
State Complexity of Inversion Operations

Da-Jung Cho1, Yo-Sub Han1, Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajung,emmous,narame7}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University,

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. The reversal operation is well-studied in literature and the
deterministic (respectively, nondeterministic) state complexity of rever-
sal is known to be 2n (respectively, n). We consider the inversion opera-
tion where some substring of the given string is reversed. Formally, the
inversion of a language L consists of all strings uxRv such that uxv ∈ L.
We show that the nondeterministic state complexity of inversion is in
Θ(n3). We establish that the deterministic state complexity of the in-
version is 2Ω(n·log n), which is strictly worse than the worst case state
complexity of the reversal operation. We also study the state complexity
of different variants of the inversion operation, including prefix-, suffix-,
and pseudo-inversion.

Keywords: State complexity, Inversion operations, Regular languages.

1 Introduction

Questions of descriptional complexity belong to the very foundations of automata
and formal language theory [10, 12, 23, 27]. The state complexity of finite au-
tomata has been studied since the 60’s [13, 16, 17]. Maslov [15] originated the
study of operational state complexity and Yu et al. [27] investigated the state
complexity for basic operations. Later, Yu and his co-authors [7, 8, 20, 21] initi-
ated the study on the state complexity of combined operations such as star-of-
union, star-of-intersection and so on.

In biology, a chromosomal inversion occurs when a segment of a single chro-
mosome breaks and rearranges within itself in reverse order [18]. It is known
that the chromosomal inversion often causes genetic diseases [14]. Informally,
the inversion operation reverses an infix of a given string. This can be viewed as
a generalization of the reversal operation which reverses the whole string. The
inversion of a language L is defined as the union of all inversions of strings in L.
Therefore, the inversion of L always contains the reversal of L since a string is
always an infix of itself.

Many researchers [2, 4–6, 11, 24] have considered the inversion of DNA se-
quences in terms of formal language theory. Searls [22] considered closure proper-
ties of languages under various bio-inspired operations including inversion. Later,

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 102–113, 2014.
c© Springer International Publishing Switzerland 2014

State Complexity of Inversion Operations 103

Yokomori and Kobayashi [26] showed that inversion can be simulated by the set
of primitive operations and languages. Dassow et al. [6] investigated a generative
mechanism based on some operations inspired by mutations in genomes such as
deletion, transposition, duplication and inversion. Daley et al. [4] considered a
hairpin inverse operation, which replaces the hairpin part of a string with the
inversion of the hairpin part. Note that the hairpin inversion operation is a varia-
tion of the inversion operation that reverses substrings of a string. Recently, Cho
et al. [3] defined the pseudo-inversion operation and examined closure proper-
ties and decidability problems regarding the operation. Moreover, several string
matching problems allowing inversions have been studied [2, 24].

Reversal is an “easy” operation for NFAs. The reversal of a regular language
L can be, roughly speaking, recognized by an NFA that is obtained by reversing
the transitions of an NFA for L and, consequently, the nondeterministic state
complexity of the reversal operation is n for NFAs that allow multiple initial
states [9]1. However, a corresponding simple NFA construction does not work
for inversion and here we show that the nondeterministic state complexity of
inversion is Θ(n3). Also we show that the nondeterministic state complexity of
prefix- and suffix-inversion is Θ(n2). Moreover, we establish the nondeterministic
complexity of the pseudo-inversion, which is defined as the reversal of inversion,
and the pseudo-prefix- and pseudo-suffix-inversion operations.

It is known that the deterministic state complexity of the reversal operation
is 2n [19]. The inversion operation is, in some sense, an extension of the rever-
sal operation and using this correspondence it is easy to verify that the state
complexity of inversion is at least exponential. Based on their nondeterminis-
tic state complexity we establish an upper bound 2n

3+2n for the deterministic
state complexity of inversion and an upper bound 2n

2+n for the deterministic
state complexity of prefix- and suffix-inversion. Also using a non-constant al-
phabet (of exponential size) we give a lower bound 2Ω(n·logn) for inversion and
prefix-inversion. This establishes that the deterministic state complexity of these
operations is strictly worse than the deterministic state complexity of ordinary
reversal. For the nondeterministic and deterministic state complexity of pseudo-
inversion we establish exactly the same bounds as for inversion.

