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Abstract. We investigate the state complexity of multiple unions and
of multiple intersections for prefix-free regular languages. Prefix-free de-
terministic finite automata have their own unique structural properties
that are crucial for obtaining state complexity upper bounds that are
improved from those for general regular languages. We present a tight
lower bound construction for k-union using an alphabet of size k+ 1 and
for k-intersection using a binary alphabet. We prove that the state com-
plexity upper bound for k-union cannot be reached by languages over an
alphabet with less than k symbols. We also give a lower bound construc-
tion for k-union using a binary alphabet that is within a constant factor
of the upper bound.

Keywords: state complexity, prefix-free regular languages, k-union,
k-intersection.

1 Introduction

State complexity is one of the most intensively studied topics in automata and
formal language theory in recent years [1, 2, 4, 6, 11, 14, 15, 20, 21, 24, 29, 30].
The state complexity problem is both interesting theoretically and relevant for
practical applications. For example, in a regular-expression pattern matching,
it is very useful to be able to estimate the size of a finite-state automaton for
describing patterns, which helps to manage memory resources efficiently. On
the other hand, state complexity is a basic foundational property of regular
languages. We find out more about structural properties of regular languages by
establishing tight state complexity bounds for them.

The state complexity of a k-ary regularity-preserving language operation f
is, roughly speaking, a function that associates with positive integers n1, . . . ,
nk the worst-case size of a minimal DFA for a language f(L1, . . . , Lk) where Li

has a DFA of size ni, i = 1, . . . , k. Maslov [19] obtained the state complexity
of concatenation and other basic operations; however, his short paper did not
include many proofs. Later, unaware of the earlier work, Yu et al. [30] reintro-
duced the study of operational state complexity in a more systematic way. The
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state complexity of an operation is calculated based on the structural properties
of input regular languages and a given operation.

While researchers mainly looked at the state complexity of single operations
(union, intersection, catenation and so on), Yu and his co-authors started to
investigate the state complexity of combined operations (star-of-union, star-of-
intersection and so on) [7, 10, 23, 25]. They showed that the state complexity
of a combined operation is usually not equal to the function composition of the
state complexities of the participating individual operations. They also observed
that, in a few cases, the state complexity of a combined operation is very close
to the composition of the individual state complexities. In addition, Yu and
his co-authors considered the state complexity of combined Boolean operations
including multiple unions and multiple intersections [7–9]. They conjectured that
the upper bound cannot be reached, in general, over an alphabet of a fixed size.
Researchers also considered the state complexity of multiple operations such as
several concatenations or several intersections [5, 7, 22]. Jirásková and her co-
authors studied the state complexity of some operations for binary languages [3,
17, 18]. Binary languages allow us to prove the tightness of the upper bound also
in the case of reversal of deterministic union-free languages, that is, languages
represented by one-cycle-free-path deterministic automata, in which from each
state there exists exactly one cycle-free accepting path [16].

Here we consider the state complexity of multiple unions (L1 ∪L2 ∪ · · · ∪Lk)
and of multiple intersections (L1∩L2∩· · ·∩Lk) for prefix-free regular languages.
Note that prefix-free regular languages preserve unique structural properties in
minimal DFAs, and these properties are crucial to obtain the state complexity
bounds that are often significantly lower than for general regular languages [12,
13]. We first compute the upper bound for k-union and prove that the bound
cannot be reached using a fixed alphabet and that, more precisely, the bound
cannot be reached by languages defined over any alphabet of size less than k.
We also present a tight lower bound construction using an alphabet of size k+1.
For k-union we also give a lower bound construction over a binary alphabet
that is within a fraction of 1

2 of the general upper bound. For k-intersection, we
compute the upper bound and present a tight lower bound construction using a
binary alphabet.

In Section 2, we define some basic notions. Then we present the state complex-
ity of k-union and k-intersection for prefix-free regular languages, respectively, in
Sections 3 and 4. We summarize the results and conclude the paper in Section 5.

