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Abstract. We investigate the state complexity of union and intersec-
tion for finite languages. Note that the problem of obtaining the tight
bounds for both operations was open. We compute the upper bounds
based on the structural properties of minimal deterministic finite-state
automata (DFAs) for finite languages. Then, we show that the upper
bounds are tight if we have a variable sized alphabet that can depend
on the size of input DFAs. In addition, we prove that the upper bounds
are unreachable for any fixed sized alphabet.

1 Introduction

Regular languages are one of the most important and well-studied topics in
computer science. They are often used in various practical applications such as
vi, emacs and Perl. Furthermore, researchers developed a number of software
libraries for manipulating formal language objects with the emphasis on regular
languages; examples are Grail [12] and Vaucanson [2].

The applications and implementations of regular languages motivate the study
of the descriptional complexity of regular languages. The descriptional complex-
ity of regular languages can be defined in different ways since regular languages
can be defined in different ways. For example, a regular language L is accepted
by a deterministic finite-state automaton (DFA) or a nondeterministic finite-
state automaton (NFA). L is also described by a regular expression. Yu and
his co-authors [1,13,14] regarded the number of states in the minimal DFA for
L as the complexity of L and studied the state complexity of basic operations
on regular languages and finite languages. Holzer and Kutrib [5,6] investigated
the state complexity of NFAs. Recently, Ellul et al. [3] examined the size of the
shortest regular expression for a given regular language. There are many other
results on state complexity with different viewpoints [4,8,9,10,11]. We focus on
the measure of Yu [13]: The state complexity of a regular language L is the num-
ber of states of the minimal DFA for L. The state complexity of an operation
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on regular languages is a function that associates to the state complexities of
the operand languages the worst-case state complexity of the language resulting
from the operation. For instance, we say that the state complexity of the inter-
section of L(A) and L(B) is mn, where A and B are minimal DFAs and the
numbers of states in A and B are m and n, respectively. It means that mn is
the worst-case number of states of the minimal DFA for L(A) ∩ L(B).

Yu et al. [14] gave the first formal study of state complexity of regular language
operations. Later, Câmpeanu et al. [1] investigated the state complexity of finite
languages. Let A and B be minimal DFAs for two regular languages L1 and L2,
and m and n be the numbers of states for A and B, respectively.

operation finite languages regular languages

L1 ∪ L2 O(mn) mn

L1 ∩ L2 O(mn) mn

Σ∗ \ L1 m m

L1 · L2 (m − n + 3)2n−2 − 1� (2m − 1)2n−1

L∗
1 2m−3 + 2m−4, for m ≥ 4� 2m−1 + 2m−2

3 · 2p−1 − 1 if m = 2p
LR

1 2p − 1 if m = 2p − 1
2m

Fig. 1. State complexity of basic operations on finite languages and regular lan-
guages [1,14]. Note that � refers to results using a two-character alphabet.

Fig. 1 shows the state complexity of basic operations on finite languages and
regular languages. All complexity bounds, except for union and intersection of
finite languages, in Fig. 1 are tight; namely, there exist worst-case examples that
reach the given bounds. Clearly, mn is an upper bound since finite languages
are a proper subfamily of regular languages. We also note that Yu [13] briefly
mentioned a rough upper bound mn−(m+n−2) for both operations. Therefore,
it is natural to investigate the tight bounds for union and intersection of finite
languages.

We define some basic notions in Section 2. In Section 3, we obtain an upper
bound mn − (m + n) for the union of two finite languages L1 and L2 based on
the structural properties, where the sizes of L1 and L2 are m and n. Then, we
prove that the bound is tight if the alphabet size can depend on m and n. We
also examine the intersection of L1 and L2 in Section 4 and obtain an upper
bound mn − 3(m + n) + 12. We again demonstrate that the upper bound is
reachable using a variable sized alphabet. We conclude the paper in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over
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Σ is any subset of Σ∗. The symbol ∅ denotes the empty language and the
symbol λ denotes the null string. A finite-state automaton (FA) A is specified
by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q is a transition function, s ∈ Q is the start state and F ⊆ Q
is a set of final states. Given a DFA A, we assume that A is complete; namely,
each state has |Σ| out-transitions and, therefore, A may have a sink (or dead)
state. Since all sink states are always equivalent, we can assume that A has a
unique sink state. Let |Q| be the number of states in Q and |δ| be the number
of transitions in δ. For a transition δ(p, a) = q in A, we say that p has an out-
transition and q has an in-transition. Furthermore, p is a source state of q and q
is a target state of p. A string x over Σ is accepted by A if there is a labeled path
from s to a final state in F such that this path spells out the string x. Thus, the
language L(A) of an FA A is the set of all strings that are spelled out by paths
from s to a final state in F . We say that A is non-returning if the start state of
A does not have any in-transitions and A is non-exiting if all out-transitions of
any final state in A go to the sink state.

