
Generalizations of Code Languages
with Marginal Errors

Yo-Sub Han1(B), Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University, 50, Yonsei-Ro, Seoul,
Seodaemun-Gu 120-749, Republic of Korea

{emmous,narame7}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Abstract. We study k-prefix-free, k-suffix-free and k-infix-free lan-
guages that generalize prefix-free, suffix-free and infix-free languages by
allowing marginal errors. For example, a string x in a k-prefix-free lan-
guage L can be a prefix of up to k different strings in L. Namely, a
code (language) can allow some marginal errors. We also define finitely
prefix-free languages in which a string x can be a prefix of finitely many
strings. We present efficient algorithms that determine whether or not
a given regular language is k-prefix-free, k-suffix-free or k-infix-free, and
analyze their runtime. Lastly, we establish the undecidability results for
(linear) context-free languages.

Keywords: Codes · Marginal errors · Decision algorithms · Undecid-
ability · Regular languages · Context-free languages

1 Introduction

Codes are useful in many areas including information processing, data compres-
sion, cryptography and information transmission [2,12]. Many researchers have
studied various codes such as prefix codes, suffix codes and infix codes. Since a
code is a set of strings—a language, a code property defines a subset of languages
preserving the corresponding property. For instance, for regular langauges, the
prefix-freeness defines a proper subset of regular languages, prefix-free regular
languages. Recently, Kari et al. [13] considered the problem of deciding whether
or not a given regular language is maximal with respect to certain combined
types of code properties.

There are different applications based on different properties subfamilies [1,3,
4,7,9,11]. For example, Huffman codes [11] are prefix-free languages and useful
for lossless data compression; Han [6] proposed an efficient pattern matching
algorithm for the prefix-free regular expressions based on the prefix-freeness of
the input pattern. Infix-free languages have been used in text searching [3] and
computing forbidden words [1,4]. Han et al. [8] observed the structural properties
of FAs for infix-free regular languages and designed a decision algorithm.
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 264–275, 2015.
DOI: 10.1007/978-3-319-21500-6 21

Generalizations of Code Languages with Marginal Errors 265

Table 1. The upper bound for the time complexity of decision algorithms for the
generalizations of prefix-, suffix- and infix-free regular languages, where n is the size of
FAs

DFA NFA

prefix-free O(n) O(n2)
suffix-free O(n2) O(n2)
infix-free O(n2) O(n2)

k-prefix-free O(n2 · log k) PSPACE-complete
k-suffix-free PSPACE-complete PSPACE-complete
k-infix-free PSPACE-hard PSPACE-hard

finitely prefix-free O(n) O(n2)
finitely suffix-free O(n2) O(n2)
finitely infix-free O(n2) O(n2)

When people design a code in practice—for instance, designing a DNA code
by experiments [14,16]—it may not always be successful. There may be a few
number of undesired code words in the resulting code. This motivates us to
examine a relaxed version of codes; in other words, we allow some marginal
errors in the code. We generalize prefix-free, suffix-free and infix-free languages
and define new codes, k-prefix-free, k-suffix-free and k-infix-free languages. Recall
that there is no prefix of any other string in the language L if L is prefix-free [2].
In a k-prefix-free language L, we allow at most k strings in L to have another
string in L as a prefix. We also introduce finitely prefix-free, finitely suffix-free
and finitely infix-free languages in which we allow a finite number of such strings.

Given a family L of languages and a language L, the decision problem of L
with respect to L is to decide whether or not L belongs to L. For the decision
problems of finitely prefix-free, finitely suffix-free and finitely infix-free regular
languages, we use the state-pair graph used for the decision problems of prefix-
free, suffix-free and infix-free regular languages [5]. Table 1 summarizes the time
complexity of the prior algorithms and our algorithms based on the state-pair
graph. Interestingly, we have a polynomial time algorithm only for deciding the
k-prefix-freeness of a language recognized by a DFA. We prove that the complex-
ity for determining whether or not an NFA is k-prefix-free is PSPACE-complete.
For both k-suffix-free cases, it is already PSPACE-hard for DFAs. For the deci-
sion problems of finitely prefix-free, suffix-free and infix-free regular languages,
we present polynomial algorithms based on the state-pair graph construction.
We also establish the undecidability results for context-free languages by the
reduction from the Post’s Correspondence Problem [17].

