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Abstract. It is well known that the language obtained by deleting an
arbitrary language from a regular language is regular. We give an upper
bound for the state complexity of deleting an arbitrary language from a
regular language and a matching lower bound. We show that the state
complexity of deletion is n · 2n−1 (respectively, (n + 1

2
) · 2n − 2) when

using complete (respectively, incomplete) deterministic finite automata.

1 Introduction

The descriptional complexity of finite automata has been studied for over half
a century [21–24] and there has been much renewed interest since the early
90’s [11, 13, 20, 29]. Operational state complexity investigates the size of a DFA
(deterministic finite automaton) needed to recognize the language obtained by
applying a regularity preserving operation to given DFAs. The precise worst
case state complexity of many basic language operations has been established;
see [1, 4, 5, 7, 12, 14, 22, 25, 30] where further references can be found. Also there
has been much work on the state complexity of combinations of basic language
operations [2, 6, 8, 9, 15, 26].

Deletion is one of the basic operations in formal language theory [17, 18]. The
deletion of a string v from a string u consists of erasing a contiguous substring
v from u. We denote the result of deleting a language L2 from a language L1 by
L1 � L2.

1

Deletion is the simplest and most natural generalization of the left/right quo-
tient [18]. It is known that for L1 recognized by a DFA with n states and an
arbitrary language L2, the worst case state complexity of the left-quotient L2\L1

is 2n−1 and the state complexity of the right-quotient L1/L2 is n [29]. Recently,
the state complexity of insertion which, using the terminology of [16], is the left
inverse of deletion, was investigated in [10].
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It is well known that L1 � L2 is always regular for a regular language L1 and
an arbitrary language L2 [18]. However, in spite of deletion being a fundamental
language operation its precise state complexity has not been studied in the lit-
erature. When L1 is recognized by a DFA with n states, the proof of Theorem 1
of [18] yields an upper bound 22n for the size of the DFA needed to recognize
L1 � L2. The proof works for an arbitrary language L2 and is not, in general,
effective.

More general types of deletion operations, called deletion along trajectories
have been considered by Domaratzki [3] and Kari and Sosik [19]. In this context
a set of trajectories is a set T ⊆ {i, d}∗ where i stands for “insert” and d stands
for “delete”. The result of deleting a language L2 from a language L1 along
a set of trajectories T is denoted L1 �T L2. Deletion along a regular set of
trajectories preserves regularity [3], that is, for regular languages L1, L2 and T ,
also L1 �T L2 is regular. The ordinary deletion operation we consider here is
defined by the set of trajectories i∗d∗i∗, and the construction used in the proof
of Lemma 3.1 of [3] would yield an upper bound 23mn for the state complexity
of L1 �i∗d∗i∗ L2 when L1 (respectively, L2) is recognized by a DFA of size m
(respectively, n). Naturally, Lemma 3.1 of [3] deals with deletion along arbitrary
regular sets of trajectories and the result cannot be expected to yield a good
bound in the very special case we are considering here.

Most of the literature uses complete DFAs to measure the state complexity of
a regular language, but state complexity based on incomplete DFAs also has been
considered. Câmpeanu et al. [1] give the state complexity of shuffle in terms of in-
complete DFAs while the precise state complexity of shuffle in terms of complete
DFAs remains still open. For a given regular language the sizes of the minimal
complete and the minimal incomplete DFA differ by at most one state, however,
there can be a more significant difference in the state complexity functions when
the measure is based on complete and incomplete DFAs, respectively.

In this paper we give a tight state complexity bound for the language obtained
from a regular language by deleting an arbitrary language. We show that if L1

is recognized by a complete DFA with n states and L2 is an arbitrary language,
the complete DFA for the language L1 � L2 needs n · 2n−1 states in the worst
case. The corresponding state complexity function based on incomplete DFAs is
shown to be (n+ 1

2 ) ·2n−2. While the upper bounds hold for arbitrary languages
L2 (that need not be even recursively enumerable) we show that matching lower
bound constructions can be found where L2 consists of a single string of length
one. We give conditions based on L2 and the DFA for L1 that are necessary for
the state complexity of deletion to reach the worst case bound.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
formal languages and recall here just some definitions and notation. For more
information on the topic the reader may consult the monographs [27, 28] or the
survey [29].
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In the following Σ always stands for a finite alphabet and the set of strings
over Σ is Σ∗. A language is a subset of Σ∗. The cardinality of a finite set S is
denoted |S|.