Given an FA A = (Q, Σ, δ, s, F ), we define the right language Lq of a state q to
be the set of strings that are spelled out by some path from q to a final state in
A; namely, Lq is the language accepted by the FA obtained from A by changing
the start state to q. We say that two states p and q are equivalent if Lp = Lq.

3 Union of Finite Languages

Given two minimal DFAs A and B for non-empty finite languages L1 and L2,
we can in the standard way construct a DFA for the union of L(A) and L(B)
based on the Cartesian product of states.

Proposition 1. Given two DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2,
s2, F2), let M∪ = (Q1 × Q2, Σ, δ, (s1, s2), F ), where for all p ∈ Q1 and q ∈ Q2
and a ∈ Σ, δ((p, q), a) = (δ(p, a), δ(q, a)) and F = {(p, f2) | p ∈ Q1 and f2 ∈
F2} ∪ {(f1, q) | f1 ∈ F1 and q ∈ Q2}. Then, L(M∪) = L(A) ∪ L(B) and M∪ is
deterministic.

A crucial observation is that both A and B must be non-returning since L1 and
L2 are finite. Therefore, as Yu [13] observed, if we apply the Cartesian product
for union, all states (s1, q) for q �= s2 and all states (p, s2) for p �= s1 are not reach-
able from the start state (s1, s2) in M∪. Thus, we can reduce (m+n)− 2 states.

Another observation is that A must have a final state f such that all of f ’s
out-transitions go to the sink state. Consider the right language of a state (i, j)
in M∪.

Proposition 2 (Han et al. [4]). For a state (i, j) in M∪, the right lan-
guage L(i,j) of (i, j) is the union of Li in A and Lj in B.

Let d1 and d2 be the sink states of A and B and f1 and f2 be final states of A and
B such that d1 is the only target state of f1 in A and d2 is the only target state
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of f2 in B, respectively. Then, by Proposition 2, (f1, f2), (d1, f2) and (f1, d2) are
equivalent and, thus, can be merged into a single state. It shows that we can
reduce two more states from M∪. Therefore, we obtain the following result.

Lemma 1. Given two minimal DFAs A and B for finite languages, mn−(m+n)
states are sufficient for the union of L(A) and L(B), where m = |A| and n = |B|.

We next examine whether or not we can reach the upper bound of Lemma 1.

Lemma 2. The upper bound mn − (m + n) for union cannot be reached with a
fixed alphabet when m and n are arbitrarily large.

Lemma 2 shows that we cannot reach the upper bound in Lemma 1 if |Σ| is
relatively small compared with the number states of the given DFAs. Then, the
next question is what if |Σ| is large enough?

Lemma 3. The upper bound mn − (m + n) for union is reachable if the size of
the alphabet can depend on m and n.

Proof. Let m and n be positive numbers (namely, m, n ∈ N) and

Σ = {b, c} ∪ {ai,j | 1 ≤ i ≤ m − 2, 1 ≤ j ≤ n − 2 and (i, j) �= (m − 2, n − 2)}.

Let A = (Q1, Σ, δ1, p0, {pm−2}), where Q1 = {p0, p1, . . . , pm−1} and δ1 is
defined as follows:

– δ1(pi, b) = pi+1, for 0 ≤ i ≤ m − 2.
– δ1(p0, ai,j) = pi, for 1 ≤ i ≤ m − 2 and 1 ≤ j ≤ n − 2, (i, j) �= (m − 2, n − 2).

For all other cases in δ1 that are not covered above, the target state is the sink
state pm−1.

Next, let B = (Q2, Σ, δ2, q0, {qn−2}), where Q2 = {q0, q1, . . . , qn−1} and δ2 is
defined as follows:

– δ2(qi, c) = qi+1, for 0 ≤ i ≤ n − 2.
– δ2(q0, ai,j) = qj , for 1 ≤ j ≤ n − 2 and 1 ≤ i ≤ m − 2, (i, j) �= (m − 2, n− 2).