There remains a possibility that there could be a more efficient DFA con-
struction for the inversion of a language recognized by a given DFA A than first
constructing an NFA for the inversion of L(A) and then determinizing the NFA.
The precise deterministic state complexity of inversion remains open.

We give the basic notations and definitions in Section 2. We introduce the
inversion and related operations in Section 3 and present the state complexity
results in Section 4 and in Section 5. In Section 6, we conclude the paper.

1 The result stated in [9] is n+ 1 because the NFA model used there allows only one
initial state.

104 D.-J. Cho et al.

2 Preliminaries

We briefly present definitions and notations used throughout the paper. The
reader may refer to the books [23, 25] for more details on language theory.

Let Σ be a finite alphabet and Σ∗ be a set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol λ denotes the null string and Σ+ denotes
Σ∗ \ {λ}. Given a string w = z1z2 · · · zm, zi ∈ Σ, 1 ≤ i ≤ m, we denote the
reversal of w by wR = zmzm−1 · · · z1.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-
tuple A = (Σ,Q,Q0, F, δ) where Σ is a finite alphabet, Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, F ⊆ Q is the set of final states and δ is a
multi-valued transition function from Q×(Σ∪{λ}) into 2Q. By an NFA we mean
a nondeterministic automaton without λ-transitions, that is, A is an NFA if δ
is a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA)
if Q0 is a singleton set and δ is a (total single-valued) function Q × Σ → Q.
It is well known that the λ-NFAs, NFAs and DFAs all recognize the regular
languages [19, 23, 25]. Moreover, the language recognized by a λ-NFA A can be
recognized also by an NFA (without λ-transitions) of the same size as A [25].

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L ⊆
Σ∗ ×Σ∗ defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L].

It is well known that L is regular if and only if the index of ≡L is finite and, in
this case, the number of classes of ≡L is equal to the size of the minimal DFA
for L [19, 23, 25].

The deterministic (respectively, nondeterministic) state complexity of a reg-
ular language L, sc(L) (respectively, nsc(L)) is the size of the minimal DFA
(respectively, the size of a minimal NFA) recognizing L. Thus, sc(L) is equal to
the number of classes of ≡L.

For the nondeterministic state complexity problem, we show a technique called
the fooling set technique that gives a lower bound for the size of NFAs.

Proposition 1 (Fooling set technique [1]). Let L ⊆ Σ∗ be a regular lan-
guage. Suppose that there exists a set P = {(xi, wi) | 1 ≤ i ≤ n} of pairs such
that

(i) xiwi ∈ L for 1 ≤ i ≤ n;
(ii) if i
= j, then xiwj
∈ L or xjwi
∈ L, 1 ≤ i, j ≤ n.

Then, a minimal NFA for L has at least n states.

The set P satisfying the conditions of Proposition 1 is called a fooling set for
the language L.

3 Inversion Operations

We give the formal definition of the inversion as follows:

State Complexity of Inversion Operations 105

Definition 1 (Yokomori and Kobayashi [26]). The inversion of a string w
is defined as the set

INV(w) = {uxRv | w = uxv, u, x, v ∈ Σ∗}.

For instance, given a string w = abcd, we have

INV(w) = {abcd, bacd, cbad, dcba, acbd, abdc, adcb}.

Note that INV(λ) = {λ}. The inversion operation is extended to the languages
in the natural way:

INV(L) =
⋃

w∈L

INV(w).

We define the prefix-inversion that reverses a prefix of a given string and the
suffix-inversion that reverses a suffix of a given string.

Definition 2. For a string w, we define the prefix-inversion of w as

PrefINV(w) = {uRx | w = ux, u, x ∈ Σ∗}.

Definition 3. For a string w, we define the suffix-inversion of w as

SufINV(w) = {uxR | w = ux, u, x ∈ Σ∗}.

