
Prefix-Free Regular-Expression Matching�

Yo-Sub Han, Yajun Wang, and Derick Wood

Department of Computer Science
The Hong Kong University of Science and Technology

{emmous,yalding,dwood}@cs.ust.hk

Abstract. We explore the regular-expression matching problem with
respect to prefix-freeness of the pattern. We show that the prefix-free
regular expression gives only linear number of matching substrings in
the size of a given text. Based on this observation, we propose an effi-
cient algorithm for the prefix-free regular-expression matching problem.
Furthermore, we suggest an algorithm to determine whether or not a
given regular language is prefix-free.

1 Introduction

In 1968, Thompson [11] introduced what became a classical automaton con-
struction, the Thompson construction. It was used to find all matching strings
from a text with respect to a given regular expression in the unix editor, ed.
Subsequently, Aho [1] investigated the regular-expression matching problem as
an extension of the keyword pattern matching problem [2], where the set of
keywords is represented by a regular expression. Regular-expression matching
has been adopted in many applications such as grep, vi, emacs and perl. For
instance, with grep, we search for the last position of a matching string since
the command outputs the line that contains the matched string.

Prefix-freeness is fundamental in coding theory; for example, Huffman codes
are prefix-free sets. The advantage of prefix-free codes is that we can decode
a given encoded string deterministically. Since codes are languages and prefix-
free codes are a proper subfamily of codes, prefix-free regular languages are a
proper subfamily of regular languages. Prefix-free regular languages have already
been used to define determinism for generalized automata [6] and for expression
automata [7].

The regular-expression matching problem has been well studied in the liter-
ature. Given a regular expression E and a text T , Aho [1] showed that we can
determine whether or not there is a substring of T that is in L(E) in O(mn)
time using O(m) space, where m is the size of E and n is the size of T . Recently,
Crochemore and Hancart [5] presented an algorithm to find all end positions

� Han and Wood were supported under the Research Grants Council of Hong Kong
Competitive Earmarked Research Grant HKUST6197/01E and Wang was supported
under the Research Grants Council of Hong Kong Competitive Earmarked Research
Grant HKUST6206/02E.

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 298–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Prefix-Free Regular-Expression Matching 299

of matching substrings of T with respect to L(E) in O(mn) time using O(m)
space. Myers et al. [10] solved the problem of identifying start positions and end
positions of all matching substrings of T that belong to L(E) in O(mn log n)
time using O(m log n) space. Clarke and Cormack [4] considered an interesting
problem, the shortest-match substring search. Given a finite-state automaton A
and a text T , identify all substrings of T that are accepted by A and also form
an infix-free set. They showed that there are at most n matching substrings in T
and they suggested an O(kmn) worst-case running time algorithm using O(m)
space, where k is the maximum number of out-transitions from a state in A, m is
the number of states and n is the size of T . (If we assume that A is a Thompson
automaton, then k = 2.) In the regular-expression matching problem, there are
a quadratic number of matching substrings of a given text in the worst-case. On
the other hand, Clarke and Cormack [4] hinted that if an input regular expression
is infix-free, then there are at most a linear number of matching substrings and
it ensures a faster running time. Since the family of prefix-free regular languages
is a proper subfamily of regular languages and a proper superfamily of infix-free
regular languages, it is natural to investigate the prefix-free regular-expression
matching problem. As far as we are aware, there does not appear to have been
any prior consolidated effort to study the prefix-free regular-expression matching
problem.

We want to find all (start, end) positions of matching substrings; similar
to the work of Myers et al. [10] and Clarke and Cormack [4]. We reexamine
the regular-expression matching problem with this requirement and investigate
the prefix-free regular-expression matching problem. Moreover, we suggest an
algorithm to determine whether or not a given regular language L is prefix-free,
where L is described by a nondeterministic finite-state automaton or by a regular
expression. If L is represented by a deterministic finite-state automaton, then L
is prefix-free if and only if there are no out-transitions from any final state in
the given automaton [7].