We define some basic notions in Section 2. We define the generalizations of
prefix-free, suffix-free and infix-free regular languages in Section 3 and observe
the hierarchy between the proposed subfamilies. In Section 4, we present deci-
sion algorithms and complexity results for regular languages. We also establish
undecidability result for context-free languages in Section 5.

266 Y.-S. Han et al.

2 Preliminaries

We briefly present definitions and notations. We refer to the books [10,18] for
more knowledge on automata theory. For more details on coding theory, refer to
Berstel and Perrin [2] or Jürgensen and Konstantinidis [12].

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language, the
symbol λ denotes the null string and Σ+ denotes Σ∗ \{λ}. Let |w| be the length
of w.

For strings x, y and z, we say that x is a prefix of y and z is a suffix of y if
y = xz. For strings x, y, w and z, we say that z is an infix of y if y = xzw. We
define a language L to be prefix-free if a string x ∈ L is not a prefix of any other
strings in L. Similarly, we define a language L to be suffix-free (or infix-free) if a
string x ∈ L is not a suffix (or infix) of any other strings in L. The reversal of a
string w is denoted wR and the reversal of a language L is LR = {wR | w ∈ L}.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-
tuple A = (Q,Σ, δ, s, F), where Q is a finite set of states, Σ is a finite alphabet,
δ is a multi-valued transition function from Q × (Σ ∪ {λ}) into 2Q, s ∈ Q is
the initial state and F ⊆ Q is the set of final states. By an NFA, we mean a
nondeterministic automaton without λ-transitions, that is, A is an NFA if δ is
a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA) if δ
is a single-valued function Q × Σ → Q. The language L(A) recognized by A is
the set of strings w such that some sequence of transitions spelling out w takes
the initial state of A to a final state. We define the size |A| of A to be |Q| + |δ|.
For q ∈ Q, we denote by Aq the NFA that is obtained from A by replacing the
initial state s with q. For q, p ∈ Q, we also denote by Aq,p the NFA that is as
A except has q as the initial state and p as the only final state. We assume that
an FA A has only useful states; that is, each state appears on some path from
the initial state to some final state.

3 k-prefix-free, k-suffix-free and k-infix-freeness

We consider generalizations of prefix-free, suffix-free and infix-free languages.
First, we define a generalization of prefix-free languages called the k-prefix-free
languages.

Definition 1. We define a language L to be k-prefix-free if there is no string x
in L that is a prefix of more than k strings in L \ {x}.

Recently, Konitzer and Simon [15] defined the maximum activity level of a lan-
guage L as follows: Given a language L, the maximum activity level lL of L is

lL = sup{l : (∃w1, . . . , wl ∈ Σ+,∀ = 1, . . . , l : w1 · · · wl ∈ L)}.

Since we consider the number of strings in L that have a common prefix from L
and the activity level is defined as the number of proper prefixes of a string in L,
the k-prefix-freeness is a different concept from the activity level of a language.

Generalizations of Code Languages with Marginal Errors 267

From the definition, we can say that prefix-free languages are in fact, 0-prefix-
free. We define similar generalizations for suffix-free and infix-free languages as
follows:

Definition 2. We define a language L to be k-suffix-free (or k-infix-free) if there
is no string x in L that is a suffix (or an infix) of more than k strings in L\{x}.

We have the following observations from the definition. Note that similar
statements hold for suffix-free and infix-free languages.

Observation 1. If a language L is k-prefix-free, then L is (k+n)-prefix-free for
all n ≥ 1.

Observation 2. If a language L is prefix-free, then L is k-prefix-free for all
k ≥ 1.

We also define the following code properties from the k-prefix (suffix, infix)-
freeness.

Definition 3. We define a language L to be minimally k-prefix (suffix, infix)-
free if L is k-prefix (suffix, infix)-free but not (k−1)-prefix (suffix, infix)-free.

Definition 4. We define a language L to be finitely prefix-free (suffix-free or
infix-free) if L is k-prefix-free (k-suffix-free or k-infix-free) for a constant k.

4 Decision Algorithms

We determine whether or not a regular language given by a DFA is k-prefix-free
or finitely prefix-free. First, we consider decision problems where k is given as
part of the input in Section 4.1 and consider the problem of deciding whether
the property holds for some finite value of k in Section 4.2.