The set of strings obtained from u ∈ Σ∗ by deleting a string v ∈ Σ∗ is

u � v = {w ∈ Σ∗ | (∃u1, u2 ∈ Σ∗) w = u1u2 and u = u1vu2}.
For example, bababa � aba = {bba, bab}. The deletion operation is extended in
the natural way for languages L1, L2 ⊆ Σ∗ by setting

L1 � L2 =
⋃

u∈L1,v∈L2

u � v.

An incomplete deterministic finite automaton (incomplete DFA) is a five-tuple
A = (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is an alphabet, δ is a
partial function Q × Σ → Q, q0 ∈ Q is the initial state and F ⊆ Q is a set of
final (or accepting) states.

The transition function δ is in the usual way extended as a partial function
Q×Σ∗ → Q and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. A language is regular if it is recognized by some DFA.

For q ∈ Q, P ⊆ Q, b ∈ Σ and L ⊆ Σ∗ we also denote

δ(P, b) = {δ(p, b) | p ∈ P} and δ(q, L) = {δ(q, w) | w ∈ L}.
A DFA A = (Q,Σ, δ, q0, F ) is said to be complete if δ is a total function

Q × Σ → Q. We will use both complete and incomplete DFAs and, when not
separately mentioned, by a DFA we mean an incomplete DFA.2

A DFA A = (Q,Σ, δ, q0, F ) is minimal if each state q ∈ Q is reachable from
the initial state q0 (that is, δ(q0, w) = q for some string w) and no two states
q1, q2 ∈ Q, q1 �= q2, are equivalent. States q1, q2 ∈ Q are said to be equivalent if

(∀w ∈ Σ∗) δ(q1, w) ∈ F iff δ(q2, w) ∈ F.

The minimal (complete or incomplete) DFA for a given regular language L is
unique and the sizes of the minimal complete and incomplete DFAs for L differ
by at most one state. The minimal complete DFA may have a dead state (or sink
state). In the minimal incomplete DFA the dead state can always be omitted.

The state complexity of L, sc(L), is the size of the minimal complete DFA
recognizing L. Similarly, the incomplete state complexity of L, isc(L), is the size
of the minimal incomplete DFA recognizing L. For each regular language L either
sc(L) = isc(L) + 1 or sc(L) = isc(L).

3 Upper Bound for Deletion

It is known that the result of deleting an arbitrary language from a regular
language is regular [18]. Hence in the lemmas establishing the upper bound for

2 Naturally, a complete DFA is just a special case of an incomplete DFA.
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deletion (for complete or incomplete DFAs) we do not need to assume that the
deleted language L2 is regular. However, in the case of an arbitrary L2 finding
a DFA for the language L1 � L2 is not, in general, effective.

First we give an upper bound construction for complete DFAs.

Lemma 1. Consider L1, L2 ⊆ Σ∗ where L1 is recognized by a complete DFA
with n states. Then

sc(L1 � L2) ≤ n · 2n−1.

Proof. Let A = (Q,Σ, δ, q0, FA) be a complete DFA for L1 where |Q| = n. To
recognize the language L1 � L2 we define a DFA

B = (P,Σ, γ, p0, FB),

where P = {(r, R) | r ∈ Q,R ⊆ Q, δ(r, L2) ⊆ R}, p0 = (q0, δ(q0, L2)) and

FB = {(r, R) | r ∈ Q,R ⊆ Q, δ(r, L2) ⊆ R and R ∩ FA �= ∅}.
It remains to define the transitions of γ. For (r, R) ∈ P and b ∈ Σ we set

γ((r, R), b) = (δ(r, b), δ(R, b) ∪ δ(δ(r, b), L2)). (1)

The transition relation always adds the elements of δ(δ(r, b), L2) to the second
component and, consequently, the state γ((r, R), b), as defined above, is an ele-
ment of P .