In Section 2, we define some basic notation. We then, in Section 3, present
an algorithm to identify all matching substrings of T with respect to a regular
expression E based on the algorithm by Crochemore and Hancart [5]. The worst-
case running time for the algorithm is O(mn2) using O(m) space, where m is the
size of E and n is the size of T . We also study the infix-free regular expression
matching problem motivated by the shortest-match substring search problem.
In Section 4, we examine the prefix-free regular-expression matching problem
and propose an O(mn) worst-case running time algorithm using O(m) space. It
implies that if E is prefix-free, then we can improve the total running time for
the matching problem. In Section 5, we present a polynomial-time algorithm to
determine whether or not a given regular language is prefix-free.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the

300 Yo-Sub Han, Yajun Wang, and Derick Wood

empty language and the character λ denotes the null string. Given two strings x
and y in Σ∗, x is said to be a prefix of y if there is a string w such that xw = y.
Given a set X of strings over Σ, X is prefix-free if no string in X is a prefix of
any other string in X . Given a string x, let xR be the reversal of x, in which
case XR = {xR | x ∈ X}.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q|
be the number of states in Q and |δ| be the number of transitions in δ. Given a
transition (p, a, q) in δ, where p, q ∈ Q and a ∈ Σ, we say p has an out-transition
and q has an in-transition. Furthermore, p is a source state of q and q is a target
state of p. A string x over Σ is accepted by A if there is a labeled path from s
to a final state in F that spells out x. Thus, the language L(A) of a finite-state
automaton A is the set of all strings spelled out by paths from s to a final state
in F . We define A to be non-returning if the start state of A does not have
any in-transitions and A to be non-exiting if a final state of A does not have
any out-transitions. We assume that A has only useful states; that is, each state
appears on some path from the start state to some final state.

We define a (regular) language L to be prefix-free if L is a prefix-free set.
A regular expression E is prefix-free if L(E) is prefix-free. In a similar way, we
define suffix-free regular languages and regular expressions. We define L to be
infix-free if, for all distinct strings x and y in L, x is not a substring of y and
y is not a substring of x. Then, a regular expression E is infix-free if L(E) is
infix-free. The size |E| of a regular expression E is the total number of character
appearances.

3 Regular-Expression Matching

The regular-expression matching problem is an extension of the pattern matching
problem, for which a pattern is given as a regular expression E. If L(E) consists
of a single string, then the problem is the string matching problem [3, 9] and
if L(E) is a finite language, then we obtain the multiple keyword matching
problem [2].

Definition 1. Given a regular expression E and a text T = w1w2 · · ·wn, the
regular-expression matching problem is to identify all matching substrings of T
that belong to L(E).

We answer the regular-expression matching problem by using Thompson au-
tomata [11]. We give the inductive construction of Thompson automata in Fig. 1.
Note that a state q in a Thompson automaton has at most two in-transitions
and at most two out-transitions. Furthermore, if q has a transition (q, a, r) and
a ∈ Σ, then state r has at most two out-transitions that are null.

Given a regular expression E over Σ, we prepend Σ∗ to E; thus, allow-
ing matching to begin at any position in T . We construct the Thompson au-
tomaton A for Σ∗E and process T using ExpressionMatching defined in Fig. 2.

Prefix-Free Regular-Expression Matching 301

λ

λ

λ

λ

λ

or

(a)

(c)(b)

(d) (e)

a

λ

λ λ

λMG

MF

MF

λ

MF MG

Fig. 1. The Thompson construction. Let E, F and G be regular expressions and MF

and MG be the corresponding Thompson automata for F and G, respectively. (a)
E = a + λ, (b) E = F + G, (c) E = F · G, (d) E = F ∗ and (e) E = ∅.

ExpressionMatching (A, T)

Q = null({s})
if f ∈ Q then output λ
for j=1 to n

Q = null(goto(Q, wj))
if f ∈ Q then output j

Fig. 2. A regular-expression matching procedure for a given Thompson automaton A =
(Q, Σ, δ, s, f) and a text T = w1 · · ·wn. The procedure reports all the end positions of
matching substrings of T .