See Fig. 1 for examples. Note that the sets PrefINV(L) and SufINV(L) are
always included in the set INV(L).

B CA G F E D H I

(a) Inversion

A B C D E F G H I

F G H I A B C D GE F I HC B A D E

(b) Prefix-inversion (b) Suffix-inversion

Original sequence

Fig. 1. Examples of the inversion operations

As variants of the inversion operations, we consider the pseudo-inversion op-
erations [3] which are defined as the reversal of the inversion operations. Infor-
mally, the pseudo-inversion of a given string is defined as a set of strings that
are obtained by reversing the given string while maintaining a central substring.

Definition 4. For a string w, we define the pseudo-inversion of w as

PI(w) = {vRxuR | w = uxv, u, x, v ∈ Σ∗}.

Furthermore, given a set L of strings, PI(L) =
⋃

w∈L

PI(w).

106 D.-J. Cho et al.

We call the operation the pseudo-inversion in the sense that the inversion
is not properly performed. Note that PI(L) = INV(L)

R
. We also define simi-

lar operations called the prefix-pseudo-inversion and suffix-pseudo-inversion as
follows:

Definition 5. We define the prefix-pseudo-inversion of a string w as

PrefPI(w) = {xuR | w = ux, u, x ∈ Σ∗}.
Definition 6. We define the suffix-pseudo-inversion of a string w as

SufPI(w) = {xRu | w = ux, u, x ∈ Σ∗}.
See Fig. 2 for examples of the pseudo-inversion operations.

A B C D E F G H I

A B C D E F G H I A B C D E F G H I

I H D E F G C B A

I H G A B C D E F

B D F H

A B C D E F G H I B D F H

H D F B

H B D F

B D F H

A B C D E F G H I B D F H

H D F B

H B D FD E F G H ID E F G HD E F G H C B AC B

(a) Pseudo-inversion

(b) Prefix-pseudo-inversion (c) Suffix-pseudo-inversion

Fig. 2. Examples of the pseudo-inversion operations

Lastly, we consider one more non-trivial inversion operation called the non-
overlapping-inversion. The non-overlapping-inversion operation allows any char-
acter in the string to be involved in at most one inversion operation.

Definition 7. For a string w, we define the non-overlapping-inversion of w as

NonOINV(w) =

{w′
1w

′
2 · · ·w′

n | w = w1w2 · · ·wn, wi ∈ Σ∗, w′
i = wi or w′

i = wR
i for 1 ≤ i ≤ n}.

4 Nondeterministic State Complexity

We establish upper and lower bounds for the nondeterministic state complexity
of inversion, prefix-inversion and suffix-inversion.We begin with the upper bound
construction of an NFA for INV(L) when we are given an NFA for a regular
language L.

Lemma 1. Let L be a regular language recognized by an NFA with n states.
Then, INV(L) is recognized by an NFA with n3 + 2n states.

State Complexity of Inversion Operations 107

Proof. Let A = (Σ,Q,Q0, FA, δ) be an NFA for L. We define a λ-NFA B =
(Σ,P, P0, FB, γ) for the language INV(L) where

P = Q3 ∪Q ∪Q,

Q = {q | q ∈ Q}, P0 = Q0, FB = FA ∪ FA and the transition function γ :
P × (Σ ∪ {λ}) → 2P is defined as follows:

(i) For all q, p ∈ Q and a ∈ Σ, if p ∈ δ(q, a), then p ∈ γ(q, a) and p ∈ γ(q, a).
(ii) For all q, p ∈ Q, (p, q, q) ∈ γ(p, λ).
(iii) For all q, p, r1, r2 ∈ Q and a ∈ Σ, if r2 ∈ δ(r1, a), then (p, r1, q) ∈

γ((p, r2, q), a).
(iv) For all q, p ∈ Q, q ∈ γ((p, p, q), λ).

