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Abstract. We consider the state complexity of basic operations on non-
returning regular languages. For a non-returning minimal DFA, the start
state does not have any in-transitions. We establish the precise state com-
plexity of four Boolean operations (union, intersection, difference, sym-
metric difference), catenation, reversal, and Kleene-star for non-returning
regular languages. Our results are usually smaller than the state complex-
ities for general regular languages and larger than the state complexities
for suffix-free regular languages.
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1 Introduction

Given a regular language L, researchers often use the number of states in the
minimal deterministic finite-state automaton (DFA) for L to represent the com-
plexity of L. Based on this notion, the state complexity of an operation for regular
languages is defined as the number of states that are necessary and sufficient in
the worst-case for the minimal DFA to accept the language resulting from the
operation, considered as a function of the state complexities of operands.

Maslov [17] provided, without giving proofs, the state complexity of union,
catenation, and star, and later Yu et al. [24] investigated the state complexity
further. The state complexity of an operation is calculated based on the struc-
tural properties of input regular languages and a given operation. Recently, due
to large amount of memory, fast CPUs and massive data size, many applications
using regular languages require finite-state automata (FAs) of very large size.
This makes the estimated upper bound of the state complexity useful in prac-
tice since it helps to manage resources efficiently. Moreover, it is a challenging
quest to verify whether or not an estimated upper bound can be reached.
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Yu [25] gave a comprehensive survey of the state complexity of regular lan-
guages. Salomaa et al. [21] studied classes of languages, for which the reversal
operation reaches the exponential upper bound. As special cases of the state
complexity, researchers examined the state complexity of finite languages [4,9],
the state complexity of unary language operations [19] and the nondeterministic
descriptional complexity of regular languages [12]. There are several other results
with respect to the state complexity of different operations [5,7,8,18].

For regular language codes, which preserve certain structural properties in
the corresponding minimal DFAs, Han et al. [11] studied the state complexity
of prefix-free regular languages. Similarly, based on suffix-freeness, Han and Sa-
lomaa [10] looked at the state complexity of suffix-free regular languages. Note
that a prefix-free minimal DFA has a single final state and all out-transitions of
the final state go to the sink state [1]. Moreover, this property is the necessary
and sufficient condition for a minimal DFA A to be prefix-free; namely, L(A)
is prefix-free. For a suffix-free minimal DFA, the start state does not have any
in-transitions [10]. A DFA with this property is called non-returning. However,
this non-returning property is only a necessary condition for a minimal DFA to
be suffix-free, but it is not sufficient. This observation intrigues us to investigate
DFAs with non-returning property and the state complexity of basic operations
on languages accepted by non-returning DFAs.

Note that state complexity of non-returning regular languages is different from
the state complexity of arbitrary regular languages because there is a structural
property in a non-returning DFA; the start state has no in-transitions. We get the
tight bounds on the state complexity of four Boolean operations (union, intersec-
tion, difference, symmetric difference), of catenation, reversal and Kleene-star.
Our results are usually less than the state complexities for general regular lan-
guages and greater than the state complexities for suffix-free regular languages.

In Section 2, we define some basic notions and prove preliminary results. Then
we formally define non-returning regular languages. We prove the tight bounds
on the state complexity of Boolean operations, catenation, reversal, and Kleene
star in Sections 3, 4, 5, and 6, respectively. We summarize the state complexity
results and compare them with the regular language case and the suffix-free case
in Section 7.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is
any subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. Let |w|a be the number of a appearances in a string w.
For strings x, y and z, we say that y is a suffix of z if z = xy. We define a
language L to be suffix-free if for any two distinct strings x and y in L, x is not
a suffix of y. For a string x, let xR be the reversal of x and for a language L, we
denote LR = {xR | x ∈ L}.

A DFA A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition function, s ∈ Q is the
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start state and F ⊆ Q is a set of final states. The state complexity of a regular
language L, sc(L), is defined to be the size of the minimal DFA recognizing L.

Given a DFA A, we assume that A is complete; therefore, A may have a sink
state. For a transition δ(p, a) = q in A, we say that p has an out-transition and q
has an in-transition. We say that A is non-returning if the start state of A does
not have any in-transitions. We define a regular language to be a non-returning
regular language if its minimal DFA is non-returning.