2 Preliminaries

For k ∈ IN, we denote [1, k] = {1, 2, . . . , k}. We say that a set of positive integers
{m1, . . . ,mk} is pairwise relatively prime if, for any 1 ≤ i < j ≤ k, the greatest
common divisor of mi and mj is 1.

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all
strings over Σ. The size |Σ| of Σ is the number of characters in Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language and
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the symbol λ denotes the null string. Let |w|b be the number of occurrences of
symbol b ∈ Σ in the string w. For strings x, y and z, we say that x is a prefix of
z and y is a suffix of z if z = xy. We define a language L to be prefix-free if for
any two distinct strings x and y in L, x is not a prefix of y.

A DFA A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition function, s ∈ Q is the
start state and F ⊆ Q is a set of final states. Given a DFA A, we assume that
A is complete; namely, each state has |Σ| out-transitions and, therefore, A may
have a sink state (a non-final state where all outgoing transitions are self-loops).
We assume that A has a unique sink state since all sink states are equivalent
and can be merged into a single state. Let |Q| be the number of states in Q. By
the size of A we mean |Q|. For a transition δ(p, a) = q in A, we say that p has
an out-transition and q has an in-transition. Furthermore, p is a source state of
q and q is a target state of p. We say that A is non-returning if the start state
of A does not have any in-transitions and A is non-exiting if all out-transitions
of any final state in A go to the sink state.

A string x over Σ is accepted by A if there is a labeled path from s to a final
state such that this path spells out x. We call this path an accepting path. The
language L(A) of A is the set of all strings spelled out by accepting paths in A.
For a minimal DFA A, L(A) is prefix-free if and only if A has exactly one accept
state and all transitions from the accept state go to the sink state, that is, A is
non-exiting. We define a state q of A to be reachable (respectively, co-reachable)
if there is a path from the start state to q (respectively, a path from q to a final
state). In the following, unless otherwise mentioned, we assume that all states
are reachable and all states except the sink state are co-reachable and a DFA
has at most one sink state. The state complexity SC(L) of a regular language L
is defined to be the size of the minimal DFA recognizing L.

For complete background in automata theory, the reader may refer to the
textbooks [26–28].

3 Union of k Prefix-Free Languages

We first consider the state complexity of L1 ∪L2 ∪ · · · ∪Lk (k-union operation)
for prefix-free regular languages Li ⊆ Σ∗, where 1 ≤ i ≤ k for k ≥ 3. Note that
the case k = 2 has been dealt with in [13]. Also, in the construction below we
restrict consideration to prefix-free DFAs having at least three states because
the only prefix-free language having a DFA of size two is {λ}.

3.1 Construction of a DFA for L1 ∪ · · · ∪ Lk

For 1 ≤ i ≤ k, consider minimal prefix-free DFAs Ai = (Qi, Σ, δi, q0,i, {fi}) of
sizemi ≥ 3. Note that a minimal prefix-free DFA has a sink state and a unique fi-
nal state and hence we can denote Qi = Pi∪{fi, di}, Pi = {q0,i, q1,i, . . . , qmi−3,i}
where di is the sink state of Ai and fi is the unique final state of Ai. The states
of Pi are non-final and each state of Pi can reach a final state, 1 ≤ i ≤ k.
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The union L(A1) ∪ · · · ∪ L(Ak) is recognized by a DFA

B = (R,Σ, γ, r0, F ), (1)

where R = (P1 × · · · × Pk) ∪ R1 ∪ {dB, fB} and R1 =
⋃

∅�=S�[1,k](
∏

i∈S Pi) ×
{acc, rej}. The notation∏i∈S Pi above denotes the Cartesian product of sets Pi,
i ∈ S, taken in order of increasing i. That is, if S = {j1, . . . , jr}, 1 ≤ j1 < j2 <
· · · < jr ≤ k, the product is Pj1 ×Pj2 ×· · ·×Pjr . (The order of the components of∏

i∈S Pi is not important. However, for the construction we need that the order
is fixed.)

