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We investigate the nondeterministic state complexity of basic operations for suffix-free regular lan-
guages. The nondeterministic state complexity of an operation is the number of states that are nec-
essary and sufficient in the worst-case for a minimal nondeterministic finite-state automaton that
accepts the language obtained from the operation. We consider basic operations (catenation, union,
intersection, Kleene star, reversal and complementation)and establish matching upper and lower
bounds for each operation. In the case of complementation the upper and lower bounds differ by an
additive constant of two.
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1 Introduction

Codes are useful in information processing, data compression, cryptography and information transmis-
sion [18]. Some well-known examples are prefix codes, suffix codes, bifix codes and infix codes. People
use different codes for different application domains based on the characteristic of each code [1, 18].
Since a code is alanguage, the conditions that classify codes define subfamilies of language families.
For regular languages, for example, the prefix-freeness of prefix codes defines the family of prefix-free
regular languages, which is a proper subfamily of regular languages. Prefix-freeness is fundamental in
coding theory; for example, Huffman codes are prefix-free sets. The advantage of prefix-free codes is
that we can decode a given encoded string deterministically. The symmetric to prefix codes are suffix
codes; given a prefix code, its reversal is always a suffix code. However, suffix codes have their own
unique characteristics and are not always completely symmetric to prefix codes. For instance, a finite-
state automaton (FA) is prefix-free if and only if it has no out-transitions from any final state. If we think
of a reversal of this FA, we can think of an FA whose start statehas no in-transitions. However, this
condition is just a necessary condition for being suffix-free but not sufficient. Thus, we often need to
examine the suffix-free case separately.

Regular languages are given by FAs or regular expressions. There are two main types of FAs: deter-
ministic finite-state automata (DFAs) and nondeterministic finite-state automata (NFAs). NFAs provide
exponential savings in space compared with DFAs but the problem to convert a given DFA to an equiv-
alent minimal NFA is PSPACE-complete [14]. For finite languages, Salomaa and Yu [22] showed that
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O(k
n

log2k+1 ) is a tight bound for converting ann-state NFA to a DFA, wherek is the size of an input
alphabet.

There are at least two different models for the state complexity of operations: The deterministic state
complexity model considers minimal DFAs and the nondeterministic state complexity considers minimal
NFAs.

Yu et al. [25, 26] investigated the deterministic state complexity for various operations on regular
languages. As special cases of state complexity, Câmpeanuet al. [3] and Han and Salomaa [7] exam-
ined the deterministic state complexity of finite languages. Pighizzini and Shallit [20] investigated the
deterministic state complexity of unary language operations. Moreover, Han et al. [10] studied the de-
terministic state complexity of prefix-free regular languages and Han and Salomaa [8] looked into the
deterministic state complexity of suffix-free regular languages. After writing this paper, we have found
out that Jirásková and Olejár [17] have also considered the nondeterministic state complexity of union
and intersection for suffix-free languages. They have established a tight bound for union and intersection
using binary languages. There are several other results with respect to the state complexity of various
operations [4, 5, 21].

Holzer and Kutrib [12] studied the nondeterministic state complexity of regular languages. Jirásek et
al. [15] examined the nondeterministic state complexity ofcomplementation of regular languages. Re-
cently, Han et al. [9] investigated the nondeterministic state complexity of prefix-free regular languages.
As a continuation of our research for the operational nondeterministic state complexity of subfamilies
of regular languages, we consider the nondeterministic state complexity of suffix-free regular languages.
Since suffix codes are one of the fundamental classes of codes, it is important to calculate the precise
bounds. Moreover, determining the state complexity of operations on fundamental subfamilies of the
regular languages can provide valuable insights on connections between restrictions placed on language
definitions and descriptional complexity.

In Section 2, we define some basic notions. In Section 3, we examine the worst-case nondeterministic
state complexity of basic operations (union, catenation, intersection, Kleene star, reversal and comple-
mentation) of suffix-free regular languages. Except for thecomplementation operation, we prove that
the results are tight by giving general lower bound examplesthat match the upper bounds.

We give a comparison table between the deterministic state complexity and the nondeterministic state
complexity in Section 4.