A nondeterministic finite automaton (NFA) is a tuple M = (Q,Σ, δ,Q0, F )
where Q,Σ, F are as in a DFA, Q0 is the set of start states, and δ : Q×Σ → 2Q

is the transition function. Every NFA M can be converted to an equivalent DFA
M ′ = (2Q, Σ, δ′, Q0, F

′) by the subset construction. We call the DFA M ′ the
subset automaton of the NFA M .

For complete background knowledge in automata theory, the reader may refer
to the textbooks [22,23,26]. To conclude this section let us state some preliminary
results that we will use later throughout the paper.

Proposition 1. Let N be an NFA such that for every state q, there exists a
string wq accepted by the NFA N from state q and rejected from any other state.
Then all states of the subset automaton of N are pairwise distinguishable.

Proof. Let S and T be two distinct subsets of the subset automaton. Then,
without loss of generality, there is a state q of N such that q ∈ S and q /∈ T .
Then the string wq is accepted by the subset automaton from S and rejected
from T . ��
The following well-known observation allows us to avoid the proof of distin-
guishability in the case of reversal. It can be easily proved using Proposition 1,
and for the sake of completeness, we present the proof here.

Proposition 2 ([2]). All states of the subset automaton of the reverse of a
minimal DFA are pairwise distinguishable.

Proof. Let A be a minimal DFA. Since every state of A is reachable, for every
state q of the NFA AR, there exists a string wq that is accepted by AR from q.
Since A is deterministic, the string wq cannot be accepted by AR from any other
state. Hence the NFA AR satisfies the condition of Proposition 1, and therefore
all states of the subset automaton of AR are pairwise distinguishable. ��
If N is a non-returning NFA with the state set Q and the initial state s, then
the only reachable subset of the subset automaton of N containing the state s
is {s}. If, moreover, the empty set is unreachable in the subset automaton, then
two distinct subsets of the subset automaton must differ in a state from Q \ {s}.
Hence a sufficient condition for distinguishability in such a case is as follows.

Proposition 3. Let N = (Q,Σ, δ, s, F ) be a non-returning NFA such that the
empty set is unreachable in the corresponding subset automaton. Assume that
for every state q in Q \ {s}, there exists a string wq accepted by N only from q.
Then all states of the subset automaton of N are pairwise distinguishable. ��
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3 Boolean Operations

We consider the following four Boolean operations: intersection, union, differ-
ence, and symmetric difference. In the general case of all regular languages, the
state complexity of all four operations is given by the function mn, and the worst
case examples are defined over a binary alphabet [3,24].

In the case of non-returning languages, we obtain the precise state complexity
for these operations, which again turn out to be the same. A general boolean
operation with two arguments is denoted by K ◦ L.
Theorem 1. Let K and L be non-returning languages over an alphabet Σ with
sc(K) = m and sc(L) = n, where m,n ≥ 3. Then sc(K ◦L) ≤ (m−1)(n−1)+1,
and the bound is tight if |Σ| ≥ 2.

Proof. Let K and L be accepted by a nonreturning m-state and n-state DFA,
respectively. Let the state sets of the two DFAs be QA and QB, and let the start
states be sA and sB, respectively. Construct the cross-product automaton for
K ◦ L with the state set QA × QB. Since both DFAs are non-returning, in the
cross-product automaton, the states (sA, q) and (p, sB), except for the initial
state (sA, sB), are non-reachable. This gives the upper bound.

To prove tightness, first consider intersection. Let

K = {(a+ b)w | w ∈ {a, b}∗ and |w|a ≥ m− 2},
L = {(a+ b)w | w ∈ {a, b}∗ and |w|b ≥ n− 2}.

The languages K and L are accepted by the non-returning DFAs shown in
Fig. 1.

In the cross-product automaton for the language K∩L, the unique final state
is (m− 1, n− 1). The cross-product automaton in the case of m = 4 and n = 5
is shown in Fig. 2. The state (1, 1) is reached from the initial state (0, 0) by a.
Every state (i, j) with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1 is reached from (1, 1)
by ai−1bj−1. This proves the reachability of (m− 1)(n− 1) + 1 states.