The intuitive idea of the construction is as follows. In order to recognize the
language L1 � L2, the DFA B must check that the input string w can be
completed to a string of L1 by inserting a string u ∈ L2 in some position, that
is, for some decomposition w = w1w2 we have w1uw2 ∈ L1. Since we do not
know at which position the string u ∈ L2 is to be inserted and B has to be
deterministic, roughly speaking, B has to keep track of all computations of A
on strings where a string of L2 was deleted from some earlier position.

The first component of the states of B simply simulates the computation of
A, i.e., it keeps track of the state of A, assuming that up to the current position
in the input a string of L2 was not yet deleted. The second component of the
states of B keeps track of all states that A could be in assuming that at some
point in the preceding computation a string of L2 was deleted from the input.

We need to verify that the transitions of B (as defined in (1)) preserve these
properties. For the first component it is clear that the simulation works as
claimed. To verify the claim for the second component, assume that the in-
put is ubv, u, v ∈ Σ∗, b ∈ Σ and after reading the prefix u the DFA B has
reached a state (r, R). In the following discussion b refers to the particular sym-
bol occurrence just after the prefix u. After reading the symbol b, the second
component of the state of B will be δ(R, b) ∪ δ(δ(r, b), L2)), where R consists of
states that A could be in, assuming a string of L2 was deleted somewhere before
the symbol b and the states of δ(R, b) are then the states A could be in after
reading b assuming a string of L2 was deleted before symbol occurrence b. On
the other hand, r = δ(q0, u), i.e., r is the state A reaches after reading the prefix
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u where no deletion has occurred, and hence δ(δ(r, b), L2) consists of exactly
all states A can be in the simulated computation, assuming a string of L2 was
deleted directly after the symbol occurrence b. This means that the transition
relation γ correctly preserves the property that the second component of the
state of B consists of all states that A could be in assuming a string of L2 was
deleted some time previously.

The choice of final states guarantees that B accepts exactly the strings ob-
tained from strings of L(A) by deleting a string of L2 at some position.

We still need to verify that the number of states of B is as claimed. If L2 = ∅,
then L1 � L2 = ∅ and L1 � L2 has a DFA of size one. Hence in what follows
we can assume that L2 �= ∅.

Since A is a complete DFA and L2 �= ∅, for each r ∈ Q we have |δ(r, L2)| ≥ 1.
This means that for a given r ∈ Q, there exist at most 2|Q|−1 sets R such that
(r, R) is a state of B. Thus, the number of states of B is at most |Q| · 2|Q|−1. 
�

Next we consider the case of incomplete DFAs. The upper bound construction
uses similar ideas as the above proof of Lemma 1, and we just need to modify
the construction to allow the possibility of undefined transitions.

Lemma 2. Let L1, L2 ⊆ Σ∗ where L1 is recognized by an incomplete DFA A
with n states. Then

isc(L1 � L2) ≤ (n+ 1) · 2n − (2n−1 + 2).

Proof. Let A = (Q,Σ, δ, q0, FA) be an incomplete DFA for L1, |Q| = n. We
define the completion of δ as a function δ′ : (Q∪ {dead})×Σ → Q∪ {dead} by
setting for r ∈ Q ∪ {dead} and b ∈ Σ,

δ′(r, b) =
{
δ(r, b), if r ∈ Q and δ(r, b) is defined;
dead, otherwise.

To recognize the language L1 � L2 we define a DFA

B = (P,Σ, γ, p0, FB),

where P = (Q ∪ {dead})× 2Q − {(dead, ∅), (dead, Q)}, p0 = (q0, δ(q0, L2)) and

FB = {(r, R) | r ∈ Q ∪ {dead}, R ⊆ Q and R ∩ FA �= ∅}.
(Note that |P | = (n + 1) · 2n − 2. However, as will be seen below at least 2n−1

elements of P will be unreachable as states of B.)
The transitions of γ are defined by setting, for (r, R) ∈ P and b ∈ Σ,

γ((r, R), b) =

⎧
⎪⎪⎨

⎪⎪⎩

(δ′(r, b), δ(R, b) ∪ δ(δ(r, b), L2)), if r ∈ Q and [δ′(r, b) �= dead
or δ(R, b) ∪ δ(δ(r, b), L2) �= ∅];

(dead, δ(R, b)), if r = dead and δ(R, b) �= ∅;
undefined, otherwise.