4.1 For k-prefix-free, k-suffix-free and k-infix-free Regular
Languages

Given a DFA A, we can determine whether or not L(A) is k-prefix-free or finitely
prefix-free by examining the following properties:

Lemma 1. Given a DFA A = (Q,Σ, δ, s, F), L(A) is k-prefix-free if and only
if there is no final state f ∈ F satisfying the following conditions:

L(As,f)
= ∅ and |L(Af) \ {λ}| > k. (1)

Proof. (=⇒) We prove that L(A) is k-prefix-free if there is no final state f
satisfying Condition (1). Assume that there is such a final state f satisfying the
condition. This means that there is a string w spelled out by the path from s to
f and

|L(Af) \ {λ}| > k.

268 Y.-S. Han et al.

Since there are more than k different strings that can be computed after
w, there exist more than k strings in L(A) that contain w as a proper prefix.
Therefore, L(A) is not k-prefix-free. We have a contradiction.
(⇐=) We prove that there is no final state f satisfying Condition (1) if L(A)
is k-prefix-free. Assume that L(A) is not k-prefix-free. This implies that there
exist a string w in L and more than k strings—let Pw denote the set of these
strings—that contain w as a prefix in L(A). Since A is a DFA, there is a unique
final state f that we reach by reading w and all the accepting paths for strings in
Pw must pass through f . This guarantees that |L(Af) \ {λ}| > k since |Pw| > k.
Therefore, we have a contradiction.

Lemma 2. Let A be a DFA (or an NFA) over an alphabet Σ with n states such
that L(A) is minimally k-prefix-free. Then

k ≤ |Σ| · |Σ|n−1 − 1
|Σ| − 1

.

Conversely, there exists an n-state DFA A over Σ that is minimally |Σ| ·
|Σ|n−1−1

|Σ|−1 -prefix-free.

From Lemma 1, we can design a quadratic algorithm for deciding whether
or not a language recognized by a DFA is k-prefix-free.

Theorem 1. Given a DFA A and k ∈ N, we can determine whether or not
L(A) is k-prefix-free in O(n2 · log k) time, where n = |A|.

Note that the family of k-prefix-free languages form a proper hierarchy with
respect to k. For example, if a regular language L is k-prefix-free, then L is not
necessarily (k − 1)-prefix-free. This leads us to a new problem that determines
whether or not a regular language L is minimally k-prefix-free.

Theorem 2. Given a DFA A = (Q,Σ, δ, s, F), we can find k ∈ N such that
L(A) is minimally k-prefix-free in O(n3) time, where n = |A|.
Proof. For an arbitrary final state f of A, if Af is not acyclic, then we know
that L(A) is not k-prefix-free for any k ∈ N. Otherwise, based on the property
of Lemma 1, it is possible to compute in polynomial time the cardinality of L(Af),
for each final state f , and pick the maximum value M . Then L(A) is minimally
M -prefix-free. Since M is at most O(|Σ||Q|) by Lemma 2, the runtime is

O(n2 · log |Σ|n) = O(n3)

by assuming |Σ| as a constant. ��
Now we consider the case when the input is specified by an NFA instead of

a DFA.

Lemma 3. Given an NFA A = (Q,Σ, δ, s, F), L(A) is k-prefix-free if and only
if there is no set Q′ ⊆ Q of states satisfying the following conditions:

Generalizations of Code Languages with Marginal Errors 269

(i) Q′ ∩ F
= ∅,
(ii)

⋂

q∈Q′
L(As,q)
= ∅ and

∣∣∣∣
⋃

q∈Q′
L(Aq) \ {λ}

∣∣∣∣ > k.

Proof. (=⇒) We prove that L(A) is k-prefix-free if there is no set Q′ ⊆ Q of
states satisfying the two conditions (i) and (ii). Assume that there is such a set
Q′ satisfying all these conditions. Then, there exists a string w ∈ L(A) such that
Q′ ⊆ δ(s, w) by the conditions. Furthermore, we have more than k non-empty
strings that can be spelled out by a path from a state in Q′ to a final state in F
because of condition (ii). This implies that L(A) has more than k strings that
contain w as a proper prefix. Therefore, L(A) is not k-prefix-free.
(⇐=) We prove that if L(A) is k-prefix-free, then there is no set Q′ of states
satisfying these three conditions. Assume that L(A) is not k-prefix-free. This
implies that there exist a string w in L and more than k strings having w as a
prefix in L(A). Since A accepts w, there should exist a final state f such that
f ∈ δ(s, w). We denote the set of all states that can be reached by reading w
from the initial state s in A by P . Obviously, f is in P . Since there are more than
k strings that have w as a proper prefix, there are also more than k non-empty
strings that can be spelled out by paths from states in P to some final states.
Since P satisfies conditions (i) and (ii), we have a contradiction. ��

Now we show that the problem of determining whether or not a regular
language accepted by an NFA is k-prefix-free is PSPACE-complete.

