State Complexity of k-Union and k-Intersection for Prefix-Free Regular Languages

Hae-Sung Eom¹, Yo-Sub Han¹, and Kai Salomaa²

Department of Computer Science, Yonsei University 50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea {haesung,emmous}@cs.yonsei.ac.kr

School of Computing, Queen's University Kingston, Ontario K7L 3N6, Canada ksalomaa@cs.queensu.ca

Abstract. We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alphabet of size k+1 and for k-intersection using a binary alphabet. We prove that the state complexity upper bound for k-union cannot be reached by languages over an alphabet with less than k symbols. We also give a lower bound construction for k-union using a binary alphabet that is within a constant factor of the upper bound.

Keywords: state complexity, prefix-free regular languages, k-union, k-intersection.

1 Introduction

State complexity is one of the most intensively studied topics in automata and formal language theory in recent years [1, 2, 4, 6, 11, 14, 15, 20, 21, 24, 29, 30]. The state complexity problem is both interesting theoretically and relevant for practical applications. For example, in a regular-expression pattern matching, it is very useful to be able to estimate the size of a finite-state automaton for describing patterns, which helps to manage memory resources efficiently. On the other hand, state complexity is a basic foundational property of regular languages. We find out more about structural properties of regular languages by establishing tight state complexity bounds for them.

The state complexity of a k-ary regularity-preserving language operation f is, roughly speaking, a function that associates with positive integers n_1, \ldots, n_k the worst-case size of a minimal DFA for a language $f(L_1, \ldots, L_k)$ where L_i has a DFA of size n_i , $i = 1, \ldots, k$. Maslov [19] obtained the state complexity of concatenation and other basic operations; however, his short paper did not include many proofs. Later, unaware of the earlier work, Yu et al. [30] reintroduced the study of operational state complexity in a more systematic way. The

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 78–89, 2013. © Springer-Verlag Berlin Heidelberg 2013

state complexity of an operation is calculated based on the structural properties of input regular languages and a given operation.

While researchers mainly looked at the state complexity of single operations (union, intersection, catenation and so on), Yu and his co-authors started to investigate the state complexity of combined operations (star-of-union, star-ofintersection and so on) [7, 10, 23, 25]. They showed that the state complexity of a combined operation is usually not equal to the function composition of the state complexities of the participating individual operations. They also observed that, in a few cases, the state complexity of a combined operation is very close to the composition of the individual state complexities. In addition, Yu and his co-authors considered the state complexity of combined Boolean operations including multiple unions and multiple intersections [7–9]. They conjectured that the upper bound cannot be reached, in general, over an alphabet of a fixed size. Researchers also considered the state complexity of multiple operations such as several concatenations or several intersections [5, 7, 22]. Jirásková and her coauthors studied the state complexity of some operations for binary languages [3, 17, 18. Binary languages allow us to prove the tightness of the upper bound also in the case of reversal of deterministic union-free languages, that is, languages represented by one-cycle-free-path deterministic automata, in which from each state there exists exactly one cycle-free accepting path [16].

Here we consider the state complexity of multiple unions $(L_1 \cup L_2 \cup \cdots \cup L_k)$ and of multiple intersections $(L_1 \cap L_2 \cap \cdots \cap L_k)$ for prefix-free regular languages. Note that prefix-free regular languages preserve unique structural properties in minimal DFAs, and these properties are crucial to obtain the state complexity bounds that are often significantly lower than for general regular languages [12, 13]. We first compute the upper bound for k-union and prove that the bound cannot be reached using a fixed alphabet and that, more precisely, the bound cannot be reached by languages defined over any alphabet of size less than k. We also present a tight lower bound construction using an alphabet of size k+1. For k-union we also give a lower bound construction over a binary alphabet that is within a fraction of $\frac{1}{2}$ of the general upper bound. For k-intersection, we compute the upper bound and present a tight lower bound construction using a binary alphabet.

In Section 2, we define some basic notions. Then we present the state complexity of k-union and k-intersection for prefix-free regular languages, respectively, in Sections 3 and 4. We summarize the results and conclude the paper in Section 5.

