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Abstract. We define a language to be overlap-free if any two distinct
strings in the language do not overlap with each other. We observe that
overlap-free languages are a proper subfamily of infix-free languages and
also a proper subfamily of comma-free languages. Based on these obser-
vations, we design a polynomial-time algorithm that determines overlap-
freeness of a regular language. We consider two cases: A language is
specified by a nondeterministic finite-state automaton and a language is
described by a regular expression. Furthermore, we examine the prime
overlap-free decomposition of overlap-free regular languages and show
that the prime overlap-free decomposition is not unique.

1 Introduction

Regular languages are popular in many applications such as editors, programming
languages and software systems in general. People often use regular expressions
for searching in text editors or for UNIX command; for example, vi, emacs and
grep. Moreover, regular expression searching is also used in pattern matching.

The pattern matching problem is to find all matching substrings of a text T
with respect to a pattern L. If L is a regular language given by a regular ex-
pression, then the problem becomes the regular-expression matching problem.
Many researchers have investigated various regular-expression matching prob-
lems [1, 3, 7, 18]. One question in regular-expression matching is how many
matching substrings are in T . Given a regular expression E and a text T , there
can be at most n2 matching substrings in T with respect to L(E), where n is the
size of T . For example, E = (a + b)∗ and T = aabababa · · ·abaa over the alpha-
bet {a, b}. These matching substrings often overlap and nest with each other. To
avoid this situation, researchers restrict the search to find and report only a lin-
ear subset of the matching substrings. We call it linearizing restriction. There are
two well-known linearizing restrictions in the literature: The longest match rule,
which is a generalization of the leftmost longest match rule of IEEE POSIX [14]
and the shortest-match substring search rule of Clarke and Cormack [3]. These
two rules have different semantics and, therefore, identify different matching
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substrings for same pattern and text in general. On the other hand, Han and
Wood [10] showed that if the pattern language is infix-free, then both rules give
the same output. Furthermore, they proposed another linearizing restriction,
leftmost non-overlapping match rule that only reports non-overlapping match-
ing substrings of T . This new rule leads us to define a new subfamily of regular
languages, overlap-free regular languages. We define a language L to be overlap-
free if any two strings in L do not overlap with each other. (We give a formal
definition in Section 3.) If we use an overlap-free regular language as pattern, it
guarantees that all matching substrings of a text do not overlap with each other
and, therefore, ensures a linear number of matching substrings.

As a continuation of our investigations of subfamilies of regular languages,
it is natural to examine overlap-free regular languages and the prime overlap-
free decomposition problem since overlap-free regular languages are a proper
subfamily of regular languages. Our goal is to design an efficient algorithm that
determines overlap-freeness of a given regular language and to study the prime
overlap-free decomposition and its uniqueness.

We define some basic notions in Section 2. In Section 3, we define overlap-
free languages and design an efficient algorithm that determines overlap-freeness
of a given regular language L based on the structural properties of L. Then,
in Section 4, we demonstrate that an overlap-free regular language does not
have a unique prime overlap-free decomposition. We also develop an algorithm
for computing a prime overlap-free decomposition from a minimal deterministic
finite-state automaton (DFA) of an overlap-free regular language.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string. A finite-state au-
tomaton (FA) A is specified by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of
states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of transitions,
s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be the number
of states in Q and |δ| be the number of transitions in δ. Then, the size |A| of
A is |Q| + |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and a ∈ Σ, we
say that p has an out-transition and q has an in-transition. Furthermore, p is a
source state of q and q is a target state of p. A string x over Σ is accepted by A
if there is a labeled path from s to a state in F such that this path spells out the
string x. Thus, the language L(A) of an FA A is the set of all strings that are
spelled out by paths from s to a final state in F . We say that A is non-returning
if the start state of A does not have any in-transitions and A is non-exiting if
the final state of A does not have any out-transitions. We assume that A has
only useful states; that is, each state of A appears on some path from the start
state to some final state.