Again, for all other cases in δ2 that are not covered above, the target state is
the sink state qn−1. Fig. 2 gives an example of such DFAs A and B.

Let L = L(A1) ∪ L(A2). We claim that the minimal (complete) DFA for L
needs mn − (m + n) states. To prove the claim, it is sufficient to show that
there exists a set R consisting of mn − (m + n) strings over Σ that are pairwise
inequivalent modulo the right invariant congruence of L, ≡L.

We show that R = R1 ∪ R2 ∪ R3, where

R1 = {bi | 0 ≤ i ≤ m − 1}.
R2 = {cj | 1 ≤ j ≤ n − 3}. (Note that R2 does not include strings c0, cn−2 and

cn−1.)
R3 = {ai,j | 1 ≤ i ≤ m − 2 and 1 ≤ j ≤ n − 2 and (i, j) �= (m − 2, n − 2)}.

Any string bi from R1 cannot be equivalent with a string cj from R2 since
cj ·cn−2−j ∈ L but bi ·cn−2−j /∈ L. Note that j ≥ 1 and hence also b0 ·cn−2−j /∈ L.
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0 1 2 3 4 5
b, a11, a12, a13 b

a21, a22, a23

a31, a32, a33

a41, a42

0 1 2 3 4
c, a11, a21, a31, a41 c

a12, a22, a32, a42

a13, a23, a33

b b b

c c

Fig. 2. An example of two minimal DFAs for finite languages whose sizes are 6 and
5, respectively, where state 5 above and state 4 below are sink states. Except for the
b-transition to state 5 in A and the c-transition to state 4 in B, we omit all other
in-transitions of the sink state.

Next consider a string bi from R1 and a string ak,j from R3. There are four
cases to consider.

1. k �= i and 0 ≤ i ≤ m − 3: It means that bi and ak,j are inequivalent since
bi · bm−2−i ∈ L but ak,j · bm−2−i /∈ L.

2. k �= i and i = m − 2: It implies that k < m − 2 and, thus, bi and ak,j are
inequivalent since ak,j · bm−2−k ∈ L but bi · bm−2−k /∈ L.

3. k �= i and i = m − 1: The path for bi = bm−1 must end at the sink state
for the minimal DFA for L since bm−1 /∈ L. On the other hand, ak,j can be
completed to be a string of L by appending zero or more symbols c.

4. k = i: Now we have strings bi and ai,j .
(a) j < n − 2: We note that ai,j · cn−2−j ∈ L but bicn−2−j /∈ L since no

string of L can have both b’s and c’s. Note that k = i implies that i ≥ 1.
(b) j = n − 2: Since j = n − 2, i < m − 2 by the definition of R3. Now

bi · λ /∈ L but ai,j = ai,n−2 · λ ∈ L(B) ⊆ L.
Therefore, bi and ai,j are inequivalent.

Symmetrically, we see that any string from R2 cannot be equivalent with a
string from R3. This case is, in fact, simpler than the previous case since R2 is
more restrictive than R1.

Finally we need to show that all strings from R1 (respectively, from R2 and
from R3) are pairwise inequivalent with each other.

1. R1: By appending a suitable number of b’s, we can always distinguish two
distinct strings from R1.

2. R2: By appending a suitable number of c’s, we can always distinguish two
distinct strings from R2.

3. R3: Consider two distinct strings ai,j and ax,y from R3. Without loss of
generality, we assume that i < x. The other possibility, where j and y differ,
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is completely symmetric. Since ai,j · bm−2−i ∈ L and ax,y · bm−2−i �∈ L, ai,j

and ax,y are inequivalent. Note that m−2−i > 0 and, thus, the inequivalence
holds even in the case when y = n − 2.

This concludes the proof. �
In the construction of R = R1 ∪R2 ∪R3 for Lemma 3, the size of Σ that we use
is mn − 2m − 2n + 5. By using a more complicated construction, we might be
able to reduce the size of Σ. On the other hand, we already know from Lemma 2
that |Σ| has to depend on m and n.

We establish the following statement from Lemmas 1 and 3.

