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Abstract. Given a context-free grammar (CFG) and a finite-state au-
tomaton (FA), we tackle the problem of computing the most similar pair
of strings from two languages. We in particular consider three different
gap cost models, linear, affine and concave models, that are crucial for
finding a proper alignment between two bio sequences. We design effi-
cient algorithms for computing the edit-distance between a CFG and an
FA under these gap cost models. The time complexity of our algorithm
for computing the linear or affine gap distance is polynomial and the
time complexity for the concave gap distance is exponential.

Keywords: approximate matching, edit-distance, context-free
grammars, finite-state automata.

1 Introduction

The string matching problem aims to find exact matches of a pattern w from
an input text T and the approximate matching problem is to find similar oc-
currences of w that are within the distance k in T . Many researchers studied
the approximate pattern matching problem that allows various types of mis-
matches [1,6,16,17,19,22]. For example, Aho and Peterson [1], and Lyon [16]
introduced an O(n2m3) algorithm for the problem of approximately matching a
string of length n and a context-free language specified by a grammar of size m.
They generalized Earley’s algorithm [6] for parsing context-free languages and
considered the edit-distance model [15] that has a unit-cost function. Myers [19]
considered the variants of the problem under various gap costs such as linear,
affine and concave gap costs; these gap cost models are very important to find
proper alignment between two bio sequences in practices [20,21]. For the linear
and affine gap costs, Myers designed O(mn2(n+logm)) algorithms and sketched
an O(m5n88m) algorithm for the concave gap costs. His algorithm generalizes
the Cocke-Younger-Kasami (CYK) algorithm [4,8,12].

The approximate matching problem is based on the edit-distance between
two strings, or between a string and a language. This led researchers to exam-
ine the edit-distance between two formal languages. Mohri [18] proved that the
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edit-distance between two context-free languages is undecidable and provided a
quadratic algorithm for two regular languages. Choffrut and Pighizzini [3] con-
sidered the relative edit-distance between languages and defined the reflexivity
of binary relations based on the definition. Recently, the authors [9] studied the
problem of computing the Levenshtein distance [15] between a context-free lan-
guage and a regular language given by a pushdown automaton (PDA) P and a
finite-state automaton (FA) A, respectively. We constructed an alignment PDA
that computes all possible alignments between L(A) and L(P ), converted the
alignment PDA into a CFG and found the optimal alignment from the resulting
grammar. The overall runtime is O((n1n2) · 2(m1m2)

2

), where m1 is the number
of states of A, m2 is the number of states of P , n1 is the number of transitions
of A and n2 is the number of transitions of P . We also showed that we can
compute the optimal edit-distance value in O((m1m2)

4 · (n1n2)) time. Note that
the conversion from a PDA of size n into a CFG takes O(n3) time and the size
of the resulting grammar is at most O(n3) [10]. If a context-free language is
given by a CFG instead of a PDA, then we need to construct a PDA for an
input CFG before computing the alignment PDA. This motivates us to design
algorithms that compute the edit-distance between a CFG and an FA without
constructing a PDA, and extend this problem to the approximate matching be-
tween a CFG and an FA. In other words, we calculate the minimum edit-distance
and the optimal alignment between the most similar pair of strings generated
by a CFG and an FA, respectively. We introduce algorithms for computing the
various gap distances and the optimal alignments between a CFG and an FA.
While the previous research [9,11,14,18] on computing the edit-distance of for-
mal languages rely on variants of the Cartesian product, the proposed algorithms
are based on the dynamic programming approach that are generalized from the
CYK algorithm. Given an FA of size n and a CFG of size m, our algorithms
compute linear and affine gap distances in O(mn2(n+logm)) time. Furthermore,
the worst-case time complexity of our algorithm for computing the concave gap
distance is O(mn88m).

In Section 2, we give a basic notations and terminology used here. We present
the definitions for the edit-distance model in Section 3. In Section 4, we introduce
a dynamic programming algorithm for computing the edit-distance between a
CFG and an FA. The following two sections extend the algorithm to the problems
of computing affine and concave gap distance.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is any subset of Σ∗. Given a set X , 2X denotes the power set of X .