Note that ExpressionMatching was already considered by Crochemore and Han-
cart [5], which is a modified version of Aho’s algorithm [1].

ExpressionMatching (EM) in Fig. 2 has two sub-functions: null(Q) and
goto(Q, wj). The function null(Q) computes all states in A that can be reached
from a state in the set Q of states by null transitions. We use depth-first traver-
sal to compute null(Q) since A is essentially a graph. We traverse A using only
null transitions. If we reach a state q that has already been visited by another
null transition, then we stop exploring from q. Therefore, each state in A is
visited at most twice since a state in a Thompson automaton has at most two
in-transitions. Thus, the null(Q) step takes O(m) time in the worst-case, where
m is the size of A. Now goto(Q, wj) gives all states that can be reached from a
state in Q by a transition with wj , the current input character. We only have
to check whether a state in Q has an out-transition with wj on it since the tar-

302 Yo-Sub Han, Yajun Wang, and Derick Wood

get state of the current state can have only null out-transitions. Therefore, the
goto(Q, wj) step takes O(|Q|) time, which is O(m) in the worst-case. Overall,
EM runs in O(mn) worst-case time using O(m) space.

Note that EM reports all the last positions of matching substrings of T with
respect to A. It is, in some applications like grep, sufficient to have the end
positions of matching substrings. However, if we want to report exact positions
of matching strings, then we have to read T from right to left for each end
position to find the corresponding start positions. For example, we need seven
reverse scans of T to find all matching substrings in Fig. 3.

a a a a a a a abbbbbbbbT

E = a(a + b)∗a

Fig. 3. An example of finding all end positions of T for a given regular expression E
using EM. EM reports seven end positions indicated by “↑”. There are, however, 28
matching substrings of T with respect to E and some matching substrings end at the
same position.

We construct the Thompson automaton A′ for ER to find the start positions
that correspond to the end positions we have already computed. For each end
position j in T , we process wj · · ·w2w1 with respect to A′ using EM to identify
all corresponding start positions for j. In the worst-case, there are O(n) end
positions for matching substrings and we have to read T R for each end position
to find all corresponding start positions. A worst-case example is when E = (a+
b)∗ and T = abaaabababa · · ·aba. Total running time for the regular-expression
matching problem is O(mn) + O(mn) · O(n) = O(mn2); that is (search all end
positions) + [(find all corresponding start positions for each end position) × (the
number of end positions)], using O(m) space in the worst-case.

Theorem 1. Given a regular expression E and a text T , we can identify all
matching substrings of T that belong to L(E) in O(mn2) worst-case time using
O(m) space, where m is the size of E and n is the size of T .

Before we tackle the prefix-free regular-expression matching problem, we con-
sider the simpler case of E being infix-free. Note that this problem is similar
to, yet different from, the shortest-match substring search by Clarke and Cor-
mack [4]. They were interested in reporting all matching substrings that form
an infix-free set for a given (normal) regular expression and we are interested in
the case when a given regular expression is strictly infix-free.

Theorem 2. Given an infix-free regular expression E and a text T , we can
identify all matching substrings of T that belong to L(E) in O(mn) worst-case
time using O(m) space, where m is the size of E and n is the size of T .

Prefix-Free Regular-Expression Matching 303

A brief description of the algorithm for Theorem 2 is as follows: First, we
find all end positions P = {p1, p2, . . . , pk} of matching substrings in T using EM,
where k is the number of matching substrings in T . Note that k ≤ n since L(E)
is infix-free1. Then, we construct the Thompson automaton A′ for Σ∗ER and
find all the end positions PR = {q1, q2, . . . , qk} of substrings of T R with respect
to A′ using EM. Note that PR also has k positions. We assume that both P and
PR are sorted in ascending order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

Fig. 4. An example of infix-free regular-expression matching. The upper arrows indi-
cate P R and the lower arrows indicate P . We output (2,4), (5,8), (7, 11), (10,12) and
(13,15).