Given two strings x and y over Σ, x is a prefix of y if there exists z ∈ Σ∗

such that xz = y and x is a suffix of y if there exists z ∈ Σ∗ such that zx = y.
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Furthermore, x is said to be a substring or an infix of y if there are two strings u
and v such that uxv = y. Given a set X of strings over, X is infix-free if no
string in X is an infix of any other string in X . Similarly, X is prefix-free if no
string in X is a prefix of any other string in X .

3 Overlap-Free Regular Languages

Given two strings x and y, we say that x and y overlap with each other if either
a suffix of x is a prefix of y or a suffix of y is a prefix of x. For example, x = abcd
and y = cdee overlap.

Definition 1. Given a (regular) language L, we define L to be overlap-free if
any two distinct strings in L do not overlap with each other.

Since we examine overlap of strings, we can think of the derivative operation [2].
The derivative x\L of a language L with respect to a string x is the language
{y | xy ∈ L}.

Proposition 1. If a language L is overlap-free, then x\L ∪ L is prefix-free for
any string x.

Let us examine the relationship with other families of languages. By Definition 1,
overlap-free languages are a proper subfamily of infix-free languages. Golomb et
al. [6] introduced comma-free languages: A language L is comma-free if LL ∩
Σ+LΣ+ = ∅. Comma-free languages are also a proper subfamily of infix-free
languages [15]. We compare these two subfamilies of infix-free languages and
establish the following result:

Proposition 2. Overlap-free languages are a proper subfamily of comma-free
languages.

A regular language is represented by an FA or described by a regular expression.
Thus, we define a regular expression E to be overlap-free if L(E) is overlap-free
and an FA A to be overlap-free if L(A) is overlap-free.

We now investigate the decision problem of overlap-freeness of a regular lan-
guage. Given a language L, L is prefix-free if and only if L ∩ LΣ+ �= ∅ [15]. If L
is a regular language, then we can check the emptiness of L∩LΣ+ in polynomial
time. Thus, if we can find a proper string x, then we can use Proposition 1 for
deciding overlap-freeness of L. However, we do not know which string is proper
unless we check the emptiness of (x\L ∪ L) ∩ (x\L ∪ L)Σ+ and certainly it is
undesirable to try all possible strings over Σ. Recently, Han et al. [8] introduced
state-pair graphs and proposed an algorithm for determining infix-freeness of a
regular language L based on the structural properties of L. Based on state-pair
graphs, we design algorithms that determine overlap-freeness of a regular lan-
guage. Since an overlap-free language must be infix-free, we assume that a given
language L is infix-free. Note that we can check infix-freeness of L in quadratic
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time in the size of the representation of L [8]; if L is not infix-free, then L is not
overlap-free.

First, we consider when a language is given by an FA. Given an FA A =
(Q, Σ, δ, s, F ), we assign a unique number for each state in A from 1 to m,
where m is the number of states in A.

Definition 2. Given an FA A = (Q, Σ, δ, s, F ), we define the state-pair
graph GA = (VG, EG) of A, where VG is a set of nodes and EG is a set of
edges, as follows:

VG = {(i, j) | i and j ∈ Q} and
EG = {((i, j), a, (x, y)) | (i, a, x) and (j, a, y) ∈ δ and a ∈ Σ}.

The crucial property of state-pair graphs is that if there is a string w spelled out
by two distinct paths in A, for example, one path is from i to x and the other
path is from j to y, then, there is a path from (i, j) to (x, y) in GA that spells
out the same string w. Note that state-pair graphs do not require given FAs to
be deterministic. The complexity of the state-pair graph GA = (VG, EG) for an
FA A = (Q, Σ, δ, s, F ) is as follows:

Proposition 3. Given an FA A = (Q, Σ, δ, s, F ) and its state-pair graph GA,
|GA| ≤ |Q|2 + |δ|2.
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Fig. 1. (a) is an FA A for L(ab∗c + bc∗d) and (b) is the corresponding state-pair
graph GA. We omit all nodes without transitions in GA. Note that L(A) is not overlap-
free.