The symbol ∅ denotes the empty language and the character λ denotes the
null string. A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F ),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a
multi-valued transition function, s ∈ Q is the start state and F ⊆ Q is a set of
final states. If F consists of a single state f , we use f instead of {f} for simplicity.
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For a transition q ∈ δ(p, a) in A, we say that p has an out-transition and q
has an in-transition. Furthermore, p is a source state of q and q is a target state
of p. The transition function δ can be extended to a function Q × Σ∗ → 2Q

that reflects sequences of inputs. A string x over Σ is accepted by A if there is
a labeled path from s to a state in F such that this path spells out the string x,
namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F .

A context-free grammar (CFG) G is specified by a tuple G = (V,Σ,R, S),
where V is a set of variables, R ⊆ V × (V ∪Σ)∗ is a finite set of productions and
S ∈ V is the start symbol. Let αAβ be a string over V ∪ Σ with A a variable
and A → γ be a production of G. Then, we say that αAβ ⇒ αγβ. The reflexive,
transitive closure of ⇒ is

∗⇒. Then the context-free language defined by G is
L(G) = {w ∈ Σ∗ | S ∗⇒ w}.

A CFG is in Chomsky normal form (CNF) if all of its production rules are of
the form: A → BC or A → a, where A,B,C ∈ V and a ∈ Σ. Note that every
context-free grammar can be converted into the CNF grammar with the size of
O(P 2) where P is the size of the original grammar. We consider the pseudo-
CNF grammars that consist of the rules of the form A → BD or A → B or
A → a where A,B,C ∈ V and a ∈ Σ. We can transform every grammar into
the pseudo-CNF grammar whose size is still O(P ) [19].

For more details on automata theory, we refer the reader to the books [10,23].

3 Edit-Distance

The edit-distance between two strings x and y is the smallest number of opera-
tions that transform x to y. People consider different edit operations depending
on the applications. We consider three basic operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let

Ω = {(a → b) | a, b ∈ Σ ∪ {λ}}
be a set of edit operations. Namely, Ω is an alphabet of all edit operations for
deletions (a → λ), insertions (λ → a) and substitutions (a → b). We call a
string ω ∈ Ω∗ an edit string [11] or an alignment [18].

Let h be the morphism from Ω∗ into Σ∗ ×Σ∗ defined by setting

h((a1 → b1) · · · (an → bn)) = (a1 · · ·an, b1 · · · bn).
For example, a string ω = (a → λ)(b → b)(λ → c)(c → c) over Ω is an alignment
of abc and bcc, and h(ω) = (abc, bcc). Thus, from an alignment ω of two strings x
and y, we can retrieve x and y using h: h(ω) = (x, y).

Definition 1. An edit string ω is a sequence of edit-operations transforming a
string x into a string y if and only if h(ω) = (x, y).

We associate a non-negative edit cost c(ω) to each edit operation ω ∈ Ω where
c is a function Ω → R+. We can extend the function to the cost c(ω) of an
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alignment ω = ω1 · · ·ωn as follows:

c(ω) =

n∑

i=1

c(ωi).

Definition 2. The edit-distance d(x, y) of two strings x and y over Σ is the
minimal cost of an alignment ω between x and y:

d(x, y) = min{c(ω) | h(ω) = (x, y)}.
We say that ω is optimal if d(x, y) = c(ω).

We can extend the edit-distance definition to languages.

Definition 3. The edit-distance d(L,R) between two languages L,R ⊆ Σ∗ is
the minimum edit-distance of two strings, one is from L and the other is
from R:

d(L,R) = min{d(x, y) | x ∈ L and y ∈ R}.
The edit-distance in Definition 3 is the distance between the closest pair of
strings from L and R under the considered edit operations. In other words, the
most similar pair of strings defines the edit-distance between L and R.

4 Algorithm

We compute the edit-distance between a CFG and an FA. We assume that an in-
put CFG G = (V,Σ,R, S) is in pseudo-CNF and an input FAM = (Q,Σ, δ, s, F )
has no λ-production. We use a pseudo-CNF (instead of CNF) because an arbi-
trary grammar can be converted to a pseudo-CNF grammar with only constant
increase in size. First, we define C(A, q, p) to be the minimum edit-distance be-
tween one string v derivable from a variable A and a string w that spells out a
computation of M from q to p. We can compute the edit-distance between L(G)
and L(M) by computing C-values for all A ∈ V and q, p ∈ Q. We formally define
it as follows:

C(A, q, p) = min{d(v, w) | v ∈ L(GA) and w ∈ L(Mq,p)},
where GA = (V,Σ,R,A) and Mq,p = (Q,Σ, δ, q, {p}). Then, min{C(S, s, f) | f ∈
F} is the edit-distance between L(G) and L(M). In Theorem 3, we provide a
recurrence for computing the C-values. For this purpose we first need to establish
some preliminary properties and introduce notation.