Theorem 1. Given two minimal DFAs A and B for finite languages, mn−(m+
n) states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∪ L(B), where m = |A| and n = |B|.
Lemma 2 shows that the upper bound in Lemma 1 is unreachable if |Σ| is
fixed and m and n are arbitrarily large whereas Lemma 3 shows that the upper
bound is reachable if |Σ| depends on m and n. These results naturally lead us to
examine the state complexity of union with a fixed sized alphabet. For easiness of
presentation, we first give the result for a four character alphabet and afterward
explain how the construction can be modified for a binary alphabet.

Lemma 4. Let Σ be an alphabet with four characters. There exists a constant
c such that the following holds for infinitely many m, n ≥ 1, where min{m, n}
is unbounded. There exist DFAs A and B, with m and n states respectively,
that recognize finite languages over Σ such that the minimal DFA for the union
L(A) ∪ L(B) requires c(min{m, n})2 states.

The same result holds for a binary alphabet.

Proof. Let Σ = {a, b, c, d}. We introduce some new notations for the proof. Given
an even length string w ∈ Σ∗, odd(w) denotes the subsequence of characters that
occur in odd positions in w and, thus, the length of odd(w) is half the length of
w. For example, if w = adacbcbc, then odd(w) = aabb. Similarly, even(w) denotes
the subsequence of characters that occur in even positions in w. With the same
example above, even(w) = dccc.

Let s ≥ 1 be arbitrary and r = �log s�. We define the finite language

L1 = {w1w2 | |w1| = 2r, w2 = odd(w1) ∈ {a, b}∗, even(w1) ∈ {c, d}∗}.

The language L1 can be recognized by a DFA A with at most 10s states. For
reading a prefix of length 2r of an input string, the start state of A has two
out-transitions with labels a and b and the two corresponding target states are
different. Then, each target state has two out-transitions with labels c and d
where the target states are the same. This repeats in A until we finish reading
the prefix of length 2r. All other transitions go to the sink state. Fig. 3 illustrates
the construction of A with r = 3.

The computations of A, which do not go to the sink state, on inputs of
length 2r form a tree-like structure that branches into 2r different states. Each
of the 2r states represents a unique string odd(u) ∈ {a, b}∗, where u is the (prefix
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a

b

c, d

c, d

a

a

b

b

c, d

c, d

c, d

c, d

a

b

a

b

a

b

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

expanding tree merging tree

c, d

c, d

c, d

c, d

c, d

c, d

c, d

c, d

Fig. 3. A DFA A that recognizes L1 when r = 3. We omit the sink state and its
in-transitions.

of the) input of length 2r. Then, the computation from each of these 2r states
verifies whether or not the remaining suffix is identical to the string odd(u). This
can be accomplished using a tree that merges all the computations into a single
final state. (See the right part of Fig. 3 for an example.) From each state, there
is only one out-transition (either with symbol a or b), if we ignore transitions
into the sink state. (The structure looks like a tree when we ignore transitions
into the sink state.)

The computations ofA on strings of length 2rbranch into 2r states.The first “ex-
panding” tree (for instance, the left part of Fig. 3) uses less than 4 ·2r < 8s states1

since we repeat each level with the c, d transitions in the tree and s ≤ 2r < 2s.
Finally, consider the number of states in the “merging” tree. (For example,

we rotate the right part of Fig. 3.) Similarly, the merging tree has 2r states and,
therefore, the tree needs at most 2 ·2r < 4s states. However, we observe that the
the last 2r states of the expanding tree is the same state to the last 2r states of
the merging tree in A. Therefore, we only need 2s states for the merging tree.

The total number of states in A is less than 10s. (1)

Symmetrically, we define

L2 = {w1w2 | |w1| = 2r, odd(w1) ∈ {a, b}∗, w2 = even(w1) ∈ {c, d}∗}.

The language L2 consists of strings uv, where |u| = 2r, odd characters of u
are in {a, b}, even characters of u are in {c, d} and even(u) coincides with v.
Using an argument similar to that for equation (1), we establish that

1 Note that a balanced tree with 2r leaves has less than 2 · 2r nodes.
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L2 can be recognized by a DFA with less than 10s states. (2)

Now let L = L1 ∪ L2. Let u1 and u2 be distinct strings of length 2r such that
odd(ui) ∈ {a, b}∗ and even(ui) ∈ {c, d}∗ for i = 1, 2.

If odd(u1) �= odd(u2), then u1 ·odd(u1) ∈ L1 ⊆ L but u2 ·odd(u1) /∈ L. Hence,
u1 and u2 are not equivalent modulo the right invariant congruence of L. Simi-
larly, if even(u1) �= even(u2), then, u1 · even(u1) ∈ L2 ⊆ L but u2 · even(u1) �∈ L.