The automaton B operates as follows. The transitions in (i) simulate the
original computation of A. For any state p ∈ Q, we choose a state q nondeter-
ministically using a λ-transition, and we reach a state (p, q, q) according to the
transitions in (ii). The transitions in (iii) allow B to simulate the computation
of A in reverse. Note that the first and third elements in Q3 remember the start
and ending positions of the reversed part, while the second element simulatTes
the computation of A in reverse. After B reaches the state (p, p, q), it can make
a λ-transition to the state q, and B continues the original computation of A
following the transition (i). Fig. 3 shows the computation of B as an illustrative
example. As a consequence of the transitions, B recognizes a string uxRv if A
has an accepting computation for uxv. ��

p1 p2 p3 p4FA A

λ-NFA B

p1 p2 p3 p4

u x v

(p2, p3, p3)

· · · · · · · · ·

· · · · · · · · ·

(p2, p2, p3)

λ

xR

p1 p2 p3 p4
u x v· · · · · · · · ·

u x v

· · ·
λ

Fig. 3. An illustrative example of constructing an NFA B recogninzing INV(L(A)).
Note that if A accepts a string uxv, then B accepts uxRv ∈ INV(L(A)).

We present the following lower bound using the fooling set technique.

Lemma 2. For every n0 ∈ N, there exists an NFA A = (Q,Σ,Q0, FA, δ) with
n ≥ n0 states over an alphabet of size 4 such that nsc(INV(L(A))) ≥ 1

8n
3−f(n),

where f(n) ∈ O(n2).

108 D.-J. Cho et al.

Proof. Let m ≥ 1 be an integer and consider the language L = {#am$,#bm$}∗
over the alphabet Σ = {a, b,#, $}. We construct a fooling set P for the language
INV(L(A)).

Take the set of pairs P to be the set

P = {(#aibj#$bk, bm−k#$am−ibm−j$) | 1 ≤ i, j, k ≤ m}.
Consider

(x,w) = (#aibj#$bk, bm−k#$am−ibm−j$) ∈ P.

Now the string xw is in INV(L) because we can write

xw = #ai(am−i$#bm$#bj)Rbm−j$.

On the other hand, consider another pair

(x′, w′) = (#ai
′
bj

′
#$bk

′
, bm−k′

#$am−i′bm−j′$) ∈ P,

where (i, j, k)
= (i′, j′, k′). Now

x · w′ = #aibj#$bk · bm−k′
#$am−i′bm−j′$.

Now if xw′ ∈ INV(L) it must be obtained from a string of L by inverting one
substring. Since in strings of L the markers # and $ alternate (when we disregard
symbols a and b), the only way we could obtain a string of L from x·w′ is to invert
a substring z that begins between the first two markers # and ends between the
last two markers $. If k
= k′, the resulting string is not in L. If k = k′, necessarily
we have i
= i′ or j
= j′ which means again that inverting z cannot produce a
string in L.

Hence there are at least |P | = m3 states for any NFA accepting INV(L)
by Proposition 1. It is easy to verify that n = 2m + 2 states are sufficient for
an NFA that accepts L. Therefore, we have the lower bound 1

8n
3−f(n) for the

nondeterministic state complexity of INV(L), where f(n) ∈ O(n2). ��
As a consequence of Lemma 1 and Lemma 2, we have:

Theorem 1. The nondeterministic state complexity of inversion is in Θ(n3).

Now we consider the upper bound construction for the prefix-inversion which
is a restricted variant of the general inversion in the sense that only the prefixes
of the given string can be reversed.

Lemma 3. Let L be a regular language recognized by an NFA with n states.
Then, PrefINV(L) is recognized by an NFA with n2 + n states.

Proof. Let A = (Σ,Q,Q0, FA, δ) be an NFA for L. We define a λ-NFA B =
(Σ,P, P0, FB, γ) for the language PrefINV(L). We choose

P = Q2 ∪Q,

where P0 = {(q, q) | q ∈ Q}, FB = FA and the transition function γ : P × (Σ ∪
{λ}) → 2P is defined as follows:

State Complexity of Inversion Operations 109

(i) For all p, q ∈ Q and a ∈ Σ, if p ∈ δ(q, a), then p ∈ γ(q, a).
(ii) For all p, r1, r2 ∈ Q and a ∈ Σ, if r2 ∈ δ(r1, a), then (p, r1) ∈ γ((p, r2), a).
(iii) For all q0 ∈ Q0 and r ∈ Q, r ∈ γ((r, q0), λ).