The initial state r0 of B is the tuple (q0,1, . . . q0,k) consisting of the initial
states of each of the Ai’s. The set of final states F consists of fB and all tuples
in R1 where the last component is acc. Before defining the transitions we explain
the intuitive idea of the construction of the DFA B which, hopefully, makes also
the choice of the set of states more transparent. The DFA B simulates all the
DFAs Ai, 1 ≤ i ≤ k, in parallel. The states of P1×· · ·×Pk simulate computations
where none of the Ai’s has reached a final state or a sink state.

When the simulated computation of Ai reaches the final state fi, in the next
step Ai necessarily goes to the sink state. The states of R1 simulate computations
where at least one Ai but not all the Ai’s have reached the final state or the sink
state. Suppose that ∅ 
= S � [1, k] is the set of indices of DFAs Ai that, in the
simulated computation, have not yet reached the final nor the sink state. Now
the state of B (belonging to R1) keeps track of only the corresponding states of
Ai, i ∈ S and does not need to store the information whether the state of Aj ,
for each j 
∈ S, is dj or fj. Instead, in the last component, the state of R1 stores
only a binary choice. If the last component is acc, this means that at least one
Aj , for j 
∈ S, is in the final state fj and the last component being rej encodes
the situation where all the DFAs Aj , j 
∈ S, are in the sink state.

Finally, the state fB ∈ F encodes the situation where, in the simulated com-
putation, all the Ai’s are in the accept state and dB the situation where all the
Ai’s are in the sink state.

It remains to define the transition relation γ of B. First, for every b ∈ Σ, we
define γ(fB, b) = γ(dB, b) = dB. Note that dB is the sink state of B and fB is a
special final state from which all transitions lead to the sink state.

Second, we define the general transitions. Let S = {j1, . . . , js} ⊂ [1, k], 1 ≤
j1 < · · · < js ≤ k. For z = (zj1 , . . . , zjs), zjx ∈ Pjx , 1 ≤ x ≤ s, and b ∈ Σ, we
define Sz,b ⊆ S to consist of those indices of ji ∈ S such that δji(zji , b) ∈ Pji .
That is, if S gives the indices of the DFAs Ai that in the simulated computation
have not reached the final state nor the sink state (i.e., Ai is in a state of Pi),
then Sz,b gives the indices of the DFAs that after processing a further input
symbol b ∈ Σ have still not reached the final state nor the sink state.

Let y ∈ {acc, rej} be arbitrary. Let S and z be as above and denote Sz,b =
{h1, . . . , ht}, h1 < · · · < ht, 0 ≤ t ≤ s. Now when ∅ 
= Sz,b 
= [1, k] we define

γ((zj1 , . . . , zjs , y), b) = (δh1(zh1 , b), . . . , δht(zht , b), y
′) (2)

where y′ is acc if there exists i ∈ S − Sz,b such that δhi(zhi , b) = fi and y′ is rej
otherwise. Note that the transition step simply simulates the computation step
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of each of the individual Azhi
and eliminates from the tuple the states of the

DFAs that go to the accept state or the sink state. The last component y′ of the
new state simply encodes the information whether or not some of the eliminated
computations entered a final state. Note that the computation step (2) does not
depend on the last component y of the original state.

There remain only two special cases to define separately that correspond to
situations where either Sz,b = ∅ or the original set of indices S consists of the
entire set S.

If Sz,b = ∅, we define

γ((zj1 , . . . , zjs , y), b) =

{
fB, if (∃1 ≤ i ≤ s) δji(zji , b) = fji ;

dB, otherwise.
(3)

Finally, if z = (z1, . . . , zk), zi ∈ Pi, 1 ≤ i ≤ k, we define

γ((z1, . . . , zk), b) =

{
(δ1(z1, b), . . . , δk(zk, b)), if δj(zj , b) ∈ Pj ;

(δh1(zh1 , b), . . . , δht(zht , b), y
′), otherwise.