Since L(E) is infix-free, no matching substring can be nested within any
other matching substring. Therefore, once we have PR and P , then we output
(qi, pi) for 1 ≤ i ≤ k, where qi ∈ PR and pi ∈ P . Fig. 4 illustrates this step
when PR = {2, 5, 7, 10, 13} and P = {4, 8, 11, 12, 15}. Since we run EM twice to
compute P and PR and the output step from P and PR takes only linear time
in the size of P , which is O(n) in the worst-case, the total complexity is O(mn)
time using O(m) space.

Since all infix-free (regular) languages are prefix-free (regular) languages it
is natural to investigate more general case, the prefix-free regular-expression
matching problem.

4 The Prefix-Free Regular-Expression Matching Problem

We now consider the regular-expression matching problem for prefix-free regular
expressions.

Lemma 1. Given a prefix-free regular expression E and a text T , there are at
most n matching substrings that belong to L(E), where n is the size of T .

Proof. Assume that the number of matching substrings is greater than n. Then,
by the pigeonhole principle, there must be two distinct substrings s1 and s2

that start from the same position in T . We assume without loss of generality
that s1 is shorter than s2, which, in turn, implies that s1 is a prefix of s2 — a
contradiction. Therefore, there are at most n matching substrings. ��
1 This is a special case of Lemma 1 in Section 4 since an infix-free language is also a

prefix-free language.

304 Yo-Sub Han, Yajun Wang, and Derick Wood

We design an algorithm for the prefix-free regular-expression matching prob-
lem. First, we find all end positions of matching substrings of T = w1 · · ·wn

using EM with respect to E. Let P = {p1, p2, . . . , pk} be the set of end posi-
tions of matching substrings, where k ≤ n is the number of matching substrings.
Then, we need to search for the corresponding start position of each end position
in P . We construct the Thompson automaton A′ = (Q, Σ, δ′, s′, f ′) for ER and
scan T R = wn · · ·w1 starting from the last position pk in P . Note that ER is
suffix-free.

Definition 2. Given a position j ∈ P and a current input position i in T R in
EM, where i < j, we define Qj to be the set of states such that there is a path
from s′ to each state in Qj that spells out the substring wjwj−1 · · ·wi of T R in
A′.

The notion of a set of reachable states in Definition 2 is not new. We already
used it in EM in Fig. 2 implicitly. We now maintain sets of reachable states in
A′ for all end positions in P .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

Q5

Q7

Q10

Q13

Q15

Fig. 5. Once we find the set P of all end positions, then we read T R and maintain sets
of reachable states for P in EM. For example, we have Q15, Q13 and Q10 when reading
w8 of T R.

We process T R from the last position in P with respect to A′ using EM. If Qj ,
for some position j ∈ P, 1 ≤ j ≤ n, contains the final state f ′ of A′ when reading
wi of T R, where i < j, then we output the matching substring position (i, j)
and continue to read the remaining input of T R. Since each end position in P
has exactly one corresponding start position, we can delete Qj from our data
structure after identifying a matching substring. However, we may meet another
end position j−1 before finding the start position for Qj and need to maintain
another set Qj−1 of reachable states for position j−1 in P . For example, we may
have sets Q15, Q13 and Q10 when we are reading w8 of T R in Fig. 5. We have
to maintain k sets of reachable states and update k sets simultaneously while
reading each character for T R in the worst-case. As proved in Section 3, the
size of each set of reachable states can be O(m) in the worst-case. Therefore, we
need O(kmn) time and O(km) space to answer the prefix-free regular-expression
matching problem, which is O(mn2) time and O(mn) space in the worst-case.
We now show that we can reduce the complexity to O(mn) time and O(m) space
because of prefix-freeness of E.