Now let (i, j) and (k, �) be two distinct states of the cross-product automaton.
If i < k, then the string am−1−kbn is accepted from (k, �) and rejected from (i, j).

0 m−11 2 m−2
a, b a a a

b b b a, b

a

0 n−11 2 n−2
a, b b b b

a a a a, b

b

Fig. 1. The witnesses for intersection meeting the bound (m− 1)(n− 1) + 1
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a, b

b b b

b b b

a a a a

b b b

a a a a

b

b

a a a
a, b

00

11 12 13 14

21 22 23 24

31 32 33 34

Fig. 2. The cross-product automaton for intersection; m = 4, n = 5

If j < �, then the string bn−1−�am is accepted from (k, �) and rejected from (i, j).
This proves distinguishability, and concludes the proof for intersection.

To prove the tightness for union, notice that the state complexity of a regular
language is the same as the state complexity of its complement. Consider the
languages Kc and Lc, where K and L are the witness languages for intersection.
The languages Kc and Lc are non-returning with state complexities m and n,
respectively. Since Kc∪Lc = (K∩L)c, we have sc(Kc∪Lc) = (m−1)(n−1)+1.

For difference, we take the languages K and Lc. Since K \ Lc = K ∩ L, we
have sc(K \ Lc) = (m− 1)(n− 1) + 1.

For symmetric difference, consider the same languages as for intersection.
In the cross-product automaton, the final states are (i, n−1) with 1 ≤ i ≤ m−2
and (m−1, j) with 1 ≤ j ≤ n−2. The proof of reachability is the same as in the
case of intersection. If i < k then the string am−1−kbn is rejected from (k, �) and
accepted from (i, j). If j < �, then the string bn−1−�am is rejected from (k, �)
and accepted from (i, j). This completes the proof of the theorem. ��

4 Catenation

The state complexity of catenation on regular languages is given by the function
m2n− 2n−1, and the worst case examples can be defined over a binary alphabet
[17,24]. The next result gives the tight bound for catenation on non-returning
languages over an alphabet of at least three symbols.

Theorem 2. Let K and L be non-returning languages over an alphabet Σ with
sc(K) = m and sc(L) = n, where m,n ≥ 3. Then sc(K · L) ≤ (m− 1)2n−1 + 1,
and the bound is tight if |Σ| ≥ 3.

Proof. To prove the upper bound, let K and L be accepted by minimal non-
returning DFAs A = (QA, Σ, δA, sA, FA) and B = (QB, Σ, δB, sB, FB) of m and
n states, respectively.
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sA qm−2q0 q1 qm−3
a, b, c a a a

a

b, c b, c b, c b, c

a

sB n−20 1 n−3
a, b, c b b, c b, c

b, c

a, c a a a

b, c

Fig. 3. The non-returning witnesses for catenation meeting the bound (m−1)2n−1 +1

Construct an NFA N for the language K · L from the DFAs A and B by
adding a transition on every symbol a in Σ from every final state of A to the
state δ(sB , a), and by omitting the state sB. The initial state of N is sA and
the set of final states is FB . Moreover, the NFA N is non-returning. Apply the
subset construction to the NFA N . Since the automaton A is deterministic, every
reachable state of the subset automaton contains exactly one state of the DFA A
and, possibly, some states of the DFA B, except for the state sB. Moreover, the
only subset containing the state sA is {sA}, and the empty set is unreachable.
It follows that the subset automaton has at most (m − 1)2n−1 + 1 reachable
states, which proves the upper bound.

To prove tightness, let K and L be the languages accepted by the non-
returning minimal DFAs A and B shown in Fig. 3.

Construct an NFA N for K ·L from the DFAs A and B by adding transitions
on a, b, c from the state qm−2 to the state 0 and by omitting the state sB.
The initial state of N is sA, and the unique final state is n− 2. Let us show that
the subset automaton of the NFA N has (m−1)2n−1+1 reachable and pairwise
distinguishable states.

We prove by induction that every set {qi, j1, j2, . . . , jk}, where 0 ≤ i ≤ m− 2
and 0 ≤ j1 < j2 < · · · < jk ≤ n− 2, is reachable from the initial state {sA}.