Theorem 3. Given an NFA A and k ∈ N, it is PSPACE-complete to determine
whether or not L(A) is k-prefix-free.

We also establish that given an NFA A, the problem of finding a non-negative
integer k where L(A) is minimally k-prefix-free is also PSPACE-complete.

Theorem 4. Given an NFA A, the problem of finding k ∈ N where L(A) is
minimally k-prefix-free is PSPACE-complete.

Now we consider the k-suffix-free case. The properties that characterize the
k-suffix-freeness of a language recognized by a DFA turn out to be similar to the
properties that characterize the k-prefix-freeness of an NFA. Intuitively, suffix-
freeness corresponds to the prefix-freeness of the reversed language and reversing
the transitions of a DFA makes it nondeterministic. We present necessary and
sufficient conditions for DFAs to accept k-suffix-free regular languages as follows:

Lemma 4. Given an NFA A = (Q,Σ, δ, s, F), L(A) is k-suffix-free if and only
if there is no set Q′ ⊆ Q of states satisfying the following conditions:

∣∣∣∣
⋃

q∈Q′
L(As,q) \ {λ}

∣∣∣∣ > k and
⋂

q∈Q′∪{s}
L(Aq)
= ∅. (2)

270 Y.-S. Han et al.

Proof. (=⇒) We prove that L(A) is k-suffix-free if there is a set Q′ ⊆ Q of states
satisfying Condition (2). Assume that there is a set Q′ ⊆ Q of states satisfying
the condition. From the condition

⋂

q∈Q′∪{s}
L(Aq)
= ∅,

we know that there is a common string w ∈ L(A) that is also spelled out by
paths from the states in Q′ to one of the final states. Since the cardinality of the
set of strings spelled out by the paths from the initial state to the states in Q′ is
greater than k, there are more than k strings that have w as a suffix. Since the
string w is also in L(A), L(A) is not k-suffix-free. We have a contradiction.
(⇐=) We prove that there is no set Q′ ⊆ Q of states satisfying Condition (2)
if L(A) is k-suffix-free. Assume that L(A) is not k-suffix-free. This implies that
there exist a string w ∈ L(A) and more than k strings containing w as a suffix
in L(A). Assume that there exist k1 > k strings that contain w as a suffix and
denote the strings by w1, w2, w3, . . . , wk1 . For all strings wi, 1 ≤ i ≤ k1, we can
decompose wi into w′

iw since they have the common suffix w. Then, the strings
from w′

1 to w′
k1

should be distinct and non-empty since w1, w2, w3, . . . , wk1 are
distinct and properly containing w as a suffix. Let us denote the set of states
that are reachable from the initial state s by reading w′

1, w
′
2, . . . , w

′
k1

by P ⊆ Q.
Therefore, the following inequality holds:

∣∣∣∣
⋃

q∈P

L(As,q) \ {λ}
∣∣∣∣ > k.

Moreover, there should be at least one path from each state in P and the
initial state to one of the final states of A spelling out the string w since A accepts
the strings w,w1, w2, w3, . . . , wk1 that are in fact, λ ·w,w′

1 ·w,w′
2 ·w, . . . , w′

k1
·w.

Therefore, the following inequality also holds:
⋂

q∈P∪{s}
L(Aq)
= ∅.

Now we have a contradiction since there is a set P ⊆ Q of states satisfy-
ing Condition (2). ��

We discuss the computational complexity of the decision problem for k-suffix-
free regular languages. Interestingly, it turns out to be much more complicated
than the k-prefix-free case even for DFAs.

Theorem 5. Given a DFA (or an NFA) A and k ∈ N, it is PSPACE-complete
to determine whether or not L(A) is k-suffix-free.