Fig. 1 illustrates the state-pair graph for a given FA A. Note that the lan-
guage L(A) = L(ab∗c + bc∗d) in Fig. 1 is not overlap-free since abc and bcd
overlap, and the overlapped string bc appears on the path from (1, 2) to (3, 4) in
GA.
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Since we assume that L(A) is infix-free, a final state of A has no out-transitions
and the start state has no in-transitions. Namely, A is non-returning and non-
exiting. Therefore, if A has more than one final state, then all final states can
be merged into a single final state since they are equivalent. From now on, we
assume that a given FA is non-returning and non-exiting and has only one final
state.

Theorem 1. Given an FA A = (Q, Σ, δ, s, f), L(A) is overlap-free if and only
if the state-pair graph GA for A has no path from (1, i) to (j, m), where i �= m
and j �= 1, and 1 denotes the start state and m denotes the final state.

We can identify such a path in Theorem 1 in linear time in the size of GA

using Depth-First Search (DFS) [4]. Thus, we obtain the following result from
Proposition 3 and Theorem 1:

Theorem 2. Given an FA A = (Q, Σ, δ, s, f), we can determine whether or not
L(A) is overlap-free in O(|Q|2 + |δ|2) worst-case time.

Since O(|δ|) = O(|Q|2) in the worst-case for NFAs, the runtime is O(|Q|4) in
the worst-case. On the other hand, if a regular language is given by a regular
expression E, then we can construct an FA for E that improves the worst-case
running time. Since the complexity of state-pair graphs is closely related to
the number of states and the number of transitions of input FAs, we use an
FA construction that gives fewer states and transitions. One possibility is the
Thompson construction [18].

Given a regular expression E, the Thompson construction takes O(|E|) time
and the resulting Thompson automaton has O(|E|) states and O(|E|) transi-
tions [13]; namely, O(|Q|) = O(|δ|) = O(|E|). Even though Thompson automata
are a subfamily of NFAs, they define all regular languages. Therefore, we can use
Thompson automata to determine overlap-freeness of a regular language. Since
Thompson automata allow null-transitions, we include the null-transition case
to construct the edges for state-pair graphs as follows:

VG = {(i, j) | i and j ∈ Q} and
EG = {((i, j), a, (x, y)) | (i, a, x) and (j, a, y) ∈ δ and a ∈ Σ ∪ {λ}}.

The complexity of the state-pair graph based on this new construction is the
same as before; namely, O(|Q|2 + |δ|2). Therefore, we establish the following
result for checking regular expression overlap-freeness.

Theorem 3. Given a regular expression E, we can determine whether or not
L(E) is overlap-free in O(|E|2) worst-case time.

Furthermore, we can use state-pair graphs for determining comma-freeness of
regular languages. A regular language L is comma-free if and only if LL ∩
Σ+LΣ+ = ∅. Because of the assumption that a given FA A is infix-free, (oth-
erwise, L(A) is not comma-free.) A has a single final state that has no out-
transitions. Using this structural property, we construct an FA A′ for LL by
catenating two As; see Fig. 2 for an example.
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Fig. 2. Given an FA A = (Q,Σ, δ, s, f), we construct A′ by merging the final state of
one A and the start state of the other A. If L(A) is not comma-free, then there exist
two paths, one is from A′ = AA and the other is from A, and both path spell out the
same string w.

Now we construct the state-pair graph for L(A). The construction of state-
pair graph for the comma-free case is slightly different from the state-pair graph
in Definition 2. Given an FA A = (Q, Σ, δ, s, f), let A′ = (Q′, Σ, δ′, s′, f ′) be the
catenation of two As; namely, L(A′) = L(A)L(A). The state-pair graph GA =
(VG, EG) for the comma-free case is defined as follows:

VG = {(i, j) | i ∈ Q and j ∈ Q′} and
EG = {((i, j), a, (x, y)) | (i, a, x) ∈ δ, (j, a, y) ∈ δ′ and a ∈ Σ}.