The basis, k = 0, holds since {qi} is reached from {sA} by ai+1. Assume that
1 ≤ k ≤ n − 2, and that the claim holds for k − 1. Let S = {qi, j1, j2, . . . , jk}.
Consider three cases:

(i) i = 0 and j1 = 0. Let S′ = {qm−2, j2, . . . , jk}. Then S′ is reachable by the
induction hypothesis. Since S′ goes to S by a, the set S is reachable.

(ii) i = 0 and j1 ≥ 1. Let S′ = {q0, 0, j2 − j1, . . . , jk − j1}. Then S′ is reachable
as shown in case (i), and goes to S by bj1 .

(iii) i ≥ 1. Let S′ = {q0, j1, j2, . . . , jk}. Then S′ is reachable as shown in cases
(i) and (ii), and goes to S by ai.

To prove distinguishability, notice that the NFAN accepts the string bn−2−j (0 ≤
j ≤ n− 2) only from the state j, the string cnb · bn−2 only from the state qm−2,
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and the string am−2−i ·cnb ·bn−2 (0 ≤ i ≤ m−3) only from qi. By Proposition 3,
all states of the subset automaton of N are pairwise distinguishable. ��
We did some calculations, and it seems that the upper bound cannot be met
in the binary case. The next theorem provides a lower bound, however, our
calculations show that it can be exceeded.

Theorem 3. Let m,n ≥ 4. There exist binary non-returning languages K and L
with sc(K) = m and sc(L) = n such that sc(KL) ≥ (m− 2)2n−1 + 2n−2 + 2.

Proof. Consider the binary languages K and L accepted by DFAs shown in
Fig. 4. Construct an NFA N for the language KL from the two DFAs by adding
the transitions on a and b from the state qm−2 to the state 0, and by omitting
the state sB. The initial state of N is sA and the unique final state is n− 2. Let
us show that the subset automaton of the NFA N has (m− 2)2n−1 + 2n−2 + 2
reachable and pairwise distinguishable states.

We prove, by induction on the size of reachable sets, that {sA}, {q0}, and all
sets {qi} ∪ T , where 0 ≤ i ≤ m − 2 and T ⊆ {0, 1, . . . , n − 2}, and such that if
i = 0 then 0 ∈ T , are reachable in the subset automaton. Each singleton set {qi}
is reached from the initial state {sA} by ai+1.

Assume that 1 ≤ k ≤ n − 2 and that every set S of size k and such that if
i = 0 then 0 ∈ S is reachable. Let S = {qi, j1, j2, . . . , jk} be a set of size k + 1
with 0 ≤ j1 < j2 < · · · < jk ≤ n− 2. Consider six cases:

(i) i = 0 and j1 = 0. Then S is reached from {qm−2, j2 − 1, . . . , jk − 1} by a,
and the latter set is reachable by the induction hypothesis.

(ii) i = 1, j1 = 0 and |S| = 2; namely, S = {q1, 0}. Then S is reached from
{q0, 0} by a · bn−2 and the latter set is reachable by (i).

(iii) i = 1, j1 = 0, j2 = 1. Then S is reached from {q0, 0, j3 − 1, . . . , jk − 1, n− 2}
by a, and the latter set is reachable by (i).

(iv) i = 1, j1 = 0, and j2 ≥ 2. Then the set S is reached from the set {q1, 0, 1,
j3− j2+1, . . . , jk − j2+1} by bj2−1, and the latter set is reachable by (iii).

sA qm−2q0 q1 qm−3
a, b a a a

a

b b b b

a

sB n−20 1 n−3
a, b a a, b a, b

a, b

b

a, b

Fig. 4. Non-returning DFAs of binary K and L with sc(KL) ≥ (m−2)2n−1 +2n−2 +2
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(v) i = 1 and j1 ≥ 1. Then S is reached from {q0, 0, j2 − j1, . . . , jk − j1} by
abj1−1, and the latter set is reachable by (i).

(vi) i ≥ 2. Then the set S is reached from the set {q1, (j1 − i+1) mod (n − 1),
. . . , (jk − i + 1) mod (n − 1)} by ai−1, and the latter set is reachable by
(ii)-(v).