Theorem 6. Given a DFA (or an NFA) A, the problem of finding k ∈ N where
L(A) is minimally k-suffix-free is PSPACE-complete.

Moreover, it is immediate from the k-suffix-free case that the problem of
determining whether or not a regular language L(A) is k-infix-free is also
PSPACE-hard.

Generalizations of Code Languages with Marginal Errors 271

Corollary 1. Given a DFA (or an NFA) A and k ∈ N, it is PSPACE-hard to
determine whether or not L(A) is k-infix-free. Given a DFA (or an NFA) A, the
problem of finding k ∈ N where L(A) is minimally k-infix-free is PSPACE-hard.

Proof. We show that the problem of determining whether or not L(A) is k-infix-
free is PSPACE-hard by the reduction from the k-suffix-free case. Let L ⊆ Σ∗

be a regular language. Then, we can check the k-suffix-freeness of L by checking
the k-infix-freeness of L · {$}, where $ /∈ Σ is a new symbol.

It remains open to show that the problem of determining whether or not
L(A) is k-infix-free is in PSPACE.

4.2 For Finitely Prefix-free, Finitely Suffix-free and Finitely
Infix-free Regular Languages

We establish the following corollary in a similar way to the proof of Lemma 1.

Corollary 2. Given a DFA A = (Q,Σ, δ, s, F), L(A) is finitely prefix-free if
and only if there is no final state f ∈ F satisfying the following conditions:

L(As,f)
= ∅ and |L(Af)| = ∞.

By Corollary 2, we can determine whether or not a regular language is finitely
prefix-free in linear time when the regular language is given by a DFA.

Theorem 7. Given a DFA A, we can determine whether or not L(A) is finitely
prefix-free in O(n) time, where n = |A|.

For the NFA case, on the other hand, we need to use algorithms based on the
state-pair graphs [5] to determine whether or not a regular language accepted
by an NFA is finitely prefix-free. For example, for DFAs, we can easily decide
the prefix-freeness (including k-prefix-freeness and finitely prefix-freeness) by
observing the accepting path after the final states since all strings having the
same prefix should share the same path to spell out the prefix. However, in NFAs,
we cannot guarantee such properties. There can be several completely disjoint
paths even for a single string. Han [5] showed that it is possible to determine
whether or not a regular language given by an NFA is prefix-free, suffix-free or
infix-free using the state-pair graph in quadratic time in the size of an input.

Definition 5 (Han [5]). Given an NFA A = (Q,Σ, δ, s, F), we define the state-
pair graph GA = (V,E) of A, where V is a set of nodes and E is a set of labeled
edges, as follows:

– V = {(i, j) | i, j ∈ Q} and
– E = {((i, j), a, (x, y)) | x ∈ δ(i, a), y ∈ δ(j, a) and a ∈ Σ }.

Then, we have |GA| ≤ |Q|2 + |δ|2; namely |GA| = O(|A|2).

272 Y.-S. Han et al.

Without loss of generality, we assume that A has one final state f since we
can always make any NFA to have only one final state by introducing a new final
state f and making f to be the target state of all final states by a λ-transition.

Lemma 5. Given an NFA A = (Q,Σ, δ, s, f) and q, p ∈ Q, L(A) is finitely
prefix-free if and only if there is no path labeled by a string from (s, s) to (f, p)
in GA satisfying |L(Ap,f)| = ∞.

Proof. (=⇒) We first prove that L(A) is finitely prefix-free if there is no such
path. Assume that there is a such path labeled by a string w. By the assumption,
the cardinality of L(Ap,f) is infinite. This implies that A accepts an infinite
number of strings having w as a proper prefix. Since w ∈ L(A) by assumption,
L(A) is not finitely prefix-free.
(⇐=) We prove that if L(A) is finitely prefix-free there is no such path. Assume
that L(A) is not finitely prefix-free. This implies that there are an infinite number
of strings having a prefix w and w is accepted by A. Consider a set Q′ of states
that are reachable by reading w from the initial state of A. Since there are an
infinite number of strings having w as a prefix, there should be an infinite number
of distinct accepting paths starting from the states in Q′. If L(Ap,f) is finite for
all p ∈ Q′, it is impossible to have an infinite number of accepting paths from
the states in Q′. Thus at least one state p ∈ Q′ should have an infinite number
of accepting paths. Now we have a contradiction. ��

From the properties of the state-pair graph observed in Lemma 5, we can
determine whether or not L(A) is finitely prefix-free by exploring the existence
of such paths in the state-pair graph. Since the size of the state-pair graph is
quadratic in the size of the given NFA, the time complexity of the algorithm is
also quadratic.

