preprocessing time

and O(mn) query time using O(m2) space.

2.3 The algorithm for MPal-matching
Now we extend the previous algorithm to solve MPal-Matching.

The basic idea of the algorithm is to process multiple patterns at

once with a single automaton, based on the idea of the Aho–

Corasick automaton (Aho and Corasick 1975). Assume that given

patterns P1; . . . ;Pk of length m1; . . . ;mk are sorted by ascending

order with respect to the length of the pattern and M is the sum of

all pattern lengths. For P1; . . . ;Pk, we first compute variable pat-

terns P01; . . . ;P0k, while merging all B½mi�s to one B½k�½mk�. It is

straightforward to show that the process, which we call

ConstructMultiVariablePattern, runs in OðmkMÞ time using Oðmk

MÞ space.

We define an automaton B ¼ ðQ;A [f]g; d; s; F;R;B; df ;H; dpÞ.
The definition of B is similar to the definition of A, except for an

additional parameter: The pattern suffix transition function dp : Q

! Q contains transitions to find multiple matching occurrences on

a single state. The automaton B simulates the Aho–Corasick algo-

rithm, using P01; . . . ;P0k instead of P1; . . . ;Pk as patterns. Algorithm

4 constructs B from P1; . . . ;Pk. We use a supplementary function

StateForVP to return the state denoting the end of a given variable

pattern. Figure 5 shows an example automaton constructed from

P1 ¼ AGA;P2 ¼ ACTG;P3 ¼ ATAT;P4 ¼ TCTGC.

We analyze the time and space complexity of Algorithm 4. We

can compute PalsðPjÞ in OðmjÞ time and, based on PalsðPjÞ, lines 14

Fig. 5. An automaton B constructed from P1 ¼ AGA;P2 ¼ ACTG;

P3 ¼ ATAT ;P4 ¼ TCTGC . Variables A½i� are written as Ai in the figure for bet-

ter readability. Dashed transitions represent failure transitions and dotted

transitions represent pattern suffix transitions

1154 H.Kim and Y.-S.Han

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: -
Deleted Text: -
Deleted Text: to
Deleted Text: the
Deleted Text: -
Deleted Text:)
Deleted Text: -
http://bioinformatics.oxfordjournals.org/

and 21 takes OðmkÞ time. Since other lines in the algorithm except

for loops require constant time, the main loop from lines 4 to 23

takes OðmkMÞ time. Therefore, the total time complexity is

OðmkMÞ. For the space complexity, there are O(M) states in B.

For each state, there are one out-transition, one outgoing

failure transition, at most one outgoing pattern suffix transition and

OðmkÞ injective functions. Therefore, the space complexity is

OðmkMÞ.
We design Algorithm 5 similar to Algorithm 3 on B to solve

MPal-Matching with an additional process: whenever the current

state ql reaches a final state qf, return all patterns that are con-

nected by dp from qf. This additional process requires O(c) total

runtime, where c is the number of pattern occurrences. Since the

size of H for each state in B is bounded to mk, the algorithm

requires OðmkMþmknþ cÞ time and OðmkMÞ space. Therefore,

given a text T of length n and a pattern P of length m, we can

solve the online multiple palindrome pattern matching problem

with OðmkMÞ preprocessing time and Oðmknþ cÞ query time using

OðmkMÞ space.

3 Experiments

We design three experiments to estimate the average performance of

the algorithms. For Algorithm 3, we first establish two parameters—

the length m of the pattern and the length n of the text—and esti-

mated three values—the preprocessing time tp, the query time tq, the

number s of variables—for random DNA patterns and texts.

Second, we calculate the average number of variables for small m by

considering all possible patterns of length m. Third, for Algorithm

5, we use real RNA data as a pattern set and measure the pre-

processing time tp and the query time tq by two parameters—the

sum M of all pattern lengths and the longest pattern length mk.

The details of the experiment are as follows:

1. For the first experiment,

• The length m of the pattern changes from 10 to 100 by 10,

and then from 100 to 1000 by 100. The length n of the text

changes from 10 000 to 100 000 by 10 000.
• For each pair of m and n, we randomly generate a pattern

and a text from an alphabet fA;G;C;Tg 100 times, and cal-

culate the average value of the preprocessing time tp, the

query time tq and the number of variables s.

2. For the second experiment, we iterate all possible strings for

1 � m � 10 and calculate the average of s for each m.

3. For the third experiment,

• We use 24 RNA secondary structures belonging to distinct

RNA families from the Rfam database (Burge et al., 2013) as

a superset of a pattern set. The set of RNA secondary struc-

tures used is in the supplementary material.
• We use a RNA-sequence of length 100 000 from the

ArrayExpress database (Brazma et al., 2003) as a text. We

checked that each pattern in the superset does not appear in

the text, which erases the factor c from the runtime.
• We run 100 iterations. For each iteration, we first choose a

pattern pk, and then select each pattern in the superset with

the length less than jpkj with the probability 1
2 to form a set of

patterns for the iteration. We compute the preprocessing

time tp and the query time tq.