As in the proof of the previous lemma, the idea is that the first component
simulates the computation of the original DFA A, assuming a string of L2 has
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so far not been deleted (and using the new state “dead” to indicate that the
simulated computation of A has failed), and the second component keeps track of
the set of all possible states that A can be in, assuming a string of L2 was deleted
somewhere previously (this set can now be empty because A is incomplete). We
leave the details of verifying that B recognizes L(A) � L2 to the reader.

Below we explain why the states (dead, ∅) and (dead, Q) can be omitted from
the state set of B, and that, furthermore at least 2n−1 elements of P must be
unreachable as states of B.

The state (dead, ∅) would be a sink state of the DFA B and, according to the
definition of γ, it is never entered. Also, we note that when the computation,
for the first time, reaches a state where the first component is “dead” this has
to occur on an alphabet symbol that has at least one undefined transition in
A. This means that when the computation initially reaches a state with first
component “dead”, the cardinality of the second component is at most |Q| − 1,
and after that point the transitions of γ do not add new states to the second
component because if the deletion of the string of L2 did not occur previously, the
computation has already failed. Thus, the state (dead, Q) is always unreachable.

To verify the unreachability of 2n−1 further states, without loss of generality,
we can assume that for some q1 ∈ Q and w1 ∈ L2, δ(q1, w1) is defined. Note
that in the opposite case, no string of L2 can occur as a substring of a string of
L(A) = L1 and, hence, L1 � L2 = ∅. Now all transitions of B that enter a state
with the first component q1 add the element δ(q1, w1) to the second components.
This means that all elements (q1, R), δ(q1, w1) �∈ R, are unreachable. 
�

In the above proof we noted that 2n−1 states of the constructed DFA B are
unreachable for each state q of A such that δ(q, w) is defined for some w ∈ L2.
Thus, the worst case state complexity blow-up can occur only when transitions
spelling out a string in L2 originate only from one state of A and, slightly more
precisely, we get the following necessary condition for languages that can reach
the worst case state complexity of the deletion operation.

Corollary 1. Let A = (Q,Σ, δ, q0, F ) be an incomplete DFA with n states, L1 =
L(A) and L2 is an arbitrary language. Then a necessary condition for isc(L1 �

L2) to reach the upper bound (n+ 1) · 2n − (2n−1 + 2) given by Lemma 2 is that

(∃q ∈ Q) [ |δ(q, L2)| = 1 and (∀p ∈ Q, p �= q) δ(p, L2) = ∅ ].

4 Lower Bound Constructions

As our main result we show here that the bounds given in the previous section
are optimal. We begin with the case of complete DFAs where the construction
is somewhat simpler.

4.1 Lower Bound for Complete DFAs

From the construction of the complete DFA B for L1 � L2 in Lemma 1 we
know that the possible states of B are pairs (r, R) where r (respectively, R) is a
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state (respectively, a set of states) of the DFA A recognizing L1 and R has the
property that it contains all states that are reachable from r on a string of L2

(and possibly other states). Hence a possible worst case construction should use
a singleton language L2 or a language L2 such that for any given state r of A,
all strings of L2 take r to the same state. In the proof of Lemma 3 we choose L2

to be a singleton language consisting of a string of length one.

Lemma 3. Let Σ = {a, b, c, d, e}. For every n ≥ 3 there exists a complete DFA
A over Σ with n states such that

sc(L(A) � {c}) = n · 2n−1.