2 Preliminaries

For $k \in \mathbb{N}$, we denote $[1, k] = \{1, 2, ..., k\}$. We say that a set of positive integers $\{m_1, ..., m_k\}$ is pairwise relatively prime if, for any $1 \le i < j \le k$, the greatest common divisor of m_i and m_j is 1.

Let Σ denote a finite alphabet of characters and Σ^* denote the set of all strings over Σ . The size $|\Sigma|$ of Σ is the number of characters in Σ . A language over Σ is any subset of Σ^* . The symbol \emptyset denotes the empty language and

the symbol λ denotes the null string. Let $|w|_b$ be the number of occurrences of symbol $b \in \Sigma$ in the string w. For strings x, y and z, we say that x is a *prefix* of z and y is a *suffix* of z if z = xy. We define a language L to be prefix-free if for any two distinct strings x and y in L, x is not a prefix of y.

A DFA A is specified by a tuple $(Q, \Sigma, \delta, s, F)$, where Q is a finite set of states, Σ is an input alphabet, $\delta: Q \times \Sigma \to Q$ is a transition function, $s \in Q$ is the start state and $F \subseteq Q$ is a set of final states. Given a DFA A, we assume that A is complete; namely, each state has $|\Sigma|$ out-transitions and, therefore, A may have a sink state (a non-final state where all outgoing transitions are self-loops). We assume that A has a unique sink state since all sink states are equivalent and can be merged into a single state. Let |Q| be the number of states in Q. By the size of A we mean |Q|. For a transition $\delta(p,a) = q$ in A, we say that p has an out-transition and q has an in-transition. Furthermore, p is a source state of q and q is a target state of p. We say that A is non-returning if the start state of A does not have any in-transitions and A is non-exiting if all out-transitions of any final state in A go to the sink state.

A string x over Σ is accepted by A if there is a labeled path from s to a final state such that this path spells out x. We call this path an accepting path. The language L(A) of A is the set of all strings spelled out by accepting paths in A. For a minimal DFA A, L(A) is prefix-free if and only if A has exactly one accept state and all transitions from the accept state go to the sink state, that is, A is non-exiting. We define a state q of A to be reachable (respectively, co-reachable) if there is a path from the start state to q (respectively, a path from q to a final state). In the following, unless otherwise mentioned, we assume that all states are reachable and all states except the sink state are co-reachable and a DFA has at most one sink state. The state complexity $\mathcal{SC}(L)$ of a regular language L is defined to be the size of the minimal DFA recognizing L.

For complete background in automata theory, the reader may refer to the textbooks [26–28].

3 Union of k Prefix-Free Languages

We first consider the state complexity of $L_1 \cup L_2 \cup \cdots \cup L_k$ (k-union operation) for prefix-free regular languages $L_i \subseteq \Sigma^*$, where $1 \le i \le k$ for $k \ge 3$. Note that the case k = 2 has been dealt with in [13]. Also, in the construction below we restrict consideration to prefix-free DFAs having at least three states because the only prefix-free language having a DFA of size two is $\{\lambda\}$.

3.1 Construction of a DFA for $L_1 \cup \cdots \cup L_k$

For $1 \leq i \leq k$, consider minimal prefix-free DFAs $A_i = (Q_i, \Sigma, \delta_i, q_{0,i}, \{f_i\})$ of size $m_i \geq 3$. Note that a minimal prefix-free DFA has a sink state and a unique final state and hence we can denote $Q_i = P_i \cup \{f_i, d_i\}$, $P_i = \{q_{0,i}, q_{1,i}, \dots, q_{m_i-3,i}\}$ where d_i is the sink state of A_i and f_i is the unique final state of A_i . The states of P_i are non-final and each state of P_i can reach a final state, $1 \leq i \leq k$.

The union $L(A_1) \cup \cdots \cup L(A_k)$ is recognized by a DFA

$$B = (R, \Sigma, \gamma, r_0, F), \tag{1}$$

where $R = (P_1 \times \cdots \times P_k) \cup R_1 \cup \{d_B, f_B\}$ and $R_1 = \bigcup_{\emptyset \neq S \subsetneq [1,k]} (\prod_{i \in S} P_i) \times \{\text{acc}, \text{rej}\}$. The notation $\prod_{i \in S} P_i$ above denotes the Cartesian product of sets P_i , $i \in S$, taken in order of increasing i. That is, if $S = \{j_1, \ldots, j_r\}$, $1 \leq j_1 < j_2 < \cdots < j_r \leq k$, the product is $P_{j_1} \times P_{j_2} \times \cdots \times P_{j_r}$. (The order of the components of $\prod_{i \in S} P_i$ is not important. However, for the construction we need that the order is fixed.)