2 Preliminaries

Let Σ denote a finite alphabet of characters andΣ∗ denote the set of all strings overΣ. The size|Σ|
of Σ is the number of characters inΣ. A language overΣ is any subset ofΣ∗. The symbol /0 denotes
the empty language and the symbolλ denotes the null string. For stringsx,y andz, we say thatx is a
suffixof y if y= zx. We define a (regular) languageL to be suffix-free if a stringx∈ L is not a suffix of
any other strings inL. Given a stringx in a setX of strings, letxR be the reversal ofx, in which case
XR = {xR | x∈ X}.

An FA A is specified by a tuple(Q,Σ,δ ,s,F), whereQ is a finite set of states,Σ is an input alphabet,
δ : Q× Σ → 2Q is a transition function,s∈ Q is the start state andF ⊆ Q is a set of final states. If
F consists of a single statef , then we usef instead of{ f} for simplicity. Let |Q| be the number of
states inQ. We define the size|A| of A to be the number of states inA; namely |A| = |Q|. For a
transitionq∈ δ (p,a) in A, we say thatp has anout-transitionandq has anin-transition. Furthermore,p
is asource stateof q andq is atarget stateof p. We say thatA is non-returningif the start state ofA does
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not have any in-transitions andA is non-exitingif all final states ofA do not have any out-transitions. If
δ (q,a) has a single elementq′, then we denoteδ (q,a) = q′ instead ofδ (q,a) = {q′} for simplicity.

A string x overΣ is accepted byA if there is a labeled path froms to a final state such that this path
spells outx. We call this path anaccepting path. Then, the languageL(A) of A is the set of all strings
spelled out by accepting paths inA. We say that a state ofA is usefulif it appears in an accepting path in
A; otherwise, it isuseless. Unless otherwise mentioned, in the following we assume that all states of an
FA are useful.

We say that an FAA is a suffix-free FA ifL(A) is suffix-free. Notice that a suffix-free FA must
be non-returning by definition. We assume that a given NFA hasno λ -transitions since we can always
transform ann-state NFA withλ -transitions to an equivalentn-state NFA withoutλ -transitions [13].

For complete background knowledge in automata theory, the reader may refer to textbooks [13, 23,
24].

Before tackling the problem, we present a nice technique that gives a lower bound for the size of
NFAs and establish a lemma that is crucial to prove the tight bound for the nondeterministic state com-
plexity in the following sections. Notice that an FA for a non-trivial suffix-free regular languageL
(namely,L 6= {λ}) must have at least 2 states since such FA needs at least one start state and one final
state.

Proposition 1 ((The fooling set technique [2, 6]))Let L ⊆ Σ∗ be a regular language. Suppose that
there exists a set of pairs

P= {(xi ,wi) | 1≤ i ≤ n}

such that

1. For all i with 1≤ i ≤ n, we have xiwi ∈ L;

2. For all i, j with 1≤ i, j ≤ n and i 6= j, at least one of xiw j /∈ L and xjwi /∈ L holds.

Then, a minimal NFA for L has at least n states.

The setP satisfying the conditions of Proposition 1 is called afooling setfor L. The fooling set
technique was first proposed by Birget [2]. A related technique was considered by Glaister and Shallit [6].

Lemma 2 Let n≥ 2 be an arbitrary integer. A minimal NFA of the suffix-free language L1 = L(b(an−1)∗)
with n≥ 2 or of the suffix-free language L2 = L(b(an−2)∗b) with n≥ 3 has n states.

We useNSC(L) to denote the number of states of a minimal NFA forL; namely,NSC(L) is the
nondeterministic state complexity ofL.

3 State Complexity

We first examine the nondeterministic state complexity of binary operations (union, catenation and inter-
section) for suffix-free regular languages. Then, we study the unary operation cases (Kleene star, reversal
and complementation). We rely on a unique structural property of a suffix-free FA for obtaining upper
bounds: The start state does not have any in-transitions (the non-returning property).
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3.1 Union

Han and Salomaa [8] showed thatmn− (m+ n)+ 2 is the state complexity of the union of anm-state
suffix-free DFA and ann-state suffix-free DFA using the Cartesian product of states. For the NFA state
complexity, we directly construct an NFA for the union of twosuffix-free regular languages without the
Cartesian product. The construction relies on nondeterminism and the fact that the computation of a
suffix-free FA cannot return to the start state.