Prefix-Free Regular-Expression Matching 305

Lemma 2. If a state r in A′ is reached from two different states p and q, where
p ∈ Qi and q ∈ Qj, when reading a character wh in EM, where h ≤ i < j,
then both paths from p and q via r cannot reach f ′ by reading any prefix of the
remaining input in EM.

Proof. Note that it is not possible that one path reaches f ′ while the other
path does not since both paths must share the same path after reading wh

and arriving at r. Assume that both paths reach f ′ after reading some pre-
fix wh−1 · · ·wg of the remaining input from r, where g < h. It implies that
both strings wi · · ·wh · · ·wg and wj · · ·wh · · ·wg belong to L(ER). Observe that
wi · · ·wg is a suffix of wj · · ·wg. It contradicts the suffix-freeness of ER. There-
fore, if r is reached by two states from different sets of reachable states, then
both paths from p and q via r cannot reach f ′ by reading any prefix of the
remaining input in EM. ��

Lemma 2 demonstrates that if a state r in A′ is reached from two different
sets of reachable states when reading a character wh in EM, then r should
not belong to the both sets since both paths cannot reach the final state by
reading any prefix of the remaining input. Therefore, each state in A′ appears
in at most one reachable set and any two sets of reachable states are disjoint
from each other as a result of reading a character in T R. Since any state r in a
Thompson automaton has at most two in-transitions, r can be visited at most
twice in EM and we need at most O(m) time to update all sets of reachable
states simultaneously at each step to read a character in EM. Note that we use
only O(m) space.

Theorem 3. Given a prefix-free regular expression E and a text T , we can
identify all matching substrings of T that belong to L(E) in O(mn) worst-case
time using O(m) space, where m = |E| and n = |T |.

5 Prefix-Free Regular Languages

A regular language is represented by a finite-state automaton or described by a
regular expression. We present algorithms to determine whether or not a given
regular language L is prefix-free based either on finite-state automata or on
regular expressions. Note that if a finite-state automaton A is deterministic,
then L(A) is prefix-free if and only if A is non-exiting.

We first consider the representation of a regular language L by a nondeter-
ministic finite-state automaton (NFA) A. If A has any out-transitions from a
final state, then we immediately know that L(A) is not prefix-free; A must be
non-exiting to be prefix-free. If A is non-exiting and has several final states, then
all final states are equivalent and, therefore, merged into a single final state.

Given an NFA A = (Q, Σ, δ, s, f), we assign a unique number for each state
from 1 to m, where m is the number of states in Q. Assume 1 denotes s and m
denotes f . We use qi, for 1 ≤ i ≤ m, to denote the corresponding state in A. If
L(A) is not prefix-free, then there are two strings s1 and s2 accepted by A and s1

306 Yo-Sub Han, Yajun Wang, and Derick Wood

is a prefix of s2. It implies that there are two distinct paths in A that spell out s1

and s2 and these two paths spell out the same prefix s1. For example, in Fig. 6,
two paths for s1 = abcbb and s2 = abcbbab are different although they have the
same subpath for ab in common. If the path for s1 is a subpath of the path for
s2, then it implies that there is another final state that has an out-transition.
This contradicts that A is non-exiting.

fs
a b

c

c
b b a b

b
b

Fig. 6. Two distinct paths for abcbb and abcbbab.

We introduce the state-pair graph to capture the situation when two distinct
paths in A spell out s1 and s2 and s1 is a prefix of s2.

Definition 3. Given a finite-state automaton A = (Q, Σ, δ, s, f), we define the
state-pair graph GA = (V, E), where V is a set of nodes and E is a set of edges,
as follows:

V = {(i, j) | qi and qj ∈ Q} and
E = {((i, j), a, (x, y)) | (qi, a, qx) and (qj , a, qy) ∈ δ and a ∈ Σ}.

b2,3 5,4

b

a

a

b

3 4

2

51

a

a1,4 2,5 a4,1 5,2

AG

a

a a

b

3,3

1,1

2,2

5,5

4,4

b

a

a

b3,2 4,5

A

Fig. 7. An example of a state-pair graph GA for a given finite-state automaton A. We
omit all nodes that have no out-transitions in GA.