The initial state r_0 of B is the tuple $(q_{0,1},\ldots q_{0,k})$ consisting of the initial states of each of the A_i 's. The set of final states F consists of f_B and all tuples in R_1 where the last component is acc. Before defining the transitions we explain the intuitive idea of the construction of the DFA B which, hopefully, makes also the choice of the set of states more transparent. The DFA B simulates all the DFAs A_i , $1 \le i \le k$, in parallel. The states of $P_1 \times \cdots \times P_k$ simulate computations where none of the A_i 's has reached a final state or a sink state.

When the simulated computation of A_i reaches the final state f_i , in the next step A_i necessarily goes to the sink state. The states of R_1 simulate computations where at least one A_i but not all the A_i 's have reached the final state or the sink state. Suppose that $\emptyset \neq S \subsetneq [1,k]$ is the set of indices of DFAs A_i that, in the simulated computation, have not yet reached the final nor the sink state. Now the state of B (belonging to R_1) keeps track of only the corresponding states of A_i , $i \in S$ and does not need to store the information whether the state of A_j , for each $j \notin S$, is d_j or f_j . Instead, in the last component, the state of R_1 stores only a binary choice. If the last component is acc, this means that at least one A_j , for $j \notin S$, is in the final state f_j and the last component being rej encodes the situation where all the DFAs A_j , $j \notin S$, are in the sink state.

Finally, the state $f_B \in F$ encodes the situation where, in the simulated computation, all the A_i 's are in the accept state and d_B the situation where all the A_i 's are in the sink state.

It remains to define the transition relation γ of B. First, for every $b \in \Sigma$, we define $\gamma(f_B, b) = \gamma(d_B, b) = d_B$. Note that d_B is the sink state of B and f_B is a special final state from which all transitions lead to the sink state.

Second, we define the general transitions. Let $S = \{j_1, \ldots, j_s\} \subset [1, k], 1 \le j_1 < \cdots < j_s \le k$. For $\overline{z} = (z_{j_1}, \ldots, z_{j_s}), z_{j_x} \in P_{j_x}, 1 \le x \le s$, and $b \in \Sigma$, we define $S_{\overline{z},b} \subseteq S$ to consist of those indices of $j_i \in S$ such that $\delta_{j_i}(z_{j_i},b) \in P_{j_i}$. That is, if S gives the indices of the DFAs A_i that in the simulated computation have not reached the final state nor the sink state (i.e., A_i is in a state of P_i), then $S_{\overline{z},b}$ gives the indices of the DFAs that after processing a further input symbol $b \in \Sigma$ have still not reached the final state nor the sink state.

Let $y \in \{\text{acc}, \text{rej}\}\$ be arbitrary. Let S and \overline{z} be as above and denote $S_{\overline{z},b} = \{h_1, \ldots, h_t\}, h_1 < \cdots < h_t, 0 \le t \le s$. Now when $\emptyset \ne S_{\overline{z},b} \ne [1,k]$ we define

$$\gamma((z_{j_1}, \dots, z_{j_s}, y), b) = (\delta_{h_1}(z_{h_1}, b), \dots, \delta_{h_t}(z_{h_t}, b), y')$$
(2)

where y' is acc if there exists $i \in S - S_{\overline{z},b}$ such that $\delta_{h_i}(z_{h_i},b) = f_i$ and y' is rej otherwise. Note that the transition step simply simulates the computation step

of each of the individual $A_{z_{h_i}}$ and eliminates from the tuple the states of the DFAs that go to the accept state or the sink state. The last component y' of the new state simply encodes the information whether or not some of the eliminated computations entered a final state. Note that the computation step (2) does not depend on the last component y of the original state.