We obtain the following results from our experiments (note that

we have rounded our results to the nearest hundredth.):

• Preprocessing time of Algorithm 3: Figure 6 shows the prepro-

cessing time tp of Algorithm 3 according to the length m of the

pattern (the table for the graph is in the supplementary material).
• Query time of Algorithm 3: Figure 7 shows the query time tq of

Algorithm 3 according to the length m of the pattern and the

length n of the text (tables for graphs are in the supplementary

material).
• Number of variables: In Algorithm 3, the query time is bounded to

O(ns), where s is the number of variables. Figure 8 shows the num-

ber of variables s according to the length of the pattern m (The table

for the graph is in the supplementary material). The data for m ¼
1–10 is the average of s for all possible cases, and the data from m

¼ 10 to m¼ 1000 is the average for 100 random cases.
• Pre-processing time of Algorithm 5: Figure 9 shows the prepro-

cessing time tp of Algorithm 5, according to the sum of all pat-

tern lengths M and the longest pattern length mk.
• Query time of Algorithm 5: Figure 10 shows the query time tq of

Algorithm 5 according to the longest pattern length mk and the

sum of all pattern lengths M. We observe that tq is independent

Fig. 6. Preprocessing time graph for Algorithm 3, where 10 �m � 1000. m

denotes the length of pattern and tp denotes the preprocessing time. We can

observe that tp follows the quadratic function of m since tp ¼ Oðm2Þ.

OMPPM 1155

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: line
Deleted Text: experiments
Deleted Text: —
Deleted Text: —
Deleted Text: —
Deleted Text: —
Deleted Text: —
Deleted Text: ,
Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text:)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
Deleted Text: ,
Deleted Text:
Deleted Text:)
Deleted Text: tp
Deleted Text: tq
Deleted Text: The
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
Deleted Text: .
Deleted Text: Tables
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
Deleted Text: .
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv738/-/DC1
Deleted Text: .
Deleted Text: to
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/

to M but it is not clear whether or not tq is proportional to mk.

We design another experiment to determine the factor that af-

fects mk most.
• T is a randomly generated text of length 100 000. We run 1000

iterations for different sets of patterns.
• For each iteration, we choose mk between 100 and 200, and gen-

erate a set of random patterns, where M is 1000.

Fig. 7. Query time graph for Algorithm 3. m denotes the length of pattern and

tq denotes the query time. We observe that tq is proportional to n and m since

tq ¼ OðnmÞ. Note that tq for n ¼ 10 000 and m ¼ 100 is 13.02, whereas tq for

n ¼ 100 000 and m ¼ 10 is 31.56. This implies that the increase of m affects tq

less than the increase of n

Fig. 10. Query time graph for Algorithm 5, considering mk and M. mk denotes

the length of the longest pattern, M denotes the sum of the lengths of all pat-

terns and tq denotes the query time. We observe that tq is independent

from M

Fig. 8. Number of variable graph, where m denotes the length of the pat-

tern and s denotes the number of variables used. For m ¼ 1–10, we observe

linear increase of s as m increases. The difference of s between m and m � 1

tends to decrease as m increases, but the difference rapidly converges

to 0.47, and we can easily approximate s ¼ 0:47m (Note that s ¼ 468.78 when

m ¼ 1000.)

Fig. 9. Preprocessing time graph for Algorithm 5. We observe that tp is pro-

portional to M and mk since tp ¼ Oðmk MÞ

Fig. 11. Query time graph for Algorithm 5, considering goback and checkall.

goback denotes the number of changes on the array of variables, checkall de-

notes the number of pattern suffix transitions taken, and tq denotes the query

time. This graph shows that tq is proportional to goback, which is Oðmk nÞ but

the average value is far less than mkn and not proportional to mkn

1156 H.Kim and Y.-S.Han

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/

• We record the number of changes on the array of variables

(which we call goback) and the number of pattern suffix transi-

tions taken (which we call checkall).

Figure 11 shows the query time tq of Algorithm 5 according to

goback and checkall. Theoretically, tq ¼ Oðmknþ cÞ, the upper

bound of goback is mkn and the upper bound of checkall is c.

This experiment shows that tq is proportional to goback, which is

OðmknÞ but the average value is far less than mkn and not propor-

tional to mkn. This feature makes the algorithm much more efficient

than running pattern matching algorithms for individual pattern k

times.