The simulation begins in an arbitrary state (q, q), q ∈ Q. The transitions (ii)
simulate a computation of A in reverse in the second component of the state,
while the first component of the state pair remembers the state where B starts
reverse computation of A. After B reaches a state (q, q0), where q0 ∈ Q0, it can
make a λ-transition to state q using the rule (iii). The transitions (i) allow B
to simulate the original computation of A from q to a final state. Therefore, B
accepts exactly all strings uRx where A has an accepting computation for ux.

��
We also establish that the nondeterministic state complexity of the suffix-
inversion coincides with that of the prefix-inversion:

Lemma 4. Let L be a regular language recognized by an NFA with n states.
Then, SufINV(L) is recognized by an NFA with n2 + n states.

Next we give the following lower bound for the nondeterministic state com-
plexity of the prefix- and suffix-inversion. Using an analogous fooling set con-
struction as in the proof of Lemma 2 we can easily get an Ω(n2) lower bound
for the nondeterministic state complexity of suffix-inversion.

Lemma 5. For every n0 ∈ N, there exists an NFA A with n ≥ n0 states over
an alphabet Σ of size 4 such that nsc(PrefINV(L(A))) ≥ 1

4n
2 − f(n), where

f(n) ∈ O(n).

We have the following statement based on Lemma 3, Lemma 4 and Lemma 5.

Theorem 2. The nondeterministic state complexity of prefix- and suffix-
inversion is in Θ(n2).

The following Observation 3 is now immediate since the state complexity of
the reversal operation is n.

Observation 3. The following statements hold:

(i) nsc(SufINV(L)) = nsc(PrefPI(L)),
(ii) nsc(PrefINV(L)) = nsc(SufPI(L)), and
(iii) nsc(INV(L)) = nsc(PI(L)).

Based on Observation 3, we establish the following results.

Corollary 1. The nondeterministic state complexity of prefix- and suffix-pseudo-
inversion is in Θ(n2).

Corollary 2. The nondeterministic state complexity of pseudo-inversion is in
Θ(n3).

110 D.-J. Cho et al.

Now we discuss the nondeterministic state complexity of non-overlapping-
inversion. Interestingly, we have slightly smaller upper bound for the non-
overlapping-inversion than the upper bound for the general inversion.

Lemma 6. Let L be a regular language recognized by an NFA with n states.
Then, NonOINV(L) is recognized by an NFA with n3+n states.

Proof. Let a λ-NFA B be an automaton for NonOINV(L). The computation of
the automaton B is similar to the computation in the proof of Lemma 1. But, the
set of states Q and the transitions in (iv) of the proof of Lemma 1 are useless for
the language NonOINV(L) since the non-overlapping-inversion NonOINV allows
more than one inversion without overlap. Note that the automaton B can make
a λ-transition to the state q if B reaches the state (p, p, q). ��

5 Deterministic State Complexity

We first consider the deterministic state complexity of PrefINV(L). Recall that
if A is an NFA with n states, Lemma 3 gives a construction of an NFA with
n2 + n states for the language PrefINV(L(A)). This implies an upper bound for

the deterministic state complexity 2n
2+n of prefix-inversion. Next we present a

lower bound 2Ω(n·logn) using an alphabet of size 5.

Lemma 7. For n ∈ N there exists an alphabet of size 5 and a DFA A with 2n+3
states such that the minimal DFA for PrefINV(L(A)) has size at least 2n·logn.

Proof. We define Ln ⊆ Σ3
n by setting

Ln = {1j · [1i0 , . . . , 1im] · 1ij | j < n,m ≥ j}.
Note that all strings of Ln have length exactly three.