There remain only two special cases to define separately that correspond to situations where either $S_{\overline{z},b} = \emptyset$ or the original set of indices S consists of the entire set S.

If $S_{\overline{z},b} = \emptyset$, we define

$$\gamma((z_{j_1}, \dots, z_{j_s}, y), b) = \begin{cases} f_B, & \text{if } (\exists 1 \le i \le s) \ \delta_{j_i}(z_{j_i}, b) = f_{j_i}; \\ d_B, & \text{otherwise.} \end{cases}$$
 (3)

Finally, if $\overline{z} = (z_1, \dots, z_k), z_i \in P_i, 1 \le i \le k$, we define

$$\gamma((z_1, \dots, z_k), b) = \begin{cases} (\delta_1(z_1, b), \dots, \delta_k(z_k, b)), & \text{if } \delta_j(z_j, b) \in P_j; \\ (\delta_{h_1}(z_{h_1}, b), \dots, \delta_{h_t}(z_{h_t}, b), y'), & \text{otherwise.} \end{cases}$$
(4)

In the latter case of (4), $S_{\overline{z},b} = \{h_1, \ldots, h_t\}$ and y' = acc if there exists $i \in [1, k] - \{h_1, \ldots, h_t\}$ such that $\delta_i(z_i, b) = f_i$ and y' = rej otherwise.

The rules (4) are used in the initial part of the computation where none of the components A_i has reached the accept nor the sink state. During this part of the computation, the state of B is a tuple of $P_1 \times \cdots \times P_k$ and we do not need a component of {acc, rej}. Finally, the transitions (3) pertain to the situation where all components reach the accept or the sink state, and in this case the state of B is f_B if at least one component is in the accept state and the sink state d_B otherwise.

From the above description it is clear that B accepts an input string w if and only if at least one of the components A_i , $1 \le i \le k$, accepts w, that is $L(B) = L(A_1) \cup \cdots \cup L(A_k)$.

Lemma 1. Let A_i be a prefix-free DFA of size $m_i \geq 3$, i = 1, ..., k. The union $L(A_1) \cup \cdots \cup L(A_k)$ can be recognized by a DFA of size

$$2 \cdot \left(\sum_{\emptyset \neq S \subsetneq [1,k]} \prod_{i \in S} (m_i - 2) \right) + \left(\prod_{i=1}^k (m_i - 2) \right) + 2.$$

3.2 The Upper Bound Cannot be Reached with a Fixed Alphabet

We begin by observing that the upper bound of Lemma 1 cannot be reached for arbitrary k when the alphabet Σ is fixed.

Lemma 2. If $k > |\Sigma|$, the upper bound of Lemma 1 cannot be reached.

Proof. Let $A_i = (Q_i, \Sigma, \delta_i, q_{0,i}, \{f_i\}), i = 1, \dots, k$, be minimal prefix-free DFAs and let B be constructed for the union $L(A_1) \cup \cdots \cup L(A_k)$ as in (1). In the

following we use, without further mention, the notation for the DFAs A_i and B (as given in Section 3.1).

For $1 \leq i \leq k$, we define $\Omega_i \subseteq \Sigma$ as follows: $\Omega_i = \{c \in \Sigma \mid (\exists p \in P_i) \ \delta_i(p,c) = f_i\}$. The set Ω_i consists of alphabet symbols that take some state of P_i (where P_i consists of states of A_i that are neither final nor the sink state) to the unique final state. Since $L(A_i) \neq \emptyset$, we know that $\Omega_i \neq \emptyset$, $i = 1, \ldots, k$. The following observation will be the basis of our argument.

Claim 1. Let $b \in \Sigma$. If $b \in \Omega_i$, $1 \le i \le k$, then the function $\delta_i(\cdot, b)$ is not surjective on the set P_i . To verify the claim, we note that in the DFA A_i the states of P_i can be reached only from states of P_i . Since $b \in \Omega_i$, we know that the b-transitions take some state of P_i outside P_i . It follows that some state of P_i must be outside the range of $\delta_i(\cdot, b)$. Suppose now that for some $1 \le j \le k$,

$$(\exists c_i \in \Omega_i, i = 1, \dots, j - 1, j + 1, \dots, k) \ \Omega_j \subseteq \{c_1, \dots, c_{j-1}, c_{j+1}, \dots, c_k\}.$$
 (5)

The condition above means that there exists an index j such that by choosing one element from each of the sets Ω_i , $i \neq j$, we get all elements of Ω_j .