This proves the reachability of 2 + 2n−2 + (m− 2)2n−1 subsets.
To prove distinguishability, notice that the string an−2−j (0 ≤ j ≤ n − 2) is

accepted by N only from the state j, the string bna · an−2 only from the state
qm−2, and the string am−2−i · bna · an−2 (0 ≤ i ≤ m− 3) only from the state qi.
By Proposition 3, all subsets are pairwise distinguishable. ��

5 Reversal

The tight bound on the state complexity of the reversal of regular languages is
2n with worst-case examples defined over a binary alphabet [16,24]. The aim of
this section is to show that for non-returning languages, the tight bound is the
same. However, to prove tightness, we need a three-letter alphabet.

Theorem 4. Let L be a non-returning regular language over an alphabet Σ with
sc(L) = n, where n ≥ 4. Then sc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 3.

Proof. The upper bound 2n is same as in the general case.
To prove tightness, consider the language L accepted by the DFA in Fig. 5.

Let us show that the subset automaton of the NFA AR has 2n reachable states.
The initial state of the subset automaton is {0}, and it goes by ci to {i} with

1 ≤ i ≤ n− 2. The set {n− 2} goes to {n− 1} by a. Assume that 2 ≤ k ≤ n and
that every set of size k − 1 is reachable. Let S = {i1, i2, . . . , ik} be a set of size
k with 0 ≤ i1 < i2 < · · · < ik ≤ n− 1. Consider four cases:

(i) ik ≤ n − 2. Then S is reached from {0, i3 − i2, . . . , ik − i2} by the string
abi2−i1−1ci1 , and the latter set is reachable by the induction hypothesis.

(ii) ik = n− 1 and i1 = 0. Then S is reached from {i2 − 1, . . . , ik−1 − 1, n− 2}
by c, and the latter set is reachable by the induction hypothesis.

(iii) ik = n− 1 and i1 = 1. Then S is reached from {i2 − 1, . . . , ik−1 − 1, n− 2}
by b, and the latter set is reachable by the induction hypothesis.

(iv) ik = n− 1 and i1 ≥ 2. Then S is reached from {i1 − 1, . . . , ik−1 − 1, n− 2}
by a, and the latter set is reachable by (i).

n− 1 0n− 2 n− 3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Fig. 5. The non-returning witness for reversal meeting the bound 2n
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n−1 0n−2 n−3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Fig. 6. The NFA AR for the reversal of the language accepted by the DFA in Fig. 5

n− 2 0n− 3 n− 4 1
a, b a, b a, b aa, b

a, b a, b

n− 1

b

Fig. 7. The non-returning DFA of a binary language L with sc(LR) = 2n−2

By Proposition 2, all states of the subset automaton are pairwise distinguishable,
and the proof is complete. ��
Our calculations show that the upper bound cannot be met by binary languages.
The next result provides a lower bound in the binary case.

Theorem 5. Let n ≥ 3. There exists a binary non-returning regular language L
such that sc(L) = n and sc(LR) = 2n−2.

Proof. Let L be the binary language accepted by the minimal non-returning
automaton shown in Fig. 7. Then LR = (a+b)∗a(a+b)n−3, and it is well-known
that the state complexity of (a+ b)∗a(a+ b)n−3 is 2n−2. ��

6 Kleene-Star

The state complexity of Kleene star on regular languages is 2n−1 + 2n−2 for an
alphabet of at least two symbols, and it is (n − 1)2 + 1 in the unary case [24].
Here we show that in the case of non-returning languages over an alphabet of
at least two symbols, the tight bound is 2n−1. In the unary case, we get a lower
bound (n− 2)2 + 2, and we conjecture that this is also an upper bound.

Theorem 6. Let L be a non-returning regular language over an alphabet Σ with
sc(L) = n, where n ≥ 3. Then sc(L∗) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A = (Q,Σ, δ, s, F ) be a minimal non-returning
automaton for L. Construct an NFA N for the language L∗ from the DFA A
by making the state s final, and by adding a transition on every symbol a from
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s n−21 2 n−3a, b a, b a, b a, ba, b0 a

b

a

b

Fig. 8. The non-returning witness for Kleene star meeting the bound 2n−1

every final state to the state δ(s, a). The NFA N is non-returning, and therefore
the subset automaton of N has at most 2n−1 + 1 states. Since A is a complete
DFA, the empty set is unreachable, and the upper bound is 2n−1.