(4)

In the latter case of (4), Sz,b = {h1, . . . , ht} and y′ = acc if there exists i ∈
[1, k]− {h1, . . . , ht} such that δi(zi, b) = fi and y′ = rej otherwise.

The rules (4) are used in the initial part of the computation where none of
the components Ai has reached the accept nor the sink state. During this part
of the computation, the state of B is a tuple of P1×· · ·×Pk and we do not need
a component of {acc, rej}. Finally, the transitions (3) pertain to the situation
where all components reach the accept or the sink state, and in this case the
state of B is fB if at least one component is in the accept state and the sink
state dB otherwise.

From the above description it is clear that B accepts an input string w if
and only if at least one of the components Ai, 1 ≤ i ≤ k, accepts w, that is
L(B) = L(A1) ∪ · · · ∪ L(Ak).

Lemma 1. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The union
L(A1) ∪ · · · ∪ L(Ak) can be recognized by a DFA of size

2 ·
⎛

⎝
∑

∅�=S�[1,k]

∏

i∈S

(mi − 2)

⎞

⎠+

(
k∏

i=1

(mi − 2)

)

+ 2.

3.2 The Upper Bound Cannot be Reached with a Fixed Alphabet

We begin by observing that the upper bound of Lemma 1 cannot be reached for
arbitrary k when the alphabet Σ is fixed.

Lemma 2. If k > |Σ|, the upper bound of Lemma 1 cannot be reached.

Proof. Let Ai = (Qi, Σ, δi, q0,i, {fi}), i = 1, . . . , k, be minimal prefix-free DFAs
and let B be constructed for the union L(A1) ∪ · · · ∪ L(Ak) as in (1). In the
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following we use, without further mention, the notation for the DFAs Ai and B
(as given in Section 3.1).

For 1 ≤ i ≤ k, we define Ωi ⊆ Σ as follows: Ωi = {c ∈ Σ | (∃p ∈ Pi) δi(p, c) =
fi}. The set Ωi consists of alphabet symbols that take some state of Pi (where
Pi consists of states of Ai that are neither final nor the sink state) to the unique
final state. Since L(Ai) 
= ∅, we know that Ωi 
= ∅, i = 1, . . . , k. The following
observation will be the basis of our argument.

Claim 1. Let b ∈ Σ. If b ∈ Ωi, 1 ≤ i ≤ k, then the function δi(·, b) is not
surjective on the set Pi. To verify the claim, we note that in the DFA Ai the
states of Pi can be reached only from states of Pi. Since b ∈ Ωi, we know that
the b-transitions take some state of Pi outside Pi. It follows that some state of
Pi must be outside the range of δi(·, b). Suppose now that for some 1 ≤ j ≤ k,

(∃ci ∈ Ωi, i = 1, . . . , j − 1, j + 1, . . . , k) Ωj ⊆ {c1, . . . , cj−1, cj+1, . . . , ck}. (5)

The condition above means that there exists an index j such that by choosing
one element from each of the sets Ωi, i 
= j, we get all elements of Ωj .

We show that, assuming (5) holds, some states of the form

(p1, . . . , pj−1, pj+1, . . . , pk, acc), pi ∈ Pi, i = 1, . . . , j − 1, j + 1, . . . , k, (6)

cannot be reachable in the DFA B. Since the tuple (6) is missing only the jth
component corresponding to a state of Aj , according to rules (4), a state of the
form (6) can be reached only from a state of P1 × · · · × Pk by a transition on a
symbol b ∈ Ωj that takes a state of Pj to the final state fj of Aj . Note that a
state of the form (6) cannot be reached from a state of the same form because
in transitions (2) the last component becomes “rej” unless one of the states
p1, . . . , pj−1, pj+1, . . . , pk reaches the final state of the corresponding DFA, and
in this case that component would also be omitted.