Theorem 8. Given an NFA A = (Q,Σ, δ, s, f), we can determine whether or
not L(A) is finitely prefix-free in O(n2) time, where n = |A|.
Proof. First, we check whether or not L(Aq) is finite for each q ∈ Q. This
procedure takes O(n2) time since we can check the existence of a cycle of an
NFA in linear time by depth-first traversal. Then, we explore the state-pair
graph to check whether or not there is a path from (s, s) to (f, p) in the state-
pair graph GA when L(Ap) is infinite. As the size of GA is quadratic in the size
of A, the algorithm takes O(n2) time. ��

Note that the decision algorithm for finitely infix-freeness is relatively more
complicated than the finitely prefix-free case.

Lemma 6. Given an NFA A = (Q,Σ, δ, s, f) and q, p ∈ Q, L(A) is finitely
infix-free if and only if there is no path labeled by a string from (s, q) to (f, p)
where f
= p in GA satisfying |L(As,q) ∪ L(Ap,f)| = ∞.

Proof. (=⇒) We prove that L(A) is finitely infix-free if there is no such path.
Assume that there is a such path labeled by a string w. Then, w is in L(A) and

Generalizations of Code Languages with Marginal Errors 273

L(Aq,p). Since the cardinality of L(As,q)∪L(Ap,f) is infinite by assumption, the
cardinality of L(As,q) or L(Ap,f) should be infinite. We can easily see that there
are an infinite number of strings containing w as an infix in L(A). Therefore,
L(A) is not finitely infix-free. We have a contradiction.
(⇐=) Here we prove that if L(A) is finitely infix-free, then there is no such path.
Assume that L(A) is not finitely infix-free. This means that for a string w ∈
L(A), we have an infinite number of strings in L(A) containing w as an infix.
Consider all state pairs q, p where w ∈ L(Aq,p). If L(As,q) ∪ L(Ap,f) is finite for
all state pairs, the number of strings containing w as an infix cannot be infinite.
Therefore, L(As,q) ∪ L(Ap,f) should be infinite. We conclude the proof. ��

Even though the decision algorithm for finitely infix-freeness is a bit more
complicated than the finitely prefix-free case, we still have a quadratic algorithm
for the problem as follows:

Theorem 9. Given an NFA A = (Q,Σ, δ, s, f), we can determine whether or
not L(A) is finitely infix-free in O(n2) time, where n = |A|.
Proof. We first construct a state-pair graph GA of A. Before exploring the exis-
tence of the paths, we first check whether or not L(As,q) and L(Aq,f) is finite.
This procedure takes O(n2) time.

Once we finish the checking procedure, for all states q ∈ Q except s, we
run the depth-first search from (s, q) to (f, p) to check whether or not there
exists a such path. If there exists a such path, then we check whether or not
L(As,q)∪L(Ap,f) is finite by simply checking whether or not both languages are
finite. Then, for all states q ∈ Q except f , we run the depth-first search from
(s, s) to (f, q) to check whether or not there exists a such path. Since the depth-
first search takes O(|V |+|E|) time when we are given a graph G = (V,E), we can
check whether or not there exists a path in O(n2) time. Overall, our algorithm
takes O(n2) time. ��

We note that the finitely suffix-freeness can be checked in a converse way to
the finitely prefix-free case.

Lemma 7. Given an NFA A = (Q,Σ, δ, s, f) and q ∈ Q, L(A) is finitely suffix-
free if and only if there is no path labeled by a string from (s, q) to (f, f) in GA

satisfying |L(As,q)| = ∞.

Proof. The proof is immediate from Lemma 5. We just exchange the initial
state s and the final state f from A, and reverse the directions of all transitions.
Then the new NFA accepts L(A)R—the reverse of L(A). Then, we can decide
whether or not L(A) is finitely suffix-free by testing the finitely prefix-freeness
of L(A)R. ��

Since the finitely suffix-freeness can be tested by reversing the NFA and
testing the finitely prefix-freeness, we establish the following result.

Theorem 10. Given an NFA A, we can determine whether or not L(A) is
finitely suffix-free O(n2) time, where n = |A|.