We show that, assuming (5) holds, some states of the form

$$(p_1, \dots, p_{j-1}, p_{j+1}, \dots, p_k, acc), p_i \in P_i, i = 1, \dots, j-1, j+1, \dots, k,$$
 (6)

cannot be reachable in the DFA B. Since the tuple (6) is missing only the jth component corresponding to a state of A_j , according to rules (4), a state of the form (6) can be reached only from a state of $P_1 \times \cdots \times P_k$ by a transition on a symbol $b \in \Omega_j$ that takes a state of P_j to the final state f_j of A_j . Note that a state of the form (6) cannot be reached from a state of the same form because in transitions (2) the last component becomes "rej" unless one of the states $p_1, \ldots, p_{j-1}, p_{j+1}, \ldots, p_k$ reaches the final state of the corresponding DFA, and in this case that component would also be omitted.

Now according to (5) we can choose $c_i \in \Omega_i$, $i = 1, \ldots, j - 1, j + 1, \ldots, k$, such that $\Omega_j \subseteq \{c_1, \ldots, c_{j-1}, c_{j+1}, \ldots, c_k\}$. By Claim 1 we know that $\delta_i(\cdot, c_i)$ is not surjective on P_i and hence there exist $p_i' \in P_i$ that cannot be reached in A_i by any transition on input c_i , $i = 1, \ldots, j - 1, j + 1, \ldots, k$. In the previous paragraph it was observed that a state of the form (5) can be reached only by an element of Ω_j . Since each element of Ω_j is one of the c_i 's, it follows that the state $(p_1', \ldots, p_{j-1}', p_{j+1}', \ldots, p_k', acc)$ will be unreachable in the DFA B.

Finally, it is easy to see using induction on k that when $|\Sigma| < k$ we cannot choose nonempty subsets Ω_i of Σ , i = 1, ..., k, such that (5) fails to hold. That is, no matter how the individual DFAs A_i are defined, for some $1 \le j \le k$, the condition (5) holds and, consequently, B has unreachable states.

3.3 Lower Bound with a Binary Alphabet

Next we give for the k-union of prefix-free languages a lower bound construction over a binary alphabet that reaches the upper bound of Lemma 1, within a constant factor. The motivation for first considering the binary alphabet case is that

using a simple modification of the binary alphabet construction we obtain, in Section 3.4, an optimal lower bound using an alphabet of size k+1. Furthermore, the same languages over a binary alphabet will be used in the next section to give a tight lower bound for the state complexity of k-intersection of prefix-free languages.

Our results leave open the question whether or not the upper bound can be reached using an alphabet of size exactly k. Note that from Lemma 2 we know that k-1 alphabet symbols are not sufficient.

We choose $\Sigma = \{a, b\}$. For $w \in \Sigma^*$ of length m, the set of *positions* of w is $\{1, \ldots, m\}$. For $x \in \{a, b\}$ and $1 \le u \le m$, we say that u is an x-position of w if the u'th symbol of w is x.

The set of all *b*-positions of string w is denoted $pos_b(w) \subseteq \{1, \ldots, |w|\}$. Consider a *b*-position u_b of $w \in \Sigma^*$. By the *a*-count of position u_b , $count_a(u_b)$, we mean the number fu_b is simply the number of occurrences of symbols a that precede the occurrence of b at position u_b .

For each $m \in \mathbb{N}$ we define the prefix-free language

$$L_m \subseteq \{a, b\}^* \tag{7}$$

to consist of all strings w such that

- 1. $|w| \in pos_b(w)$,
- 2. $\operatorname{count}_a(|w|) \equiv 0 \pmod{m}$, and,
- 3. $(\forall u \in pos_b(w)) \ u < |w| \text{ implies } count_a(u) \not\equiv 0 \pmod{m}$.

That is, L_m consists of strings w ending with symbol b where the number of occurrences of symbols a is a multiple of m. Furthermore, any occurrence of b in w except the last one is preceded by a number of a's that is not a multiple of m.