Theorem 3 Given two suffix-free regular languages L1 and L2, the nondeterministic state complex-
ity NSC(L1∪L2) for L1∪L2 is m+n−1, where m =NSC(L1), n = NSC(L2), m,n≥ 2 and |Σ| ≥ 2.

3.2 Catenation

For the catenation operation,(2m− 1)2n−1 is the state complexity for the DFA case [26] andm+ n is
the state complexity for the NFA case [12]. Thus, there is an exponential gap between two cases. For
the prefix-free regular languages, the state complexity is linear in the sizes of the component automata
in both DFA and NFA cases because of a unique structural property of a prefix-free automaton [9]. The
deterministic state complexity of the catenation of suffix-free regular languages is(m−1)2n−2+1 [8].

Theorem 4 Given two suffix-free regular languages L1 and L2, the nondeterministic state complex-
ity NSC(L1L2) for L1L2 is m+n−1, where m =NSC(L1) and n =NSC(L2).

3.3 Intersection

Given two FAsA = (Q1,Σ,δ1,s1,F1) and B = (Q2,Σ,δ2,s2,F2), we can construct an FAM = (Q1 ×
Q2,Σ,δ ,(s1,s2),F1×F2) for the intersection ofL(A) andL(B) based on the Cartesian product of states,
where

δ ((p,q),a) = (δ1(p,a),δ2(q,a)) for p∈ Q1,q∈ Q2 anda∈ Σ.

From the Cartesian product, we know that the upper bound for the intersection of two FAs is at most
mn, wherem andn are the numbers of states forA andB. We now examineM and reduce the upper
bound based on the suffix-freeness of input FAs. LetA andB be suffix-free. This implies that bothA and
B are non-returning and, thus,s1 ands2 do not have any in-transitions.

Proposition 5 All states(s1,q) and (p,s2), for p(6= s1) ∈ Q1 and q(6= s2) ∈ Q2, are unreachable from
(s1,s2) in M since L(A) and L(B) are suffix-free.

Based on Proposition 5, we remove all unreachable states andreduce the upper bound as follows:

mn− (m−1)− (n−1) = mn− (m+n)+2.

Namely,mn− (m+n)+2 states are sufficient forL(A)∩L(B) when bothA andB are non-returning.

Theorem 6 Given two suffix-free regular languages L1 and L2, the nondeterministic state complex-
ity NSC(L1∩L2) for L1∩L2 is mn− (m+n)+2, where m =NSC(L1), n = NSC(L2) and |Σ| ≥ 3.

Theorem 6 considers whenNSC(L1), NSC(L2) ≥ 2. If either of them is 1, thenNSC(L1∩L2) =
1 since the single state suffix-free regular language is{λ}. The deterministic state complexity of the
intersection of two suffix-free DFAs ismn− 2(m+ n)+ 6 [8]. The complexity gap between the DFA
case and the NFA case is because of the sink state. An NFA does not need to have a sink state.
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3.4 Kleene Star

We examine the Kleene star operation of suffix-free NFAs. Hanand Salomaa [8] investigated the de-
terministic state complexity for Kleene star and demonstrated that 2m−2 + 1 states are necessary and
sufficient in the worst-case for anm-state suffix-free DFA.

Theorem 7 Given a suffix-free regular language L, the nondeterministic state complexityNSC(L∗) for
L∗ is m, where m =NSC(L).

3.5 Reversal

Given anm-state NFAA, NSC(L(A)) is in generalm+1 [11]. If L(A) is prefix-free, then we know that
NSC(L(A)) is m [9].

The upper boundm+ 1 is based on the simple NFA construction forLR from A for L: We flip the
transition directions and make the start state to be a final state and all final states to be start states of
A. Now we have an NFA with multiple start states. We introduce anew start state and make aλ -
transition from the new start state to the original start states. Then, we apply theλ -transition removal
technique [13], which does not change the number of states. Thus, we have anm+1-state NFA forLR.