Consider a DFA A = (Σn, Q, q0, {qacc}, δ), where
Q = {q0, q1, . . . , qn, p1, . . . , pn} ∪ {qacc, qdead},

and the transitions of δ are defined by setting

(i) δ(q0, i) = qi, i ∈ [n],
(ii) δ(qi, f) = pf(i), i ∈ [n], f ∈ funcn,
(iii) δ(pi, i) = qacc, i ∈ [n],
(iv) all transitions not defined above go to the dead state qdead.

It is clear that L(A) = Ln. We show that any distinct alphabet symbols
f1, f2 ∈ funcn belong to distinct classes of ≡PrefINV(Ln) which gives a lower
bound for the size of a minimal DFA for PrefINV(Ln).

If f1
= f2, there exists i ∈ [n] such that f1(i)
= f2(i). Now i · f1 · f1(i) ∈ Ln

and hence f1 · i · f1(i) ∈ PrefINV(Ln).
On the other hand, since all words of Ln have length three and have an element

of funcn in the middle position, the only way f2 ·i ·f1(i) could be in PrefINV(Ln)

State Complexity of Inversion Operations 111

is that i ·f2 would be the prefix of a word of Ln that has been reversed. However,
since f2(i)
= f1(i), i · f2 · f1(i)
∈ Ln and hence f2 · i · f1(i)
∈ PrefINV(Ln) and,
consequently, f1
≡PrefINV(Ln) f2.

Thus, ≡PrefINV(Ln) has at least

|funcn| = nn = 2n·logn

equivalence classes. ��
Note that the deterministic state complexity of the prefix-inversion is strictly
worse than the deterministic state complexity of reversal since the latter is known
to be 2n. Moreover, it is easily verified that the same lower bound as in the proof
of Lemma 7 applies to the inversion and non-overlapping-inversion operations.

Lemma 8. A lower bound for the deterministic state complexity of inversion
and of non-overlapping-inversion is 2Ω(n·logn).

As a consequence of Lemma 1,3 and 7 we have:

Theorem 4. Let L be a regular language having a DFA with n states. Then
sc(PrefINV(L)) ≤ 2n

2+n. There exist languages L(n) defined over an alphabet
depending on n such that sc(L(n)) ∈ O(n), sc(PrefINV(L(n))) ≥ 2n·logn.

Theorem 5. Let L be a regular language having a DFA with n states. Then
sc(INV(L)) ≤ 2n

3+2n. There exist languages L(n) defined over an alphabet de-
pending on n such that sc(L(n)) ∈ O(n) and sc(INV(L(n))) ≥ 2n·logn.

Theorem 5 leaves a larger gap between the state complexity upper and lower
bounds for inversion than was the case for prefix-inversion.

The method of Lemma 7 is based on the idea that, in order to force the DFA
to remember more information, we want to move the function symbols to the
beginning of the string, and this construction does not seem to work for suffix-
inversion. For the state complexity of suffix-inversion, the best immediate lower
bound is 2n. The same situation applies for suffix-pseudo-inversion.

Lastly, we observe that similar state complexity lower bounds apply for pseudo-
inversion and prefix-pseudo-inversion. The below corollary again follows from the
proof of Lemma 7 in the same way as Lemma 8.

Lemma 9. A lower bound for the deterministic state complexity of pseudo-
inversion and prefix-pseudo-inversion is 2Ω(n·logn).

6 Conclusion

We have considered the (non)deterministic state complexity of inversion opera-
tions that are motivated by evolutionary operations on DNA sequences. While
the reversal operation completely reverses the whole string, the inversion op-
eration reverses any infix of a string. Initially, one might think that the state

112 D.-J. Cho et al.

complexity of inversion operations should be similar to that of the reversal op-
eration. However, both the nondeterministic and deterministic state complexity
of the inversion have turned out to be strictly worse than the known bounds
for the reversal operation. The prefix- and suffix-inversions which are simplified
variants of inversion were also considered. We have shown that the nondeter-
ministic state complexity of prefix- and suffix-inversion is Θ(n2) while that of
the inversion operation is Θ(n3).