Theorem 4. Given an FA A = (Q, Σ, δ, s, f), L(A) is comma-free if and only
if there is no path from (1, i) to (m, j), for i �= 1 and j �= m, in the state-pair
graph GA for A. Moreover, we can determine comma-freeness in O(|Q|2 + |δ|2)
worst-case time.

A subfamily of languages with certain properties is often closed under catenation.
For example, prefix-free languages, bifix-free languages, infix-free languages and
outfix-free languages are all closed under catenation, respectively [8, 9, 11]. Now
we characterize the family of overlap-free (regular) languages in terms of closure
properties.

Theorem 5. The family of overlap-free (regular) languages is closed under in-
tersection but not under catenation, union, complement or star.

4 Prime Overlap-Free Regular Languages and
Decomposition

Decomposition is the reverse operation of catenation. If L = L1 ·L2, then L is the
catenation of L1 and L2 and L1 · L2 is a decomposition of L. We call L1 and L2
factors of L. Note that every language L has a decomposition, L = {λ}·L, where
L is a factor of itself. We call {λ} a trivial language. We define a language L to
be prime if L �= L1 ·L2, for any non-trivial languages L1 and L2. Then, the prime
decomposition of L is to decompose L into L1L2 · · · Lk, where L1, L2, · · · , Lk are
prime languages and k ≥ 1 is a constant.

Mateescu et al. [16, 17] showed that the primality of regular languages is
decidable and the prime decomposition of a regular language is not unique. Czy-
zowicz et al. [5] showed that for a given prefix-free regular language L, the prime
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prefix-free decomposition is unique and the decomposition can be computed in
O(m) worst-case time, where m is the size of the minimal DFA for L. Han et
al. [8] investigated the prime infix-free decomposition of infix-free regular lan-
guages and demonstrated that the prime infix-free decomposition is not unique.
On the other hand, the prime outfix-free decomposition of outfix-free regular
languages is unique [11]. We investigate prime overlap-free regular languages
and decomposition.

4.1 Prime Overlap-Free Regular Languages

Definition 3. We define a regular language L to be a prime overlap-free lan-
guage if L �= L1 · L2, for any overlap-free regular languages L1 and L2.

From now on, when we say prime, we mean prime overlap-free.

Definition 4. We define a state b in a DFA A to be a bridge state if the fol-
lowing conditions hold:

1. State b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b only once.
3. State b is not in any cycles in A.
4. L(A1) and L(A2) are overlap-free.

Given an overlap-free DFA A = (Q, Σ, δ, s, f) with a bridge state b ∈ Q, we can
partition A into two subautomata A1 and A2 as follows: A1 = (Q1, Σ, δ1, s, b)
and A2 = (Q2, Σ, δ2, b, f), where Q1 is a set of states that appear on some
path from s and b in A, δ1 is a set of transitions that appear on some path
from s and b in A, Q2 = Q \ Q1 ∪ {b} and δ2 = δ \ δ1. See Fig. 3 for an
example.

Note that the second requirement in Definition 4 ensures that the decompo-
sition of L(A) is L(A1) · L(A2) and the third requirement is from the property
that overlap-free FAs must be non-returning and non-exiting.

Theorem 6. An overlap-free regular language L is prime if and only if the
minimal DFA A for L does not have any bridge states.

We tackle the decomposition problem based on FA partitioning using bridge
states. Note that Czyzowicz et al. [5] demonstrated the use of FA partitioning
for the prefix-free decomposition and Han and Wood [12] proposed an efficient
algorithm that computes shorter regular expressions from FAs based on FA par-
titioning. In many applications, FAs become more and more complicated and the
size of FAs is too large to fit into main memory. Therefore, FA decomposition is
necessary and FA partitioning is one approach for solving this problem.