Lemma 3. For $m \geq 1$, the language L_m is prefix-free and is recognized by a DFA A_{m+2} with m+2 states.

Lemma 4. Let $\{m_1, \ldots, m_k\}$ be a set of relatively prime integers where $m_i \geq 2$, $i = 1, \ldots, k$. Let L_{m_i} , $1 \leq i \leq k$, be the language defined in (7).

Then the minimal DFA for $L_{m_1} \cup \cdots \cup L_{m_k}$ has

$$\left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} m_i\right) + \left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 1)\right) + \left(\prod_{i=1}^k m_i\right) + 2 \tag{8}$$

states.

When comparing the value (8) to the upper bound of Lemma 1 we recall that the minimal DFA for L_{m_i} had $m_i + 2$ states. Thus for the union of prefix-free DFAs of size m_i , $1 \le i \le k$, over a binary alphabet the construction of Lemma 4 gives a lower bound

$$\left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 2)\right) + \left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 3)\right) + \left(\prod_{i=1}^k (m_i - 2)\right) + 2.$$

This differs from the upper bound of Lemma 1 by

$$\left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 2)\right) - \left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 3)\right).$$

Corollary 1. For arbitrary $k \ge 1$ the lower bound for the union of k prefix-free DFAs over a binary alphabet is more than half of the general upper bound of Lemma 1.

3.4 Tight Lower Bound with Alphabet of Size k + 1

As a simple modification of the binary DFA construction from the previous section, we obtain a lower bound matching the upper bound of Lemma 1 using an alphabet of size k + 1.

In the following let $k \in \mathbb{N}$ be arbitrary but fixed and $\Sigma = \{a, b_1, \dots, b_k\}$. For $m \in \mathbb{N}$ and $1 \le i \le k$ we define the language $L_{i,m}$ to consist of all strings $w \in \Sigma^*$ such that w ends with b_i , $|w|_a \equiv 0 \mod m$ and the number of a's preceding any other occurrence of b_i in w except the last one is not a multiple of m. In strings of $L_{i,m}$ the symbols b_j , $j \ne i$, can occur in arbitrary positions, except that the string must end with b_i .

Clearly $L_{i,m}$ is prefix-free, $1 \leq i \leq m$, and $L_{i,m}$ is recognized by a DFA $A'_{i,m+2} = (Q, \Sigma, \delta, 0, \{m\})$ where $Q = \{0, 1, ..., m+1\}$ and the transition relation δ is defined by setting

- 1. for $0 \le j \le m-2$, $\delta(j,a) = j+1$,
- 2. $\delta(m-1,a) = 0$, $\delta(m,a) = \delta(m+1,a) = m+1$,
- 3. for $1 \le j \le m-1$ and j = m+1, $\delta(j, b_i) = j$,
- 4. $\delta(0, b_i) = m$,
- 5. for $0 \le j \le m-1$ and $h \ne i$, $\delta(j, b_h) = j$,
- 6. for all $1 \le h \le k$, $\delta(m, b_h) = \delta(m + 1, b_h) = m + 1$.

The transitions of the DFA $A'_{i,m+2}$ restricted to subalphabet $\{a,b_i\}$ are an isomorphic copy of the DFA A_{m+2} defined in the proof of Lemma 3. In $A'_{i,m+2}$ the transitions on b_j , $j \neq i$, are the identity on states $\{0,1,\ldots,m-1\}$ and take m and m+1 to the sink state m+1.

Let $\{m_1,\ldots,m_k\}$ be a set of relatively prime integers. As in the proof of Lemma 1 we construct a DFA B' for $L_{1,m_1}\cup\cdots\cup L_{k,m_k}$. Now similarly as in the proof of Lemma 4 we verify that all states of B' are reachable and pairwise inequivalent. The latter property was shown to hold already in the case of a binary alphabet. The only unreachable states in the construction used in the proof of Lemma 4 were states of the form $(p_{j_1},\ldots,p_{j_r},\mathrm{acc})$, where some p_{j_x} , $1 \leq x \leq r$, was the final state of $A_{m_{j_x}+2}$. In B' the above state is reached from a state $(p_{j_1},\ldots,q_{h,0},\ldots,p_{j_r},\mathrm{rej})$ by reading a symbol b_h . Here $1 \leq h \leq k$ is an index not appearing in the sequence j_1,\ldots,j_r , and hence the B'-transition on b_h does not change the components p_{j_1},\ldots,p_{j_r} . (Strictly speaking, it may be the case that we must choose $h < j_1$ or $h > j_r$ in which case the notations above are slightly different.)