First we establish the unsurprising property that among the strings w ∈
L(Mq,p) that take state q to state p, the string that minimizes the distance
to an individual alphabet symbol uses a computation from q to p that does not
repeat any loop. For states q and p, we define Lone−cyclic(q, p) to consist of those
strings w such that M has a computation on w from q to p that does not visit
any state more than twice.
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Lemma 1. For any states of M , q, p ∈ Q and a ∈ Σ,

d(a, L(Mq,p)) = d(a, Lone−cyclic(q, p)).

Note that, when the cost function is allowed to be arbitrary, a property analogous
to Lemma 1 would not hold for strings that correspond to an acyclic computation
ofM from state q to p. If any string corresponding to an acyclic computation does
not contain occurrences of the symbol a and the cost of deleting a is considerably
larger than the costs of insertions of any other symbol, it is possible that the
distance of a and L(Mq,p) cannot be minimized by a string that would not repeat
any state in the computation from q to p.

Now corresponding to a variable A ∈ V and states q, p ∈ Q of M , we define
the following sets:

(i) X(A, q, p) = {C(B, q, r) + C(D, r, p) | r ∈ Q, A → BD ∈ R}.
(ii) Y (A, q, p) = {C(B, q, p) | A → B ∈ R}.
(iii) Z(A, q, p) = {d(a, Lone−cyclic(q, p)) | A → a ∈ R, a ∈ Σ}.
Theorem 1. For all A ∈ V and q, p ∈ Q,

C(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p)]. (1)

Note that Equation (1) in Theorem 1 is an essential recurrence equation for
computing d(L(G), L(M)) in bottom-up dynamic programming approach. First,
we compute C(A, q, p) where the distance between two states q and p is 0. For
convenience, we define the distance between two states q and p in the FA as
the minimum number of transitions required to reach p from q and denote it
by d(p, q). For the basis, we start from when d(p, q) is 0, thus, two states are
the same. Let us assume that there is a cycle in M from q to q of length n.
Since there can be a set of strings Lq accepted through the cycle including the
self-loop, we should consider Lq for computing C(A, q, q). Therefore, we should
compute all C-values where the distance between two states is less than n to
compute the basis. We denote the C-values not considering the cycles in paths
by C′-values to avoid confusion.

Now we consider C(A, q, q), which is a basis for recursive definition of C-values.
First, for a variable A ∈ V and a state q ∈ Q of M , we define the following sets:

(i) X(A, q, q) = {C′(B, q, r) + C′(D, r, q) | r ∈ Q, A → BD ∈ R}.
(ii) Y (A, q, q) = {C′(B, q, q) | A → B ∈ R}.

Then, for all A ∈ V and q, p ∈ Q, we can establish another recursion for the
basis of C-values as follows:

C(A, q, q) = min[C′(A, q, q) ∪X(A, q, q) ∪ Y (A, q, q)].

Now it seems that we are ready to compute C-values. However, we still have a
problem to solve the recurrence step. Consider Y (A, q, p) in Equation (1). We
need to know C(B, q, p) to compute C(A, q, p) that is in the same level of recur-
sion. Similarly, when r is the same state with q or p in the first term X(A, q, p) of
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the recurrence, we need to compute C(B, q, p) or C(D, q, p) to compute C(A, q, p).
This problem also arises when we compute C′-values. These dependencies be-
tween the recursive values in the same level prohibit us to compute the next
level of recursion. Thus, we define an independent recursive definition for this
problem. First, we define the following sets:

(i) X(A, q, p) = {C(B, q, r) + C(D, r, p) | r ∈ Q, A → BD ∈ R}.
(ii) Y (A, q, p) = {d(a, Lone−cyclic(q, p)) | A → a ∈ R, a ∈ Σ}.

Here, r should not be q or p. Then, K-values are defined as follows:

K(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p)].

Note that all K-values can be computed by assuming that all C(A, q′, p′) are
already computed where d(q′, p′) < d(q, p). Now, we can redefine C(A, q, p) as
the minimum of the following four values:

(i) K(A, q, p).

(ii) minA→B C(B, q, p).

(iii) minA→BD C(B, q, p) + C(D, p, p).

(iv) minA→BD C(B, q, q) + C(D, q, p).