Now we consider a lower bound for reversal. It seems difficultto apply the fooling set method for this
operation. For the below lemma we use an ad hoc proof that has been modified from the corresponding
argument used in Holzer and Kutrib [12] for the reversal of general regular languages.

Lemma 8 Let Σ = {a,b,c,d} and m≥ 4. There exists a suffix-free regular language overΣ with
NSC(L)≤ m such thatNSC(LR) = m+1.

In the construction used for Lemma 8, whenm≥ 4 the symbold can be replaced byb or c. We have
stated the construction using a four-letter alphabet for the sake of easier readability. We do not know
whether the lower boundm+ 1 can be reached by the reversal of suffix-free regular languages over a
two-letter alphabet.

Using the general upper bound from Holzer and Kutrib [12], Lemma 8 gives the following statement:

Theorem 9 If L is a suffix-free regular language recognized by an NFA with m states, thenNSC(LR)≤
m+1. The bound m+1can be reached by suffix-free languages over a three letter alphabet when m≥ 41.

3.6 Complementation of suffix-free regular languages

The complementation of NFA is an expensive operation with respect to state complexity. Meyer and
Fischer [19] already noticed that the transforming anm-state NFA to a DFA requires 2m states. The
complementation of anm-state DFA does not require additional states since it simply interchanges final
states and non-final states. Thus, based on the subset construction, we know that 2m states are sufficient
for the complementation of anm-state NFA. Jirásková [16] showed that 2m states are necessary for the
tight bound when|Σ|= 2.

Lemma 10 Given an m-state suffix-free NFA A= (Q,Σ,δ ,s,F), 2m−1 + 1 states are sufficient for its
complementation languageL(A).

1An anonymous referee of the paper has suggested a different lower bound construction over a 3-letter alphabet that works
also in the casem= 3.
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Lemma 11 Let Σ = {a,b,c} and L1 ⊆ {a,b}∗ be a regular language. Let L⊆ Σ∗ be a regular language
such that

L∩ (c·Σ∗) = c·L1. (1)

ThenNSC(L)≥ NSC(L1)−1.

If in the statement of Lemma 11 the languageL is suffix-free, the proof implies thatNSC(L) ≥
NSC(L1). In this case, the constructed NFAB does need the start state of the original NFAA sinceA is
non-returning. However, below Lemma 11 will be used for a complementation of suffix-free languages
(that need not be suffix-free) and the bound cannot be improved in this way.

Lemma 12 Let Σ = {a,b,c} and m≥ 2. There exists a suffix-free regular language L⊆ Σ∗ such that

NSC(L)≤ m andNSC(L)≥ 2m−1−1.

The results of Lemma 10 and Lemma 12 give the following.

Theorem 13 Given a suffix-free regular language L having an NFA with m states,NSC(L)≤ 2m−1+1.
There exists a suffix-free regular language L over a three letter alphabet such thatNSC(L) = m and
NSC(L)≥ 2m−1−1.

Theorem 13 gives the precise worst-case nondeterministic state complexity of complementation
within a constant of two. The worst-case example for complementation in Jirásková [16] uses a binary
alphabet, however, our construction needs an additional symbol to make the languages suffix-free. We
do not know what is the nondeterministic state complexity ofcomplementation for suffix-free languages
over a binary alphabet.

4 Conclusions

We have investigated the nondeterministic state complexity of basic operations for suffix-free regular
languages. We have relied on a unique structural property ofa suffix-free FA: The start state does not
have any in-transitions. Based on this property, we have examined the nondeterministic state complexity
with respect to catenation, union, intersection, Kleene star, reversal and complementation. Table 1 shows
the comparison between the deterministic state complexityand the nondeterministic the state complexity.

operation suffix-free DFAs suffix-free NFAs

L1 ·L2 (m−1)2n−2+1 m+n−1
L1∪L2 mn− (m+n)+2 m+n−1
L1∩L2 mn−2(m+n)+6 mn−2(m+n)+2
L∗

1 2m−2+1 m
LR

1 2m−2+1 m+1
L1 m 2m−1±1

Table 1: State complexity of basic operations between suffix-free DFAs and NFAs.
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