Fig. 7 illustrates the state-pair graph for a given finite-state automaton A;
L(A) = {ab, aba} is not prefix-free because the prefix ab appears on the path
from (1, 1) to (5, 4) in GA.

Theorem 4. Given a finite-state automaton A, L(A) is prefix-free if and only
if there is no path from (1, 1) to (m, j), for any j �= m, in GA.

Prefix-Free Regular-Expression Matching 307

Proof. =⇒ Assume that there is a path from (1, 1) to (m, j) that spells out a
string x in GA. Then, by the definition of state-pair graphs, there should be two
distinct paths, one of which is from q1 to qm and the other is from q1 to qj in A,
where qm = f and qj �= f . Note that both paths spell out x in A. Since A has
only useful states, state qj must have an out-transition (qj , z1, qk), where z1 ∈ Σ.
Then, there is a transition sequence (qj , z1, qk), (qk, z2, qk+1), . . . , (qk+l−2, zl, qm),
for some l ≥ 1, such that z1 · · · zl = z. In other words, A accepts both x and xz
— a contradiction. Therefore, if L(A) is prefix-free, then there is no path from
(1, 1) to (m, j) in GA.

⇐= Assume that L(A) is not prefix-free. Then, there are two strings x and y
and x is a prefix of y in L(A). Since A is non-exiting, there should be two distinct
paths that spell out x and y in A. Since x is a prefix of y, these two paths in
A make a path from (1, 1) to (m, j), where j �= m in GA — a contradiction.
Thus, if there is no path from (1, 1) to (m, j) for any j �= m in GA, then L(A)
is prefix-free. ��

Let us consider the complexity of the state-pair graph GA = (V, E) for a
given finite-state automaton A = (Q, Σ, δ, s, f). It is clear that V = |Q|2 from
Definition 3. Let δi denote the set of out-transitions from state qi in A. Then,
|δ| =

∑m
i=1 |δi|, where m = |Q|. Since a node (i, j) in GA can have at most

|δi|×|δj| out-transitions, |E| =
∑m

i,j=1 |δi|×|δj| ≤ |δ|2. Therefore, the complexity
of GA is |Q|2 nodes and |δ|2 edges.

Prefix-Freeness(A = (Q,Σ, δ, s, f))

if A is not non-exiting
then return no

Construct GA = (V, E) from A

DFS((1, 1)) in GA

if we meet a node (m, j) for some j, j �= m
then return no

return yes

Fig. 8. A prefix-freeness checking algorithm for a given automaton.

The sub-function DFS((1, 1)) in Prefix-Freeness (PF) in Fig. 8 is a depth-
first search that starts at node (1, 1) in GA. The construction GA = (V, E) from
A takes O(|Q|2 + |δ|2) time in the worst-case and DFS takes (|V | + |E|) time.
Therefore, the total running time for PF is O(|Q|2 + |δ|2).
Theorem 5. Given a finite-state automaton A = (Q, Σ, δ, s, f), we can deter-
mine whether or not L(A) is prefix-free in O(|Q|2 + |δ|2) worst-case time using
PF.

308 Yo-Sub Han, Yajun Wang, and Derick Wood

Since O(|δ|) = O(|Q|2) in the worst-case for NFAs, the running time of PF
is O(|Q|4) in the worst-case. On the other hand, if a language is described by a
regular expression, then we can choose a construction for finite-state automata
that improves the worst-case running time. Since the complexity of the state-pair
graph depends on the number of states and the number of transitions of a given
automaton, we need a finite-state automata construction that results in fewer
states and transitions. One possibility is to use the Thompson construction [11].