To prove tightness, consider the binary language accepted by the minimal
n-state DFA A shown in Fig. 8. Construct an NFA N for the language L∗ from
the DFA A by making the state s final, and by adding the transition on b from
the state n− 2 to the state 0.

Let us prove by induction on the size of subsets that every non-empty subset
of {0, 1, . . . , n− 2} is reachable in the subset automaton of N . Every set {i} is
reached from the initial state {s} by ai+1. Assume that 2 ≤ k ≤ n− 1 and that
every subset of size k − 1 is reachable. Let S = {i1, i2, . . . , ik} be a set of size k
with 0 ≤ i1 < i2 < · · · < ik ≤ n− 2. Consider three cases:

(i) i1 = 0 and i2 = 1. Then S is reached from {i3 − 1, . . . , ik − 1, n− 2} by b,
and the latter set is reachable by the induction hypothesis.

(ii) i1 = 0 and i2 ≥ 2. Then S is reached from {0, 1, i3− i2 +1, . . . , ik − i2 +1}
by bi2−1, and the latter set is reachable by (i).

(iii) i1 ≥ 1. Then S is reached from {0, i2− i1, . . . , ik− i1} by ai1 , and the latter
set is reachable by (i) and (ii).

To prove distinguishability, notice that the NFA N accepts the string an−2−i,
where 0 ≤ i ≤ n− 2, only from the state i. Since the empty set is unreachable
in the subset automaton, by Proposition 3, all states of the subset automaton
are pairwise distinguishable. ��
Theorem 7. Let n ≥ 3. There exists a unary non-returning regular language
with sc(L) = n and sc(L∗) = (n− 2)2 + 2.

Proof. Let L be the language accepted by the unary non-returning DFA shown
in Fig. 9. Then L∗ = {λ} ∪ {am | m = x(n− 1) + y(n− 2), x > 0, y ≥ 0}.

Since gcd(n − 1, n − 2) = 1, the largest integer that cannot be expressed as
x(n − 1) + y(n − 2) with x > 0, y ≥ 0 is (n − 2)(n− 2) [24]. It follows that the
minimal DFA for L∗ has (n− 2)2 + 2 states. ��
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n−11 2 n−20 a a a a a

a

Fig. 9. The non-returning DFA of a unary language L with sc(L∗) = (n− 2)2 + 2

7 Conclusions

The state complexity of subfamilies of regular languages (such as finite languages,
unary languages, prefix-free or suffix-free regular languages) is often smaller than
the state complexity of regular languages [4,9,10,11,19]. We have considered
another subfamily of regular languages, non-returning regular languages. Note
that when a minimal DFA A is non-returning, then we say that the language
L(A) is non-returning.

The non-returning property is a necessary condition for a DFA to accept a
suffix-free regular language, but it is not sufficient [10]. We notice that a suffix-
free DFA always has a sink state whereas a non-returning DFA may not have any
sink state. Based on these observations, we have examined non-returning DFAs
and established the state complexities of some basic operations for non-returning
regular languages. Our results are usually smaller than the state complexities for
general regular languages and larger than the state complexities for suffix-free
regular languages as summarized in Fig. 10.

operation non-returning suffix-free general

K ∪ L mn− (m + n) + 2 mn− (m + n) + 2 mn

K ∩ L mn− (m + n) + 2 mn− 2(m + n) + 6 mn

K \ L mn− (m + n) + 2 mn− (m + 2n− 4) mn

K ⊕ L mn− (m + n) + 2 mn− (m + n− 2) mn

LR 2n 2n−2 + 1 2n

K · L (m− 1)2n−2 + 1 (m− 1)2n−2 + 1 m2n − 2n−1

L∗ 2n−1 2n−2 + 1 2n−1 + 2n−2

Fig. 10. Comparison table between the state complexity of basic operations for non-
returning, suffix-free, and general regular languages

For the reversal and catenation case, we use a three-letter alphabet for the
lower bounds that meet the upper bounds. We conjecture that a ternary alphabet
is necessary. Tight bounds for reversal and catenation in the binary case remain
open. The calculations show that our lower bounds can be exceeded.
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6. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
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