Now according to (5) we can choose ci ∈ Ωi, i = 1, . . . , j − 1, j + 1, . . . , k,
such that Ωj ⊆ {c1, . . . , cj−1, cj+1, . . . , ck}. By Claim 1 we know that δi(·, ci)
is not surjective on Pi and hence there exist p′i ∈ Pi that cannot be reached in
Ai by any transition on input ci, i = 1, . . . , j − 1, j + 1, . . . , k. In the previous
paragraph it was observed that a state of the form (5) can be reached only by
an element of Ωj . Since each element of Ωj is one of the ci’s, it follows that the
state (p′1, . . . , p′j−1, p

′
j+1, . . . , p

′
k, acc) will be unreachable in the DFA B.

Finally, it is easy to see using induction on k that when |Σ| < k we cannot
choose nonempty subsets Ωi of Σ, i = 1, . . . , k, such that (5) fails to hold. That
is, no matter how the individual DFAs Ai are defined, for some 1 ≤ j ≤ k, the
condition (5) holds and, consequently, B has unreachable states. 
�

3.3 Lower Bound with a Binary Alphabet

Next we give for the k-union of prefix-free languages a lower bound construction
over a binary alphabet that reaches the upper bound of Lemma 1, within a con-
stant factor. The motivation for first considering the binary alphabet case is that
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using a simple modification of the binary alphabet construction we obtain, in
Section 3.4, an optimal lower bound using an alphabet of size k+1. Furthermore,
the same languages over a binary alphabet will be used in the next section to
give a tight lower bound for the state complexity of k-intersection of prefix-free
languages.

Our results leave open the question whether or not the upper bound can be
reached using an alphabet of size exactly k. Note that from Lemma 2 we know
that k − 1 alphabet symbols are not sufficient.

We choose Σ = {a, b}. For w ∈ Σ∗ of length m, the set of positions of w is
{1, . . . ,m}. For x ∈ {a, b} and 1 ≤ u ≤ m, we say that u is an x-position of w if
the u’th symbol of w is x.

The set of all b-positions of string w is denoted posb(w) ⊆ {1, . . . , |w|}. Con-
sider a b-position ub of w ∈ Σ∗. By the a-count of position ub, counta(ub), we
mean the number fub is simply the number of occurrences of symbols a that
precede the occurrence of b at position ub.

For each m ∈ IN we define the prefix-free language

Lm ⊆ {a, b}∗ (7)

to consist of all strings w such that

1. |w| ∈ posb(w),
2. counta(|w|) ≡ 0 (mod m), and,
3. (∀u ∈ posb(w)) u < |w| implies counta(u) 
≡ 0 (mod m).

That is, Lm consists of strings w ending with symbol b where the number of
occurrences of symbols a is a multiple of m. Furthermore, any occurrence of b
in w except the last one is preceded by a number of a’s that is not a multiple
of m.

Lemma 3. For m ≥ 1, the language Lm is prefix-free and is recognized by a
DFA Am+2 with m+ 2 states.

Lemma 4. Let {m1, . . . ,mk} be a set of relatively prime integers where mi ≥ 2,
i = 1, . . . , k. Let Lmi , 1 ≤ i ≤ k, be the language defined in (7).

Then the minimal DFA for Lm1 ∪ · · · ∪ Lmk
has

⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

mi

⎞

⎠+

⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 1)

⎞

⎠+

(
k∏

i=1

mi

)

+ 2 (8)

states.

When comparing the value (8) to the upper bound of Lemma 1 we recall that
the minimal DFA for Lmi had mi + 2 states. Thus for the union of prefix-free
DFAs of size mi, 1 ≤ i ≤ k, over a binary alphabet the construction of Lemma 4
gives a lower bound
⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 2)

⎞

⎠+

⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 3)

⎞

⎠+

(
k∏

i=1

(mi − 2)

)

+ 2.
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This differs from the upper bound of Lemma 1 by
⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 2)

⎞

⎠−
⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 3)

⎞

⎠ .

Corollary 1. For arbitrary k ≥ 1 the lower bound for the union of k prefix-free
DFAs over a binary alphabet is more than half of the general upper bound of
Lemma 1.