Proof. Choose A = (Q,Σ, δ, 0, {0}) where Q = {0, 1, . . . , n− 1} and the transi-
tions of δ are defined by setting

– δ(i, a) = i+ 1 for 0 ≤ i ≤ n− 2, δ(n− 1, a) = 0;
– δ(0, b) = 0, δ(i, b) = i+ 1 for 1 ≤ i ≤ n− 2, δ(n− 1, b) = 0;
– δ(0, c) = 1, δ(i, c) = i for 1 ≤ i ≤ n− 1;
– δ(0, d) = 0, δ(1, d) = 1, δ(i, d) = i+ 1 for 2 ≤ i ≤ n− 2, δ(n− 1, d) = 0;
– δ(0, e) = δ(1, e) = 1, δ(i, e) = i + 1 for 2 ≤ i ≤ n− 2, δ(n− 1, e) = 0.

The DFA A is depicted in Figure 1.

0 1 2 n−2 n−1

c ccc, d, eb, d

a, c, e a, b a, b, d, e a, b, d, e a, b, d, e

a, b, d, e

Fig. 1. The complete DFA A used in the proof of Lemma 3

Let B = (P,Σ, γ, p0, FB) be the complete DFA recognizing the language
L(A) � {c} that is constructed as in the proof of Lemma 1. Since the deleted
language {c} consists of only one string, B has n · 2n−1 states and in order to
prove the lemma it is sufficient to show that all states of B are reachable from
the initial state p0 = (0, {1}) and all states of B are pairwise inequivalent.
Claim 1. All states (0, R) ∈ P where R ⊇ δ(0, {c}) = {1} are reachable from
(0, {1}).

We prove the claim by induction on the cardinality of R. In the base case
|R| = 1 there is nothing to prove because R = {1} is the only set satisfying the
required condition on R.

Inductively, now assume that the claim holds for all sets R of cardinality
1 ≤ k < n, that is, all states (0, R) where 1 ∈ R and |R| ≤ k are reachable. Now
consider a state of P ,

u = (0, {1, i1, . . . ik}), 1 < i1 < i2 < · · · < ik−1 and (ik−1 < ik or ik = 0).
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Above the elements i1, . . . , ik are listed in increasing order, except that 0 is
considered the largest element. By the inductive assumption the state

u′ = (0, {1, i2 − i1 + 1, i3 − i1 + 1, . . . , ik − i1 + 1})
is reachable. Here the arithmetic operations are done modulo n. If ik = 0, above
ik − i1 + 1 stands for n− i1 + 1. Now

γ(u′, b) = (0, {1, 2, i2 − i1 + 2, i3 − i1 + 2, . . . , ik − i1 + 2}),
because the transition where the first component enters 0 adds 1 to the second
component and otherwise the transition on b cycles “upwards” the states of
{1, i2− i1+1, i3− i1+1, . . . , ik− i1+1}. (Note that this set does not contain the
element 0.) Next applying to the state γ(u′, b) i1 − 2 times a transition on d we
reach u. Note that transitions on d “cycle upwards” the states in {2, 3, . . . , n−1},
and keep the states 0 and 1 stationary, and do not add (in the transition relation
of B), new elements to the second component of the state.

Next we show that all states (r, R), R ⊇ δ(r, {c}), are reachable. We need to
consider only cases where r �= 0 (because the case r = 0 was handled in Claim 1
above) and, hence, δ(r, {c}) = {r}. Consider an arbitrary state

v = (ij , {i1, i2, . . . , ij−1, ij , ij+1, . . . , ik}), 0 ≤ i1 < i2 < · · · < ik ≤ n− 1.

For technical reasons we need to use a slightly different argument depending on
whether the difference between ij+1 and ij , as well as, between ij and ij−1 is
exactly one. We divide the following argument into three cases.

(i) Case where ij �= ij−1 + 1: This is the case where the set in the second com-
ponent of v does not contain the element preceding ij . By Claim 1 the state

v′ = (0, {1, i1−ij+1, i2−ij+1, . . . , ij−1−ij+1, ij+1−ij+1, . . . , ik−ij+1})
is reachable. In the preceding line all quantities are computed modulo n.
Now

γ(v′, c) = (1, {1, i1−ij+1, i2−ij+1, . . . , ij−1−ij+1, ij+1−ij+1, . . . , ik−ij+1}).