The above implies that the right invariant congruence of L has at least
2r ·2r ≥ s2 different classes. Therefore, if m = n = 10s is the size of the minimal
DFAs for the finite languages L1 and L2, then from equations (1) and (2) we
know that the minimal DFA for L = L1 ∪ L2 needs at least

1
100

n2 states. (3)

Note that |Σ| = 4. The languages L1 and L2 can be straightforwardly en-
coded over a binary alphabet with the only change that the constant 1

100 in
equation (3) would become smaller. �

4 Intersection of Finite Languages

We examine the state complexity of intersection of finite languages. Our ap-
proach is again based on the structural properties of minimal DFAs of finite
languages. We start from the Cartesian product of states for the intersection of
two DFAs.

Proposition 3 (Hopcroft and Ullman [7]). Given two DFAs A = (Q1, Σ, δ1,
s1, F1) and B = (Q2, Σ, δ2, s2, F2), let M∩ = (Q1 × Q2, Σ, δ, (s1, s2), F1 × F2),
where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ1(p, a), δ2(q, a)).

Then, L(M∩) = L(A) ∩ L(B).

Let M∩ denote the Cartesian product of states. Let m and n denote the sink
states of A and B and m−1 and n−1 denote the final states whose target states
are always the sink states of A and B, respectively. If we regard M∩ as a m ×
n matrix, then all states in the first row and in the first column are unreachable
from (1, 1) since A and B are non-returning and, thus, these states are useless in
M∩. Moreover, by the construction, all remaining states in the last row and in the
last column are equivalent to the sink state and, therefore, can be merged. Let us
examine the remaining states in the second-to-last row and in the second-to-last
column except for (m − 1, n − 1).

Lemma 5. A state (i, n − 1) in the second-to-last column, for 1 ≤ i ≤ m − 1,
is either

equivalent to (m − 1, n − 1) if state i is a final state in A or
equivalent to (m, n) if state i is not a final state in A.
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We can obtain a similar statement for the states in the second-to-last row in M∩.
Therefore, all the remaining states at the second-to-last row and at the second-
to-last column except for (n−1, m−1) can be merged with either (n−1, m−1)
or (n, m). Thus, the number of remaining states is

mn − {(m − 1) + (n − 1)} − {(m − 2) + (n − 2)} − {(m − 3) + (n − 3)}

= mn − 3(m + n) + 12,

where {(m − 1) + (n − 1)} is from the first row and the first column, {(m − 2)+
(n−2)} is from the last row and the last column and {(m−3)+(n−3)} is from
the second-to-last row and the second-to-last column. We establish the following
lemma from the calculation.

Lemma 6. Given two minimal DFAs A and B for finite languages, mn−3(m+
n)+12 states are sufficient for the intersection of L(A) and L(B), where m = |A|
and n = |B|.

We now show that mn − 3(m + n) + 12 states are necessary and, therefore, the
bound is tight. Let m, n ∈ N and choose Σ = {ai,j | 1 ≤ i ≤ m − 1 and 1 ≤ j ≤
n − 1}.

Let A = (Q1, Σ, δ1, p0, {pm−2}), where Q1 = {p0, p1, . . . , pm−1} and δ1 is
defined as follows:

– δ1(px, ai,j) = px+i, for 0 ≤ x ≤ m − 2, 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1.

If the sum x + i is larger than m − 1, then px+i is the sink state (= pm−1).
For all other cases in δ1 that are not covered above, the target state is the sink
state pm−1.

Next, let B = (Q2, Σ, δ2, q0, {qm−2}), where Q2 = {q0, q1, . . . , qn−1} and δ2 is
defined as follows:

– δ2(qx, ai,j) = qx+j , for 0 ≤ x ≤ m − 2, 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ m − 1.

Similarly, if the sum x+j is larger than n−1, then qx+j is the sink state (= qm−1).
For all other cases in δ2 that are not covered above, the target state is the sink
state qm−1. Fig. 4 shows an example of such DFAs A and B.

Lemma 7. Let L = L(A) ∩ L(B). The minimal (complete) DFA for L needs
mn − 3(m + n) + 12 states.