3.4 Tight Lower Bound with Alphabet of Size k + 1

As a simple modification of the binary DFA construction from the previous
section, we obtain a lower bound matching the upper bound of Lemma 1 using
an alphabet of size k + 1.

In the following let k ∈ IN be arbitrary but fixed and Σ = {a, b1, . . . , bk}. For
m ∈ IN and 1 ≤ i ≤ k we define the language Li,m to consist of all strings w ∈ Σ∗

such that w ends with bi, |w|a ≡ 0 mod m and the number of a’s preceding any
other occurrence of bi in w except the last one is not a multiple of m. In strings
of Li,m the symbols bj, j 
= i, can occur in arbitrary positions, except that the
string must end with bi.

Clearly Li,m is prefix-free, 1 ≤ i ≤ m, and Li,m is recognized by a DFA
A′

i,m+2 = (Q,Σ, δ, 0, {m}) where Q = {0, 1, . . . ,m+ 1} and the transition rela-
tion δ is defined by setting

1. for 0 ≤ j ≤ m− 2, δ(j, a) = j + 1,
2. δ(m− 1, a) = 0, δ(m, a) = δ(m+ 1, a) = m+ 1,
3. for 1 ≤ j ≤ m− 1 and j = m+ 1, δ(j, bi) = j,
4. δ(0, bi) = m,
5. for 0 ≤ j ≤ m− 1 and h 
= i, δ(j, bh) = j,
6. for all 1 ≤ h ≤ k, δ(m, bh) = δ(m+ 1, bh) = m+ 1.

The transitions of the DFA A′
i,m+2 restricted to subalphabet {a, bi} are an iso-

morphic copy of the DFA Am+2 defined in the proof of Lemma 3. In A′
i,m+2 the

transitions on bj , j 
= i, are the identity on states {0, 1, . . . ,m − 1} and take m
and m+ 1 to the sink state m+ 1.

Let {m1, . . . ,mk} be a set of relatively prime integers. As in the proof of
Lemma 1 we construct a DFA B′ for L1,m1 ∪ · · · ∪ Lk,mk

. Now similarly as in
the proof of Lemma 4 we verify that all states of B′ are reachable and pairwise
inequivalent. The latter property was shown to hold already in the case of a
binary alphabet. The only unreachable states in the construction used in the
proof of Lemma 4 were states of the form (pj1 , . . . , pjr , acc), where some pjx ,
1 ≤ x ≤ r, was the final state of Amjx+2. In B′ the above state is reached from
a state (pj1 , . . . , qh,0, . . . , pjr , rej) by reading a symbol bh. Here 1 ≤ h ≤ k is an
index not appearing in the sequence j1, . . . , jr, and hence the B′-transition on
bh does not change the components pj1 , . . . , pjr . (Strictly speaking, it may be
the case that we must choose h < j1 or h > jr in which case the notations above
are slightly different.)
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Thus, as a consequence of Lemma 1 and Proposition 2, we have the following
result.

Theorem 1. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The union
L(A1) ∪ · · · ∪ L(Ak) can be recognized by a DFA of size

2 ·
⎛

⎝
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 2)

⎞

⎠+

(
k∏

i=1

(mi − 2)

)

+ 2. (9)

For any integers n1, . . . , nk, there exist prefix-free DFAs Ai over an alphabet of
size k + 1 having size mi ≥ ni, i = 1, . . . , k, such that the minimal DFA for
L(A1) ∪ · · · ∪ L(Ak) has size exactly (9). The state complexity upper bound (9)
cannot be reached by prefix-free DFAs over an alphabet with less than k symbols.

Theorem 1 leaves open the question whether or not the worst-case state complex-
ity of k-union of prefix-free languages can be reached by DFAs over an alphabet
of size exactly k. We conjecture a positive answer to this question but the re-
quired lower bound construction would likely be much more complicated than
the construction used above for proving Theorem 1.