Note that, because ij �= ij−1 + 1, the sequence ix − ij + 1, x = 1, . . . , j −
1, j + 1, . . . , k, does not contain the element 0, and hence a transition on c
is the identity on these elements. In the DFA A the a-transitions just cycle
through the states and hence applying ij − 1 times the a-transition to state
γ(v′, c) we get the state v.

(ii) Case where ij = ij−1 + 1 and ij+1 = ij + 1: This is the case where the set
in the second component of v contains both the element preceding ij and
the element following ij . By Claim 1 the state

v1 = (0, {i1 − ij , i2 − ij , . . . , ik − ij})
is reachable. Note that the second component contains the element 1 and
hence v1 is a legal state of B. Now γ(v1, a

ij ) = v.
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(iii) Case where ij = ij−1 + 1 and ij+1 �= ij + 1: This corresponds to the situa-
tion where the second component of v contains the element preceding ij but
does not contain the element following ij. Here we cannot use a-transitions
alone, because a state where the first component is 0 must contain 1 in the
the second component. By Claim 1 the state

v2 = (0, {1, i1 − ij, i2 − ij, . . . , ij−1 − ij, ij+1 − ij , . . . , ik − ij})

is reachable and

γ(v2, e) = (1, {1, i1 − ij + 1, i2 − ij + 1, . . . , ik − ij + 1}).

Here we need the fact that ij+1 �= ij +1 and hence an e-transition adds one
to the state ij+1 − ij. (Note also that ij−1 − ij = n − 1 and, consequently,
beginning with a c-transition as in case (i) above would not work, because
the second component at the end would not contain ij−1.)
Applying ij − 1 a-transitions to the state γ(v2, e) we get v.

We have shown that all states of B are reachable and it remains to show that
they are all pairwise inequivalent.

First consider two states (r1, R1), (r2, R2) ∈ P where R1 �= R2. Without loss
of generality we can find s ∈ R1 − R2 since the other possibility is completely
symmetric. If s = 0 then (r1, R1) is a final state and (r2, R2) is a nonfinal
state of B. Thus it is sufficient to consider cases s ∈ {1, 2, . . . , n − 1}. Now
γ((r1, R1), a

n−s) ∈ FB because the string an−s takes the state s ∈ R1 to the
element 0. We show that γ((r2, R2), a

n−s) �∈ FB. Since s �∈ R2, the string an−s

does not take any element of R2 to the element 0 (which is the only final state of
A). We note that r2 �= s because from the definition of legal states of B we know
that δ(r2, c) must be an element of R2 (and δ(s, c) = s when 1 ≤ s ≤ n − 1).
Also, if during the computation on an−s starting from (r2, R2), the transitions of
γ add the element 1 to the second component when the first component becomes
0, then the added element 1 cannot cycle through all states to reach the final
state 0 because after adding the element 1 there remains at most n− s− 1 input
symbols and s ≥ 1.

Second, consider two states (r1, R1), (r2, R2) ∈ P , where r1 �= r2. Due to
symmetry between r1 and r2 we can assume that r2 �= 0.

(i) Case where r1 = 0 and r2 �= n− 1: Since r2 �= r1, we have r2 �= 0 and we
note that γ((0, R1), b) = (0, R′

1) where 1 ∈ R′
1 (because the self-loop on

state 0 adds the element 1 to the second component) and γ((r2, R2), b) =
(r2+1, R′

2). Here 1 �∈ R′
2 because no transition of A labeled by b reaches the

state 1 and also since r2 + 1 �= 0 the transition cannot add the element 1
to the second component. Since the second components are distinct sets we
know that the states (0, R′

1) and (r2 + 1, R′
2) are distinguishable.

(ii) Case where r1 = 0 and r2 = n− 1: We note that γ((0, R1), a) = (1, R′
1) and

γ((n − 1, R2), a) = (0, R′
2). The states (1, R′

1) and (0, R′
2) are inequivalent

by case (i) above.
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(iii) Case where r1 �= 0 and r2 �= 0: By cycling with n− r1 a-transitions we get
states (0, R′

1) and (n − r1 + r2, R
′
2). If r1 − r2 �= 1, this case was covered in

(i) above and, if r1 − r2 = 1, this case was covered in (ii) above.