274 Y.-S. Han et al.

5 Undecidability Results for (Linear) Context-free
Languages

It is known that given a (linear) context-free language L, it is undecidable
whether or not L is prefix-free [12]. We establish similar undecidability results
for the code properties considered here.

Theorem 11. There is no algorithm that determines whether or not a given
linear language L is k-prefix (suffix, infix)-free.

Theorem 12. There is no algorithm that determines whether or not a given
linear language L is finitely prefix (suffix, infix)-free.

6 Conclusions

We have introduced an extension of prefix-free, suffix-free and infix-free lan-
guages by allowing marginal errors. We have defined k-prefix-free, k-suffix-free
and k-infix-free languages. For example, a k-prefix-free language L can have at
most k strings containing any other string w in L as a prefix. We, then, have
considered more general versions of k-prefix-free, k-suffix-free and k-infix-free
languages allowing a finite number of such strings.

We have examined the time complexity of the decision problems for these
subfamilies. Given a DFA, we have a quadratic algorithm for the decision prob-
lem of k-prefix-freeness. However, we have shown that it is PSPACE-complete to
determine whether or not a regular language given by an NFA is k-prefix-free.
For the k-suffix-free and k-infix-free cases, we have shown that it is PSPACE-
hard for both DFAs and NFAs. We have designed polynomial time algorithms
based on the state-pair graph construction that decide whether or not a regu-
lar language (given by an NFA) is finitely prefix- (respectively, suffix- or infix-)
free. We also have established the undecidability results for (linear) context-free
languages. In future, we plan to investigate the state complexity of these new
subfamilies of regular languages.

References

1. Béal, M.P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundamenta Informaticae 56(1,2), 121–135
(2002)

2. Berstel, J., Perrin, D.: Theory of codes. Academic Press, Inc. (1985)
3. Clarke, C.L.A., Cormack, G.V.: On the use of regular expressions for searching

text. ACM Transactions on Programming Languages and Systems 19(3), 413–426
(1997)

4. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words.
Information Processing Letters 67(3), 111–117 (1998)

5. Han, Y.S.: Decision algorithms for subfamilies of regular languages using state-pair
graphs. Bulletin of the European Association for Theoretical Computer Science 93,
118–133 (2007)

Generalizations of Code Languages with Marginal Errors 275

6. Han, Y.S.: An improved prefix-free regular-expression matching. International
Journal of Foundations of Computer Science 24(5), 679–687 (2013)

7. Han, Y.S., Salomaa, K., Wood, D.: Intercode regular languages. Fundamenta
Informaticae 76(16), 113–128 (2007)

8. Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages.
International Journal of Foundations of Computer Science 17(2), 379–393 (2006)

9. Han, Y.S., Wang, Y., Wood, D.: Prefix-free regular languages and pattern match-
ing. Theoretical Computer Science 389(1–2), 307–317 (2007)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing
Company Incorporated (2006)

11. Huffman, D.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098–1101 (1952)

12. Jürgensen, H., Konstantinidis, S.: Codes. Word, Language, Grammar, Handbook
of Formal Languages 1, 511–607 (1997)

13. Kari, L., Konstantinidis, S., Kopecki, S.: On the maximality of languages with
combined types of code properties. Theoretical Computer Science 550, 79–89
(2014)

14. Kari, L., Mahalingam, K.: DNA Codes and Their Properties. In: Mao, C.,
Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg
(2006)

15. Konitzer, M., Simon, H.U.: DFA with a Bounded Activity Level. In: Dediu, A.-H.,
Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol.
8370, pp. 478–489. Springer, Heidelberg (2014)

16. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial dna word design.
Journal of Computational Biology 8(3), 201–219 (2001)

17. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52(4), 264–268 (1946)

18. Wood, D.: Theory of Computation. Harper & Row (1987)

	Generalizations of Code Languages with Marginal Errors
	1 Introduction
	2 Preliminaries
	3 k-prefix-free, k-suffix-free and k-infix-freeness
	4 Decision Algorithms
	4.1 For k-prefix-free, k-suffix-free and k-infix-free Regular Languages
	4.2 For Finitely Prefix-free, Finitely Suffix-free and Finitely Infix-free Regular Languages

	5 Undecidability Results for (Linear) Context-free Languages
	6 Conclusions
	References