Given a regular expression E for L, the Thompson construction shown in
Fig. 1 takes O(|E|) time and the resulting Thompson automaton has O(|E|)
states and O(|E|) transitions [8]; namely, |Q| = |δ| = O(|E|). Even though
Thompson automata are a subfamily of NFAs, they define all regular languages.
Therefore, we can use Thompson automata to determine prefix-freeness of a
regular language given by a regular expression. Since Thompson automata have
null transitions, we include the null transition case to construct the edges for a
state-pair graph as follows:

V = {(i, j) | qi and qj ∈ Q} and
E = {((i, j), a, (x, y)) | (qi, a, qx) and (qj , a, qy) ∈ δ and a ∈ Σ ∪ {λ}}.

The complexity of the state-pair graph based on this new construction is the
same as before; namely, O(|Q|2 + |δ|2). Therefore, we have the following result
when checking regular expression prefix-freeness.

Theorem 6. Given a regular expression E, we can determine whether or not
L(E) is prefix-free in O(|E|2) worst-case time.

Proof. We construct the Thompson automaton AT for E. Hopcroft and Ull-
man [8] showed that the number of states in AT is O(|E|) and also the number
of transitions, |Q| = |δ| = O(|E|). Thus, we construct the state-pair graph based
on the new construction that includes null transitions and determine whether or
not there is a path from (1, 1) to (m, j) for some j �= m in O(|E|2) time using
PF. ��

6 Conclusions

We have investigated the regular-expression, the infix-free regular-expression
and the prefix-free regular-expression matching problems. We have shown that
the regular-expression matching problem can be solved in O(mn2) time using
O(m) space based on the algorithm of Crochemore and Hancart [5]. Whereas, we
observed that the infix-free regular-expression matching problem can be solved
in O(mn) time using O(m) space. We have extended the matching problem
for a more general case, the prefix-free regular-expression matching problem
and proved that the prefix-free regular-expression matching problem can also be
solved in O(mn) worst-case time using O(m) space.

Furthermore, we have shown that we can determine whether or not L(A) is
prefix-free for a given NFA A = (Q, Σ, δ, s, f) in O(|Q|2 + |δ|2) worst-case time

Prefix-Free Regular-Expression Matching 309

based on the state-pair graph defined in Section 5. Finally, if a language L is
described by a regular expression E, then we can improve the running time to
O(|E|2) using the Thompson construction [11].

References

1. A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor, Al-
gorithms and Complexity, volume A of Handbook of Theoretical Computer Science,
255–300. The MIT Press, Cambridge, MA, 1990.

2. A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18:333–340, 1975.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

4. C. L. A. Clarke and G. V. Cormack. On the use of regular expressions for searching
text. ACM Transactions on Programming Languages and Systems, 19(3):413–426,
1997.

5. M. Crochemore and C. Hancart. Automata for matching patterns. In G. Rozenberg
and A. Salomaa, editors, Linear modeling: background and application, volume 2
of Handbook of Formal Languages, 399–462. Springer-Verlag, 1997.

6. D. Giammarresi and R. Montalbano. Deterministic generalized automata. Theo-
retical Computer Science, 215:191–208, 1999.

7. Y.-S. Han and D. Wood. The generalization of generalized automata: Expression
automata. In Proceedings of CIAA’04, 156–166. Springer-Verlag, 2004. Lecture
Notes in Computer Science 3317.

8. J. Hopcroft and J. Ullman. Formal Languages and Their Relationship to Automata.
Addison-Wesley, Reading, MA, 1969.

9. D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323–350, 1977.

10. E. W. Myers, P. Oliva, and K. S. Guimãraes. Reporting exact and approximate
regular expression matches. In Proceedings of CPM’98, 91–103. Springer-Verlag,
1998. Lecture Notes in Computer Science 1448.

11. K. Thompson. Regular expression search algorithm. Communications of the ACM,
11:419–422, 1968.

	Prefix-Free Regular-Expression Matching
	1 Introduction
	2 Preliminaries
	3 Regular-Expression Matching
	4 The Prefix-Free Regular-Expression Matching Problem
	5 Prefix-Free Regular Languages
	6 Conclusions
	References