We can solve the dependencies between C-values by the construction of a weighted
graph, which has a vertex for each variable A ∈ V and a special source vertex φ.
Then, we connect φ to each vertex for a variable A with an edge whose weight
is K(A, q, p). Also there are the edge of weight 0 from B to A if and only if
A → B ∈ R and the edge of weight C(D, p, p) from B to A if and only if
A → BD ∈ R or A → DB ∈ R. Then, from the construction, C(A, q, p) becomes
the shortest path from φ to A in the graph. Similarly, we can also solve the depen-
dency problem for C′-values. We give an algorithm for computing d(L(G), L(M))
in Algorithm 1.

Theorem 2. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and
a non-negative cost function c, we can compute the edit-distance between L(G)
and L(M) in O(mn2(n+ logm)) worst-case time, where m = |G| and n = |Q|.

Lemma 2. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and an
arbitrary cost function c, we can compute the edit-distance between L(G) and
L(M) in O(mn2(n+m)) worst-case time, where m = |G| and n = |Q|.

We can also observe that it is possible to retrieve the optimal alignment by
backtracking the optimal path.

Lemma 3. Given a CFG G = (V,Σ,R, S) and an FA M = (Q,Σ, δ, s, F ),
we can compute the optimal alignment of length k between L(G) and L(M) in
O(mnk) worst-case time, where m = |G| and n = |Q|.
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Algorithm 1. The algorithm for computing d(L(G), L(M))

Input: A CFG G = (V,Σ,R, S) and an FA M = (Q,Σ, δ, s, F )
1: for q ∈ Q do
2: for d← 1 to |Q| − 1 do
3: for p ∈ Q and d(p, q) = d do
4: for A ∈ V do
5: C(A, q, p)← K(A, q, p)
6: end for
7: H ← heap of V (ordered by C(?, q, p))
8: while H �= ∅ do
9: A← extract min(H)
10: for A ∈ H and (A→ BD ∈ R or A→ DB ∈ R) do
11: C(B, q, p)← min{C(A, q, p),C(B, q, p) + C(D, p, p)}, reheap(H,A)
12: end for
13: for A ∈ H and A→ B ∈ R do
14: C(A, q, p)← min{C(A, q, p),C(B, q, p)}, reheap(H,A)
15: end for
16: end while
17: end for
18: end for
19: end for
20: return min{C(S, s, f) | f ∈ F}
Output: d(L(G), L(M))

S1 = A C T T A G T A G A T C C
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S2 = A C T T − G − A − − T C C

(a)

S1 = A C T T A G T A G A T C C
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S2 = A C T T − − − − G A T C C

(b)

Fig. 1. Two alignment examples that align S2 to the target sequence S1. The first
alignment contains three short gaps while the second contains one long gap.

5 Affine Gap Distance

The approximate pattern matching problem is often used for the sequence align-
ment in bioinformatics [20,21]. A biological sequence alignment is a process of
arranging the sequences of DNA, RNA or protein, and examining the similari-
ties between the sequences. Consider the two alignments of sequences described
in Fig. 1. Both have gaps of length four, which can be defined as deletion or
insertion edit operations. However, the second alignment is biologically better
since a deletion or insertion of four consecutive elements is more likely to occur
than of three separated elements. Therefore, we need to give more penalty to
the alignments containing many short gaps than few long gaps. Note that we
can consider a sequence of consecutive deletion or insertion operations as a gap.
Assume that an alignment ω consists of k consecutive insertions or deletions, in
other words, a gap of the length k. Then, the cost of ω is linearly dependent
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on |ω|. Namely, c(ω) = g · |ω| where g is a constant. Instead of using this lin-
ear gap penalty function, we can use the affine gap penalty function to obtain
biologically better alignments. The affine gap penalty function is defined as fol-
lows. Here the alphabet Ω of edit operations consists only of deletions (a → λ),
insertions (λ → a) and trivial substitutions (a → a) that do not change the
symbol. We denote Ωdel = {(a → λ) | a ∈ Σ}, Ωins = {(λ → a) | a ∈ Σ} and
Ωtriv = {(a → a) | a ∈ Σ}, and thus

Ω = Ωdel ∪Ωins ∪Ωtriv.