4.2 Prime Decomposition of Overlap-Free Regular Languages

The prime decomposition for an overlap-free regular language L is to represent
L as a catenation of prime overlap-free regular languages. If L is prime, then L
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Fig. 3. An example of the partitioning of an FA at a bridge state b

itself is a prime decomposition. Thus, given an overlap-free regular language L,
we, first, determine whether or not L is prime. If L is not prime, then there
should be some bridge state(s) and we decompose L using the bridge state(s).
Let A1 and A2 be two subautomata partitioned at a bridge state for L. If both
L(A1) and L(A2) are prime, then a prime decomposition of L is L(A1) · L(A2).
Otherwise, we repeat the preceding procedure for a non-prime language.

Let B denote a set of bridge states for a given minimal DFA A. The number
of states in B is at most m, where m is the number of states in A. Note that
once we partition A at b ∈ B into A1 and A2, then only the states in B \ {b}
can be bridge states in A1 and A2. (It is not necessary for all remaining states
to be bridge states as demonstrated in Fig. 4.) Therefore, we can determine the
primality of L(A) by checking whether or not A has bridge states. Moreover,
we can compute a prime decomposition of L(A) using these bridge states. Since
there are at most m bridge states in A, we can compute a prime decomposition
of L(A) after a finite number of decompositions at bridge states.

Note that the first three requirements in Definition 4 are based on the struc-
tural properties of A. We call a state that satisfies the first three requirements
a candidate bridge state. We first compute all candidate bridge states and, then
we determine whether or not each candidate bridge state satisfies the fourth
requirement in Definition 4.

Proposition 4 (Han et al. [8]). Given a minimal DFA A = (Q, Σ, δ, s, f), we
can identify all candidate bridge states in O(|Q| + |δ|) worst-case time.

Let CB denote a set of candidate bridge states that we compute from an overlap-
free DFA A based on Proposition 4. Then, for each state bi ∈ CB, we check
whether or not two subautomata A1 and A2 partitioned at bi are overlap-free. If
both A1 and A2 are overlap-free, then L is not prime and, thus, we decompose
L into L(A1) · L(A2) and continue to check and decompose for each A1 and A2,
respectively, using the remaining states in CB \ {bi}.

Theorem 7. Given a minimal DFA A = (Q, Σ, δ, s, f) for an overlap-free reg-
ular language, we can determine primality of L(A) in O(m3) worst-case time
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and compute a prime decomposition for L(A) in O(m4) worst-case time, where
m = |Q|.

The algorithm for computing a prime decomposition for L(A) in Theorem 7
looks similar to the algorithm for the infix-free regular language case studied by
Han et al. [8]. However, there is one big difference between these two algorithms
because of the different closure properties of two families: In fact, Han et al. [8]
speeded up their algorithm by linear factor based on the fact that infix-free
languages are closed under catenation whereas overlap-free languages are not
closed as shown in Theorem 5.

b1 b2
c a b a c

b

b1
c a b a c

b
A

A1 A2

Fig. 4. States b1 and b2 are bridge states for A. However, once we decompose A at b2,
then b1 is no longer a bridge state in A1 since b1 now violates the fourth requirement
in Definition 4. Similarly, if we decompose A at b1, then b2 is not a bridge state.

We observe that a bridge state bi of a minimal DFA A may not be a bridge
state anymore if A is partitioned at a different bridge state bj . See Fig. 4 for an
example: It hints that the prime overlap-free decomposition might not be unique.
Note that the prime prefix-free decomposition for a prefix-free regular language
is unique [5] whereas the prime infix-free decomposition for an infix-free regular
language is not unique [8]. Since overlap-free languages are a proper subfamily of
prefix-free languages and a proper subfamily of infix-free languages, it is natural
to examine the uniqueness of prime overlap-free decomposition. The following
example demonstrates that the prime overlap-free decomposition is not unique.

L(c(aba + b)c) =
{

L1(c(aba + b)) · L2(c).
L2(c) · L3((aba + b)c).

The language L is overlap-free but not prime and it has two different prime
decompositions, where L1, L2 and L3 are prime overlap-free languages.
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