Thus, as a consequence of Lemma 1 and Proposition 2, we have the following result.

Theorem 1. Let A_i be a prefix-free DFA of size $m_i \geq 3$, i = 1, ..., k. The union $L(A_1) \cup \cdots \cup L(A_k)$ can be recognized by a DFA of size

$$2 \cdot \left(\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 2) \right) + \left(\prod_{i=1}^k (m_i - 2) \right) + 2.$$
 (9)

For any integers n_1, \ldots, n_k , there exist prefix-free DFAs A_i over an alphabet of size k+1 having size $m_i \geq n_i$, $i=1,\ldots,k$, such that the minimal DFA for $L(A_1) \cup \cdots \cup L(A_k)$ has size exactly (9). The state complexity upper bound (9) cannot be reached by prefix-free DFAs over an alphabet with less than k symbols.

Theorem 1 leaves open the question whether or not the worst-case state complexity of k-union of prefix-free languages can be reached by DFAs over an alphabet of size exactly k. We conjecture a positive answer to this question but the required lower bound construction would likely be much more complicated than the construction used above for proving Theorem 1.

4 Intersection of k Prefix-Free Languages

We consider the state complexity of $L_1 \cap L_2 \cap \cdots \cap L_k$ (the k-intersection operation) for prefix-free regular languages. First we give an upper bound construction. Recall, as in the previous section, that we can restrict consideration to DFAs of size at least three because any non-trivial prefix-free DFA has at least three states.

Lemma 5. Let A_i be a DFA with m_i states, $m_i \geq 3$, that recognizes a prefix-free language L_i , $1 \leq i \leq k$. Then $2 + \prod_{i=1}^k (m_i - 2)$ states are sufficient for a DFA to $\frac{k}{2}$

recognize
$$\bigcap_{i=1}^{k} L_i$$
.

We note that the state complexity upper bound of Lemma 5 coincides with the (k-1)-fold function composition of the state complexity for the intersection of two prefix-free regular languages [13].

The result of Lemma 5 is, perhaps, not surprising because the family of prefixfree regular languages is closed under intersection. A more interesting question is whether or not the upper bound can be reached using a fixed alphabet. Note that we have shown that this is not possible for k-union in Lemma 2. On the other hand, for k-intersection, we present a positive answer using a binary alphabet. We use the prefix-free regular languages L_m , defined by (7), that were used also in Lemma 3, and prove that with an appropriate choice of the values m the languages L_m yield a tight lower bound for k-intersection. **Lemma 6.** Let $\Sigma = \{a,b\}$ and, for $m \geq 1$, let $L_m \subset \{a,b\}^*$ be the prefix-free regular language defined in (7). Let $\{m_1,\ldots,m_k\}$ be a set of relatively prime integers, where $m_i \geq 2$ for $1 \leq i \leq k$. Then the minimal DFA for $L_{m_1} \cap \cdots \cap L_{m_k}$ has

$$2 + \prod_{i=1}^{k} (m_i - 2) \tag{10}$$

states.

The below theorem summarizes the results from Lemmas 5 and 6.

Theorem 2. Let A_i be a prefix-free DFA of size $m_i \geq 3$, i = 1, ..., k. The intersection $L(A_1) \cap \cdots \cap L(A_k)$ can be recognized by a DFA of size

$$2 + \prod_{i=1}^{k} (m_i - 2).$$

Furthermore, there exist prefix-free DFAs as above defined over a binary input alphabet such that the minimal DFA for $L(A_1) \cap \cdots \cap L(A_k)$ needs this number of states.