Let ω ∈ Ω+ be a sequence of edit operations. The (maximal) ID-decomposition
of ω (insertion–deletion decomposition of ω) is the tuple

compID(ω) = (ω1, ω2, . . . , ωk)

where ωi ∈ Ω+
del∪Ω+

ins ∪Ω+
triv, for i = 1, . . . , k, and for any 1 ≤ j < k the strings

ωj and ωj+1 belong to different sets Ω+
del, Ω

+
ins and Ω+

triv.
The ID-decomposition of ω is obtained simply by subdividing ω into maximal

substrings each consisting only of insertions, or only deletions, or only trivial
substitutions and thus compID(ω) is uniquely defined.

Now for a sequence consisting only of deletions or only of insertions, ω ∈
Ω+

del ∪Ω+
ins, we define the affine gap cost of ω as caffine(ω) = e+ g · |ω|, where e

and g are constants. For a sequence consisting of trivial substitutions, ω ∈ Ω+
triv,

we set caffine(ω) = 0.
Now the affine gap cost of an arbitrary sequence of edit operations ω ∈ Ω+,

where compID(ω) = (ω1, ω2, . . . , ωk) is defined as

caffine(ω) =

k∑

i=1

caffine(ωi).

The affine gap cost gives, for a sequence of edit operations, a constant e penalty
for each gap opening (consisting of consecutive insertions or consecutive dele-
tions) and additionally a penalty that is linear in the length of the gap. The edit
distance based on the affine gap cost function is called the affine gap distance.

We introduce an algorithm for computing the affine gap distance between a
CFG and an FA. This is an extension of the previous algorithm, yet has the
same time complexity. The key difference is that we define four types of C-values
as follows:

C�
�(A, q, p) =

min{d(x, λ) + d(v, w) + d(y, λ) | A ∗⇒ xvy, |x|� 0, |y|� 0 and p ∈ δ(q, w)},

where �,� ∈ {=, �=}. We illustrate four cases in Fig. 2. The affine gap distance
becomes min{C�

�(S, s, f) | f ∈ F and �,� ∈ {=, �=}}.
Before introducing the recurrence for C�

� -values, corresponding to a variable
A ∈ V and states q, p ∈ Q of M , we define the following sets:
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x v

w

y

(a) C �=�= case

v

w

x

(b) C �== case

v

w

y

(c) C=�= case

v

w

(d) C== case

Fig. 2. The pictorial representations of C��-values where �,� ∈ {=, �=}

(i) X(A, q, p) = {C�
�(B, q, r) + C�

�(D, r, p) − (h if � = � = ‘�=’) | r ∈ Q, A →
BD ∈ R}.

(ii) Y (A, q, p) = {C�
�(B, q, p) | A → B ∈ R}.

(iii) Z(A, q, p) = {I�
� (a, w) | A → a ∈ R, a ∈ Σ, w ∈ Lone−cyclic(q, p)}.

Here, I-values are also defined as follows:

– I=
= (a, w) = mink∈[1,|w|]{c(a, wk)+(|w|−1)·g+(h if k > 1)+(h if k < |w|)},

– I=
�= (a, w) = I �=

= (a, w) = (|w| + 1) · g + 2h, and

– I �=
�= (a, w) = g + h.

Now we establish a recursive definition for C�
�-values.

Theorem 3. For all A ∈ V and q, p ∈ Q,

C�
�(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p)].

Note that the time complexity of this algorithm is still O(mn2(n+ logm)), the
same as in Theorem 2. Since we consider the four variations of C-values, the time
complexity increases to four times the runtime of Theorem 2.

Theorem 4. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and
a non-negative cost function c, we can compute the affine gap distance between
L(G) and L(M) in O(mn2(n + logm)) worst-case time, where m = |G| and
n = |Q|.
Lemma 4. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and an
arbitrary cost function c, we can compute the affine gap distance between L(G)
and L(M) in O(mn2(n+m)) worst-case time, where m = |G| and n = |Q|.

6 Concave Gap Distance

Many researchers consider non-linear gap penalty functions including the affine
gap penalty function [13,17,22]. Although the affine gap penalty function prefers
few longer gaps to many smaller gaps, the alignment results based on the affine
gap penalty function are not practically the best. For example, assume that there
are two alignments s1 and s2 aligning two sequences. Alignment s1 contains two
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gaps whose lengths are 99 and 100, respectively, while s2 contains just one gap
of length 240. Note that the remaining parts of s1 and s2 are perfectly matched.
By employing the affine gap penalty function with h = 5 and g = 1, we obtain
c(s1) = 99+ 100+ 5× 2 = 209 and c(s2) = 240+ 5 = 245. Even though the gap
opening penalty is introduced in the affine gap distance, it may not be sufficient
to consider some practical cases such as this example. This is why the concave
gap distance is introduced and replaces other distances considering the linear
or affine gap penalties. For a sequence consisting only of deletions or only of
insertions, ω ∈ Ω+