We have also obtained a deterministic state complexity lower bound 2Ω(n·logn)

for inversion and prefix-inversion operations using an exponential-size alphabet.
This is strictly worse than the deterministic state complexity of reversal, how-
ever, it does not match the corresponding upper bounds. It is possible that given
a DFA A for L, there is a more efficient construction of a DFA for INV(L) than
first constructing an NFA and then determinizing it. However, when working on
this question it seems that a DFA for INV(L) needs to remember sets of triples of
states of A (and similarly a DFA for the prefix-inversion or suffix-inversion needs
to remember sets of pairs of states of A). The main open question is to determine
the precise deterministic state complexity for inversion and its variants.

References

1. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Information Processing Letters 43(4), 185–190 (1992)

2. Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-
overlapping inversions. Theoretical Computer Science 483, 85–95 (2013)

3. Cho, D.-J., Han, Y.-S., Kang, S.-D., Kim, H., Ko, S.-K., Salomaa, K.: Pseudo-
inversion on formal languages. In: Proceeding of the 13th International Conference
on Unconventional and Natural Computation (to appear)

4. Daley, M., Ibarra, O.H., Kari, L.: Closure and decidability properties of some
language classes with respect to ciliate bio-operations. Theoretical Computer Sci-
ence 306(1-3), 19–38 (2003)

5. Dassow, J., Mitrana, V.: Operations and language generating devices suggested by
the genome evolution. Theoretical Computer Science 270(12), 701–738 (2002)

6. Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary grammars and
the structural language of nucleic acids. Biosystems 43(3), 169–177 (1997)

7. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined
operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

8. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89
(2008)

9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. International Journal of Foundations of Computer Science 14(6), 1087–
1102 (2003)

10. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata – a survey. Information and Computation 209, 456–470 (2011)

11. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for the inversion
distance between two chromosomes. In: Apostolico, A., Crochemore, M., Galil, Z.,
Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg
(1993)

State Complexity of Inversion Operations 113

12. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bulletin of the EATCS 111, 70–86 (2013)

13. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9,
328–335 (1963)

14. Lupski, J.R.: Genomic disorders: structural features of the genome can lead to
DNA rearrangements and human disease traits. Trends in Genetics 14(10), 417–
422 (1998)

15. Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathe-
matics Doklady 11, 1373–1375 (1970)

16. Meyer, A., Fisher, M.: Economy of description by automata, grammars and for-
mal systems. In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory, pp. 188–191 (1971)

17. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic and two-way finite automata. IEEE Transactions
on Computers C-20, 1211–1214 (1971)

18. Painter, T.S.: A New Method for the Study of Chromosome Rearrangements and
the Plotting of Chromosome Maps. Science 78, 585–586 (1933)

19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Beyond Words,
vol. 3. Springer-Verlag New York, Inc. (1997)

20. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oretical Computer Science 383(2-3), 140–152 (2007)

21. Salomaa, K., Yu, S.: On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science 18, 683–698
(2007)

22. Searls, D.B.: The Computational Linguistics of Biological Sequences. In: Artificial
Intelligence and Molecular Biology, pp. 47–120 (1993)

23. Shallit, J.: A Second Course in Formal Languages and Automata Theory, 1st edn.
Cambridge University Press, New York (2008)

24. Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping in-
versions in O(n3)-time. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS
(LNBI), vol. 4175, pp. 186–196. Springer, Heidelberg (2006)

25. Wood, D.: Theory of Computation. Harper & Row (1986)
26. Yokomori, T., Kobayashi, S.: DNA evolutionary linguistics and RNA structure

modeling: A computational approach. In: Proceedings of INBS 1995, pp. 38–45.
IEEE Computer Society (1995)

27. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

	State Complexity of Inversion Operations
	1 Introduction
	2 Preliminaries
	3 Inversion Operations
	4 Nondeterministic State Complexity
	5 Deterministic State Complexity
	6 Conclusion
	References