4 Conclusions

Palindromic structures are widely studied in string processing

and combinatorics and have applications in the analysis of DNA,

RNA and protein sequences. For a text T of length n and a pattern

P of length m, we have solved the online palindrome pattern

matching in O(m2) preprocessing time and O(mn) query time

using O(m2) space. Then we have extended the problem for mul-

tiple patterns P1; . . . ;Pk and solved the online multiple palin-

drome pattern matching in OðmkMÞ preprocessing time and

OðmknÞ query time using OðmkMÞ space, where M is the sum of

all pattern lengths and mk is the longest pattern length. Note that

the algorithm for the multiple palindrome pattern matching does

not increase the query time. We performed experiments to analyze

the runtime of the algorithms, and found out that the runtime for

the multiple pattern matching is much faster than expected. We

believe that the algorithm can be efficiently used to find a struc-

tural similarity between multiple bio strings. Since the online mul-

tiple palindrome pattern matching is first proposed in the paper,

our future work includes reducing time and space requirement of

the algorithm. Moreover, we believe that the approach to solve

the multiple pattern matching based on the Aho–Corasick au-

tomaton can be applied to pattern matching problems considering

other structural equivalences.

Acknowledgements

We wish to thank the referees for the careful reading of the paper and many

valuable suggestions including relevant references.

Funding

This work was supported by the Basic Science Research Program through

National Research Foundation funded by MEST [2015R1D1A1A01060097],

Yonsei University Future-leading Research Initiative of 2015 and the

National Research Foundation Grant funded by the Korean Government

[NRF-2013-Global Ph.D. Fellowship Program to H.K.].

Conflict of Interest: none declared.

References

Adebiyi,E.F. et al. (2001) An efficient algorithm for finding short approximate

non-tandem repeats. Bioinformatics, 17, S5–S12.

Ahmad,S. et al. (2003) RVP-net: online prediction of real valued accessible sur-

face area of proteins from single sequences. Bioinformatics, 19, 1849–1851.

Aho,A.V. and Corasick,M.J. (1975) Efficient string matching: an aid to biblio-

graphic search. Commun. ACM, 18, 333–340.

Brazma,A. et al. (2003) ArrayExpress–a public repository for microarray gene

expression data at the EBI. Nucleic Acids Res., 31, 68–71.

Buhler,J. (2001) Efficient large-scale sequence comparison by locality-sensitive

hashing. Bioinformatics, 17, 419–428.

Burge,S.W. et al. (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids

Res., 41, 226–232.

Gusfield,D. (1997). Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press,

Cambridge, UK.

Hopcroft,J.E. and Ullman,J.D. (1979). Introduction to Automata Theory,

Languages, and Computation. Addison–Wesley, Boston, USA.

I,T. et al. (2010). Counting and verifying maximal palindromes. In:

Proceedings of the 17th International Conference on String Processing and

Information Retrieval, pp. 135–146.

I,T. et al. (2013). Palindrome pattern matching. Theor. Comput. Sci., 483,

162–170.

Knuth,D.E. et al. (1977). Fast pattern matching in strings. SIAM J. Comput.,

6, 323–350.

Kolpakov,R. and Kucherov,G. (2009) Searching for gapped palindromes.

Theor. Comput. Sci., 410, 5365–5373.

Krawinkel,U. et al. (1986) Palindromic sequences are associated with sites

of DNA breakage during gene conversion. Nucleic Acids Res., 14,

3871–3882.

Kunin,V. et al. (2007) Evolutionary conservation of sequence and secondary

structures in CRISPR repeats. Genome Biol., 8, R61.

Mali,P. et al. (2013) Cas9 as a versatile tool for engineering biology. Nat.

Methods, 10, 957–963.

Manacher,G. (1975) A new linear-time “on-line” algorithm for finding the

smallest initial palindrome of a string. J. ACM, 22, 346–351.

Parisi,V. et al. (2003) STRING: finding tandem repeats in DNA sequences.

Bioinformatics, 19, 1733–1738.

Paten,B. et al. (2009) Sequence progressive alignment, a framework for prac-

tical large-scale probabilistic consistency alignment. Bioinformatics, 25,

295–301.

Prüfer,K. et al. (2008) PatMaN: rapid alignment of short sequences to large

databases. Bioinformatics, 24, 1530–1531.

Rigoutsos,I. and Floratos,A. (1998) Combinatorial pattern discovery in biolo-

gical sequences: the TEIRESIAS algorithm. Bioinformatics, 14, 55–67.

Wood,D. (1986). Theory of Computation. Harper & Row, New York City,

USA.

OMPPM 1157

 at Y
onsei U

niversity on A
pril 20, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: conclusions
Deleted Text: -
http://bioinformatics.oxfordjournals.org/