del ∪Ω+
ins, we define the concave gap cost of ω as

cconcave(ω) = e+ g · log |ω|,

where e and g are constants. For a sequence consisting of trivial substitutions,
ω ∈ Ω+

triv, we set cconcave(ω) = 0. Now the concave gap cost of an arbitrary
sequence of edit operations ω ∈ Ω+, where compID(ω) = (ω1, ω2, . . . , ωk) is
defined as

cconcave(ω) =

k∑

i=1

cconcave(ωi).

Under this gap penalty function, the shape of the penalty score with respect
to the length of the gap is concave in the sense that its forward differences
are non-increasing. In other words, Δc(ω1) ≥ Δc(ω2) ≥ Δc(ω3) ≥ · · · where
Δc(ωk) ≡ c(ωk+1)− c(ωk) and |ωk| = k. We define new C-values for computing
the concave gap distance as follows:

C(A, q, p, i, j) = min{d(x, λ) + d(v, w) + d(y, λ) | A ∗⇒ xvy �= λ},

where |x| = i, |y| = j and p ∈ δ(q, w). Here we use two additional parameters
i and j for maintaining the lengths of gaps on both sides. We also define a set
V(t) of variables that can derive strings of length t as follows:

V(t) = {A | A ∈ V,A
∗⇒ w and |w| = t}.

We can compute a set V(t) of variables as follows:
t−1⋃

k=1

{A | A → BD ∈ V(k)× V(t− k)} ∪ {A | A → B ∈ V(t)} ∪ {A | A → a}.

Then, before introducing the recurrence for C-values for the concave gap distance,
we define the following sets corresponding to a variable A ∈ V and states q,
p ∈ Q of M :

(i) X(A, q, p) = {C(B, q, r, i,m) + C(D, r, p, n, j) + g · log m+n
mn − h | r ∈ Q, A →

BD ∈ R}.
(ii) Y (A, q, p) = {C(B, q, p, i, j − t) | A → BD ∈ R, 1 ≤ t ≤ j, D ∈ V(t)}.
(iii) Z(A, q, p) = {C(D, q, p, i− t, j) | A → BD ∈ R, 1 ≤ t ≤ i, B ∈ V(t)}.
(iv) U(A, q, p) = {C(B, q, p, i, j) | A → B ∈ R}.
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(v) W (A, q, p) = {I(a, w, i, j) | A → a, 0 ≤ i+ j ≤ 1, w ∈ Lone−cyclic(q, p)}.
Here, I-values are also defined as follows:

– I(a, w, 0, 0) = c(a, wk) + 2h+ log(k − 1)(|w| − k),
– I(a, w, 0, 1) = I(a, w, 1, 0) = h+ log |w|.

Now we establish a recurrence for computing the concave gap distance between
a CFG and an FA.

Theorem 5. For all A ∈ V , q, p ∈ Q and 1 ≤ i, j ≤ |Q| · 2 h
g |V |,

C�
�(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p) ∪ U(A, q, p) ∪W (A, q, p)].

Based on the recurrence, we can compute the concave gap distance between
L(G) and L(A) in exponential runtime.

Theorem 6. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and a
non-negative cost function c, we can compute the concave gap distance between
L(G) and L(A) in O(mn88m) worst-case time, where m = |G| and n = |Q|.

7 Conclusions

We have considered the problem of approximately matching a context-free lan-
guage specified by a CFG and a regular language specified by an FA. We have
examined three types of gap cost functions that are used for approximate string
matching: linear, affine and concave. Based on the dynamic programming ap-
proach, we have introduced algorithms for computing the linear, affine and con-
cave gap distance between an FA and a CFG.

Given an FA of size n and a CFG of size m, we have presented algorithms
for computing linear and affine gap distances in O(nm2(n+ logm)) time under
a non-negative cost function and O(nm2(n+m)) time under an arbitrary cost
function. We have also shown that computing the optimal alignment of length k
takes O(nmk) time by our algorithm when we consider linear or affine gap
distance. Finally, we have proposed an O(mn88m) time algorithm for computing
the concave gap distance.

It will be interesting to see if we can compute the max-min distance between
an FA and a CFG, or find a k optimal alignment between an FA and a CFG
using a similar approach.
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