5 Conclusion

We have examined the state complexity of two multiple operations, the k-union and k-intersection operations, for prefix-free regular languages. We have established a tight state complexity bound for k-union using an alphabet of size k+1 and a tight state complexity bound for k-intersection using a binary alphabet. The following table summarizes the state complexity bounds.

operation	state complexity	k = 2 [13]
$\bigcup_{1 \le i \le k} L_i$	$2 \cdot \sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 2) + \prod_{i=1}^k (m_i - 2) + 2$	$m_1 m_2 - 2$
$\bigcap_{1 \le i \le k} L_i$	$\prod_{i=1}^k (m_i - 2) + 2$	$m_1 m_2 - 2(m_1 + m_2) + 6$
operation	lower bound on the state complexity when $ \Sigma =2$	
$\bigcup_{1 \le i \le k} L_i$	$\sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 2) + \sum_{\emptyset \neq S \subset [1,k]} \prod_{i \in S} (m_i - 3) + \prod_{i=1}^k (m_i - 2) + 2$	

Note that the state complexity for k-union is smaller than the function composition of the state complexity of several unions whereas the state complexity for k-intersection is the same as the (k-1)-fold composition of the state complexity function for the intersection of two languages. This phenomenom can

be viewed to be caused by the fact that the family of (regular) prefix-free languages is closed under intersection but not closed under union. Since prefix-free languages are closed under concatenation, analogously, by extending the construction used in [13], the state complexity of k-fold concatenation of prefix-free languages can be shown to coincide with the k-fold function composition of the state complexity of the concatenation of two languages.

For k-union, additionally, we have considered the binary alphabet case and given a lower bound construction that is within the constant $\frac{1}{2}$ from the general upper bound. We have proved that the state complexity of k-union cannot be reached when the alphabet size is less than k. This leaves open only whether or not the state complexity of k-union can be reached by prefix-free languages over an alphabet of size exactly k.

Acknowledgements. We wish to thank the referees for the careful reading of the paper and valuable suggestions, which led to improvement on the presentation.

Eom and Han were supported by the Basic Science Research Program through NRF funded by MEST (2012R1A1A2044562) and Salomaa was supported by the Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.

References

- Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)
- Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)
- Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)
- Domaratzki, M.: State complexity of proportional removals. Journal of Automata, Languages and Combinatorics 7(4), 455–468 (2002)
- 5. Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer Science 410(24-25), 2377–2392 (2009)
- Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)
- Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined operations. Theoretical Computer Science 410(35), 3272–3280 (2009)
- Gao, Y., Kari, L.: State complexity of star and square of union of k regular languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 155–168. Springer, Heidelberg (2012)
- Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of square and reversal on k regular languages. Theoretical Computer Science 454, 164–171 (2012)
- Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)
- Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite languages. International Journal of Foundations of Computer Science 19(3), 581–595 (2008)

- Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theoretical Computer Science 410(27-29), 2537–2548 (2009)
- Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular languages. In: Automata, Formal Languages, and Related Topics - Dedicated to Ferenc Gécseg on the Occasion of his 70th Birthday, pp. 99–115. Institute of Informatics, University of Szeged, Hungary (2009)
- Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181. Università degli Studi di Milano, Milan (2005)
- Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. International Journal of Foundations of Computer Science 16(3), 511–529 (2005)
- Jirásková, G., Masopust, T.: Complexity in union-free regular languages. International Journal of Foundations of Computer Science 22(7), 1639–1653 (2011)
- 17. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free languages and descriptional complexity. In: Proceedings of NCMA 2009, pp. 151–166. Austrian Computer Society (2009)
- Jirásková, G., Sebej, J.: Reversal of binary regular languages. Theoretical Computer Science 449, 85–92 (2012)
- Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathematics Doklady 11, 1373–1375 (1970)
- Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)
- Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal's function. International Journal of Foundations of Computer Science 13(1), 145–159 (2002)
- 22. Rampersad, N.: The state complexity of L^2 and L^k . Information Processing Letters 98(6), 231–234 (2006)
- Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383(2-3), 140–152 (2007)
- 24. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320(2-3), 315–329 (2004)
- Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. International Journal of Foundations of Computer Science 18, 683–698 (2007)
- Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, New York (2008)
- 27. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York (1987)
- Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)
- 29. Yu, S.: State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)
- Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)