Above (i)–(iii) cover all cases where r1 �= r2 and r2 �= 0. This concludes the proof
of the lemma. 
�

Now by combining Lemmas 1 and 3 we get a tight state complexity bound
for deletion.

Theorem 1. For languages L1, L2 ⊆ Σ∗ where L1 is regular,

sc(L1 � L2) ≤ sc(L1) · 2sc(L1)−1.

For every n ≥ 3 there exists a regular language L1 over a five-letter alphabet
with sc(L1) = n and a singleton language L2 such that in the above inequality
we have equality.

4.2 Lower Bound for Incomplete DFAs

We show that the state complexity upper bound for incomplete DFAs from
Lemma 2 can be reached by DFAs defined over a five-letter alphabet. Based
on the observations made in Corollary 1, as the language of deleted strings, we
use a singleton set {c} where, furthermore, a c-transition is defined only for one
state of the DFA recognizing L1. The conditions of Corollary 1 do not force L2

to be a singleton set, however, the conditions indicate that a construction may
be simpler to achieve using a singleton set. (The proof of Lemma 4 is omitted
due to the limitation on the number of pages.)

Lemma 4. Let Σ = {a, b, c, d, e}. For every n ≥ 4 there exists a regular lan-
guage L1 ⊆ Σ∗ recognized by an incomplete DFA with n states such that

isc(L1 � {c}) = (n+ 1) · 2n − (2n−1 + 2).

As a result of Lemma 4 we conclude that also the upper bound for the size of
an incomplete DFA for the language L1 � L2 given in Lemma 2 is tight.

Theorem 2. For languages L1, L2 ⊆ Σ∗ where L1 is regular,

isc(L1 � L2) ≤ (isc(L1) + 1) · 2isc(L1) − (2isc(L1)−1 + 2).

For every n ≥ 4 there exists a language L1 over a five-letter alphabet recognized
by an incomplete DFA with n states and a singleton language L2 such that in
the above inequality we have an equality.
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5 Conclusion and Further Work

We have established tight state complexity bounds for the deletion of an arbi-
trary language L2 from a regular language L1 both in the case where L1 and
L1 � L2 are represented by complete DFAs and when they are represented
by incomplete DFAs. Furthermore, in the lower bound construction the deleted
language can be chosen to be a singleton set consisting of a string of length one.
This result is in some sense the strongest possible because deleting the empty
string from L1 yields just L1.

Roughly speaking, in the upper bound constructions given in Section 3, the
DFA B for L1 � L2 is based only on the DFA A for L1 and B depends on
L2 only by way of the transitions the strings of L2 define on A. This causes
that the transitions in parts of B that, respectively, simulate the original DFA
A and the computation of A after a string was deleted are closely related and,
perhaps partly because of this reason, the lower bound constructions that match
the upper bound (respectively, for complete and for incomplete DFAs) are fairly
involved. For the constructions we used a five-letter alphabet. The alphabet size
could likely be reduced, but this would lead to considerably more complicated
proofs of correctness. Furthermore, it does not seem clear whether the general
upper bound can be reached using a binary alphabet. Note that for a unary al-
phabet, deletion coincides with right-quotient and the state complexity is known
to be n [29].

More general types of deletion operations have been considered within the
context of deletion along trajectories [3, 19]. Our “ordinary” deletion operation
is defined by the set of trajectories i∗d∗i∗ and the left-quotient and right-quotient
operations are defined, respectively, by the sets of trajectories d∗i∗ and i∗d∗. The
set of trajectories d∗i∗d∗ defines the bipolar deletion operation [3, 16, 18]. The
language L1 �d∗i∗d∗ L2 consists of all strings v such that for some string u =
u1u2 ∈ L2, the string u1vu2 is in L1. From [3, 18] it is known that bipolar deletion
preserves regularity but the state complexity bound given by these results is not
optimal. Differing from deletion, the state complexity of bipolar deletion would
need to depend on the size of DFAs for both of the argument languages.
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