Proof. We prove the statement by showing that there exists a set R of mn −
3(m + n) + 12 strings over Σ that are pairwise inequivalent modulo the right
invariant congruence of L, ≡L. We assume that m ≤ n.

We choose R = R1 ∪ R2 ∪ R3 ∪ R4, where

R1 = {λ}.
R2 = {am−2,n−2}.
R3 = {am−1,n−1}.
R4 = {ai,j | for 1 ≤ i ≤ m − 3 and 1 ≤ j ≤ n − 3}.
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0 1 2 3 4 5
a11, a12, a13 a11, a12, a13 a11, a12, a13 a11, a12, a13

a21, a22, a23

a31, a32, a33
a41, a42, a43

a21, a22, a23

a31, a32, a33

a21, a22, a23

0 1 2 3 4
a11, a21, a31, a41 a11, a21, a31, a41 a11, a21, a31, a41

a12, a22, a32, a42

a13, a23, a33, a43

a12, a22, a32, a42

a41, a42, a43

a31, a32, a33

a21, a22, a23

a11, a12, a13

a11, a21, a31, a41

a13, a23, a33, a43

a12, a22, a32, a42

Fig. 4. An example of two minimal DFAs for finite languages whose sizes are 6 and 5,
respectively, where state 5 above and state 4 below are sink states. We omit a large
number of in-transitions of the sink state.

Any string x from R2 ∪ R3 ∪ R4 cannot be equivalent with λ from R1 since
λ ·am−2,n−2 ∈ L but x ·am−2,n−2 /∈ L. Similarly, any string x from R1 ∪R3 ∪R4
cannot be equivalent with am−2,n−2 from R2 since am−2,n−2 ·λ ∈ L but x·λ /∈ L.
Note that string am−1,n−1 from R3 is not in L and it can never be in L by
appending some string whereas any string x from R1 ∪ R2 ∪ R4 can be in L
by appending a suitable string. Therefore, R1, R2 and R3 are inequivalent with
each other including R4.

Finally, we consider two strings ai,j and ax,y in R4. The two strings are not
equivalent since ai,j · am−2−i,n−2−j ∈ L but ax,y · am−2−i,n−2−j /∈ L when
(i, j) �= (x, y). Therefore, any two strings from R4 are not equivalent.

Now we count the number of strings in R. We note that |R1| = |R2| = |R3| = 1
and |R4| = (m − 3)(n − 3). Therefore, |R| = mn − 3(m +n)+ 12. It implies that
there are at least mn − 3(m + n) + 12 states in the minimal DFA for L. �

We obtain the following result from Lemmas 6 and 7.

Theorem 2. Given two minimal DFAs A and B for finite languages, mn −
3(m +n) +12 states are necessary and sufficient in the worst-case for the inter-
section of L(A) and L(B), where m = |A| and n = |B|.

Note that the upper bound mn − 3(m + n) + 12 is reachable when |Σ| depends
on m and n as shown in Lemma 7. On the other hand, we can prove that it is
impossible to reach the upper bound with a fixed Σ using the same argument
as in Lemma 2.

Let us investigate a lower bound for the state complexity of intersection of
L(A) and L(B) over a fixed alphabet.

Lemma 8. Let Σ be an alphabet with four characters. There exists a constant
c such that the following holds for infinitely many m, n ≥ 1, where min{m, n}
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unbounded. There exist minimal DFAs A and B that recognize finite languages
over Σ such that the minimal DFA for the intersection L(A) ∩ L(B) requires
c(min{m, n})2 states, where |A| = m and |B| = n.

The same result holds for a binary alphabet.

Proof. We omit the proof due to the space limit. The proof is similar to the
proof for Lemma 4. �

5 Conclusions

The state complexity of an operation on regular languages is the number of states
in the minimal DFA that recognizes the resulting language from the operation.
Fig. 1 gives a summary of the results. We have noted that the precise state
complexity of union and intersection cases have been open although rough upper
bounds were given by Yu [13]. Based on the structural properties of minimal
DFAs for finite languages, we have proved that

1. For union, mn − (m + n) states are necessary and sufficient.
2. For intersection, mn − 3(m + n) + 12 states are necessary and sufficient.

We have also noted that the bounds are reachable if |Σ| depends on m and n,
where m and n are the sizes of minimal DFAs for two finite languages. If |Σ|
is fixed and m and n are arbitrarily large, then we have shown that the upper
bounds for both cases are not reachable.
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