4 Intersection of k Prefix-Free Languages

We consider the state complexity of L1 ∩L2 ∩ · · · ∩Lk (the k-intersection opera-
tion) for prefix-free regular languages. First we give an upper bound construction.
Recall, as in the previous section, that we can restrict consideration to DFAs
of size at least three because any non-trivial prefix-free DFA has at least three
states.

Lemma 5. Let Ai be a DFA with mi states, mi ≥ 3, that recognizes a prefix-free

language Li, 1 ≤ i ≤ k. Then 2 +

k∏

i=1

(mi − 2) states are sufficient for a DFA to

recognize

k⋂

i=1

Li.

We note that the state complexity upper bound of Lemma 5 coincides with the
(k − 1)-fold function composition of the state complexity for the intersection of
two prefix-free regular languages [13].

The result of Lemma 5 is, perhaps, not surprising because the family of prefix-
free regular languages is closed under intersection. A more interesting question is
whether or not the upper bound can be reached using a fixed alphabet. Note that
we have shown that this is not possible for k-union in Lemma 2. On the other
hand, for k-intersection, we present a positive answer using a binary alphabet.
We use the prefix-free regular languages Lm, defined by (7), that were used also
in Lemma 3, and prove that with an appropriate choice of the values m the
languages Lm yield a tight lower bound for k-intersection.
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Lemma 6. Let Σ = {a, b} and, for m ≥ 1, let Lm ⊂ {a, b}∗ be the prefix-free
regular language defined in (7). Let {m1, . . . ,mk} be a set of relatively prime
integers, where mi ≥ 2 for 1 ≤ i ≤ k. Then the minimal DFA for Lm1∩· · ·∩Lmk

has

2 +

k∏

i=1

(mi − 2) (10)

states.

The below theorem summarizes the results from Lemmas 5 and 6.

Theorem 2. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The
intersection L(A1) ∩ · · · ∩ L(Ak) can be recognized by a DFA of size

2 +
k∏

i=1

(mi − 2).

Furthermore, there exist prefix-free DFAs as above defined over a binary input
alphabet such that the minimal DFA for L(A1) ∩ · · · ∩ L(Ak) needs this number
of states.

5 Conclusion

We have examined the state complexity of two multiple operations, the k-union
and k-intersection operations, for prefix-free regular languages. We have estab-
lished a tight state complexity bound for k-union using an alphabet of size k+1
and a tight state complexity bound for k-intersection using a binary alphabet.
The following table summarizes the state complexity bounds.

operation state complexity k = 2 [13]

⋃

1≤i≤k

Li 2 ·
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 2) +
k∏

i=1

(mi − 2) + 2 m1m2 − 2

⋂

1≤i≤k

Li

k∏

i=1

(mi − 2) + 2 m1m2 − 2(m1 + m2) + 6

operation lower bound on the state complexity when |Σ| = 2

⋃

1≤i≤k

Li

∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 2) +
∑

∅�=S⊂[1,k]

∏

i∈S

(mi − 3) +
k∏

i=1

(mi − 2) + 2

Note that the state complexity for k-union is smaller than the function com-
position of the state complexity of several unions whereas the state complexity
for k-intersection is the same as the (k − 1)-fold composition of the state com-
plexity function for the intersection of two languages. This phenomenom can
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be viewed to be caused by the fact that the family of (regular) prefix-free lan-
guages is closed under intersection but not closed under union. Since prefix-free
languages are closed under concatenation, analogously, by extending the con-
struction used in [13], the state complexity of k-fold concatenation of prefix-free
languages can be shown to coincide with the k-fold function composition of the
state complexity of the concatenation of two languages.

For k-union, additionally, we have considered the binary alphabet case and
given a lower bound construction that is within the constant 1

2 from the general
upper bound. We have proved that the state complexity of k-union cannot be
reached when the alphabet size is less than k. This leaves open only whether or
not the state complexity of k-union can be reached by prefix-free languages over
an alphabet of size exactly k.
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1. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)
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