
Outfix-Guided Insertion

(Extended Abstract)

Da-Jung Cho1, Yo-Sub Han1, Timothy Ng2, and Kai Salomaa2(B)

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajungcho,emmous}@yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada

{ng,ksalomaa}@cs.queensu.ca

Abstract. Motivated by work on bio-operations on DNA strings, we
consider an outfix-guided insertion operation that can be viewed as a
generalization of the overlap assembly operation on strings studied pre-
viously. As the main result we construct a finite language L such that the
outfix-guided insertion closure of L is nonregular. We consider also the
closure properties of regular and (deterministic) context-free languages
under the outfix-guided insertion operation and decision problems related
to outfix-guided insertion. Deciding whether a language recognized by a
deterministic finite automaton is closed under outfix-guided insertion can
be done in polynomial time.

Keywords: Language operations · Closure properties · Regular lan-
guages

1 Introduction

Gene insertion and deletion are basic operations occurring in DNA recombina-
tion in molecular biology. Recombination creates a new DNA strand by cutting,
substituting, inserting, deleting or combining other strands. Possible errors in
this process directly affect DNA strands and impair the function of genes. Errors
in DNA recombination cause mutation that plays a part in normal and abnormal
biological processes such as cancer, the immune system, protein synthesis and
evolution [1]. Since mutational damage may or may not be easily identifiable,
researchers deliberately generate mutations so that the structure and biological
activity of genes can be examined in detail. Site-directed mutagenesis is one of
the most important techniques in laboratory for generating mutations on specific
sites of DNA using PCR (polymerase chain reaction) based methods [7,11]. For a
site-directed insertion mutagenesis by PCR, the mutagenic primers are typically
designed to include the desired change, which could be base addition [15,16]. This
enzymatic reaction occurs in the test tube with a DNA strand and predesigned
primers in which the DNA strand includes a target region, and a predesigned

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 102–113, 2016.
DOI: 10.1007/978-3-662-53132-7 9

Outfix-Guided Insertion 103

primer includes a complementary region of the target region. The complemen-
tary region of primers leads it to hybridize the target DNA region and generate
a desired insertion on a specific site as a mutation. Figure 1 illustrates the pro-
cedure of site-directed insertion mutagenesis by PCR.

Input: A given DNA

Output: A desired DNA

Inserted part

Step 1: Cut given DNA using primers a and b

mutagenic primer a

mutagenic primer b

Step 2: Annealing inserted sequence using primers c and d

mutagenic primer c

mutagenic primer d

Product A

Product B

Product C

Step 3: Ligation PCR with product A,B and C

Desired DNA

Inserted part

Fig. 1. An example of site-directed insertion mutagenesis by PCR. Given a DNA
sequence and four predesigned primers a, b, c and d, two primers a and b lead the
DNA sequence to break and extend into two products A and B under enzymatic reac-
tion (Step 1). Two primers c and d complementarily bind to desired insertion region
according to the overlapping region and extend into product C (Step 2). Then, the
products A,B and C join together to create recombinant DNA that include the desired
insertion (Step 3).

104 D.-J. Cho et al.

In formal language theory, the insertion of a string means adding a substring
to a given string and deletion of a string means removing a substring. The
insertions occurring in DNA strands are in some sense context-sensitive and Kari
and Thierrin [13] modeled such bio-operations using contextual insertions and
deletions [8,19]. A finite set of insertion-deletion rules, together with a finite set
of axioms, can be viewed as a language generating device. Contextual insertion-
deletion systems in the study of molecular computing have been used e.g. by
Daley et al. [3], Krassovitskiy et al. [14] and Takahara and Yokomori [21]. Further
theoretical studies on the computational power of insertion-deletion systems were
done e.g. by Margenstern et al. [17] and Pǎun et al. [18]. Enaganti et al. [6] have
studied related operations to model the action of DNA polymerase enzymes.

We formalize site-directed insertion mutagenesis by PCR and define a new
operation outfix-guided insertion that partially inserts a string y into a string x
when two non-empty substrings of x match with an outfix of y, see Fig. 2(b).
The outfix-guided insertion is an overlapping variant of the ordinary insertion
operation, analogously as the overlap assembly [2,4,5], cf. Fig. 2(a), is a variant
of the ordinary string concatenation operation.

x

y

x

y

(a) Overlap assembly (b) Outfix-guided insertion

u v

v w

v wu

u v

u v

w

w

u v

Fig. 2. (a) If suffix v of x overlaps with the prefix v of y, then the overlap assembly
operation partially catenates x and y appending suffix w of y to x. (b) If the outfix of
y consisting of u and v matches the substring uv of x, then the outfix-guided insertion
operation inserts w between u and v in the string x.

This paper investigates the language theoretic closure properties of outfix-
guided insertion and iterated outfix-guided insertion. Note that since outfix-
guided insertion, similarly as overlap assembly, is not associative, there are more
than one way to define the iteration of the operation. We consider a general
outfix-guided insertion closure of a language which is defined analogously as the
iterated overlap assembly by Enaganti et al. [4]. Iterated (overlap) assembly is
defined by Csuhaj-Varju et al. [2] in a different way, which we call right one-sided
iteration of an operation.

It is fairly easy to see that regular languages are closed under outfix-guided
insertion. Closure of regular languages under outfix-guided insertion closure
turns out to be less obvious. It is well known that regular languages are not closed

Outfix-Guided Insertion 105

under the iteration of the ordinary (non-overlapping) insertion operation [12].
However, the known counter-examples, nor their variants, do not work for iter-
ated outfix-guided insertion. Here using a more involved construction we show
that there exists even a finite language L such that the outfix-guided insertion
closure of L is nonregular. On the other hand, we show that the outfix-guided
insertion closure of a unary regular language is always regular.

It is well known that context-free languages are closed under ordinary (non-
iterated) insertion. We show that context-free languages are not closed under
outfix-guided insertion. The outfix-guided insertion of a regular language into a
context-free language (or vice versa) is always context-free. Also we establish that
a similar closure property does not hold for the deterministic context-free and
the regular languages. Finally in the last section we consider decision problems
on whether a language is closed under outfix-guided insertion (or og-closed).
We give a polynomial time algorithm to decide whether a language recognized
by a deterministic finite automaton (DFA) is og-closed. We show that for a given
context-free language L the question of deciding whether or not L is og-closed
is undecidable. Most proofs are omitted in this extended abstract.

2 Definition of (Iterated) Outfix-Guided Insertion

We assume the reader to be familiar with the basics of formal languages, in
particular, with the classes of regular languages and (deterministic) context-
free languages [20,22]. More details on variants of the insertion operation and
iterated insertion can be found in [12].

The symbol Σ stands always for a finite alphabet, Σ∗ is the set of strings
over Σ, |w| is the length of a string w ∈ Σ∗, wR is the reversal of w and ε is the
empty string. For i ∈ N, Σ≥i is the set of strings of length at least i.

If w = xy, x, y ∈ Σ∗, we say that x is a prefix of w and y is a suffix of w.
If w = xyz, x, y, z ∈ Σ∗, we say that (x, z) is an outfix of w. If additionally
x �= ε and z �= ε, (x, z) is a non-trivial outfix of w. Sometimes (in particular,
when talking about the outfix-guided insertion operation) we refer to an outfix
(x, z) simply as a string xz (when it is known from the context what are the
components x and z). For example, with Σ = {a, b, c} and w = abca the non-
trivial outfixes of w are aa, aba, aca and abca.

We begin by recalling some notions associated with the non-overlapping
insertion operation.1 The non-overlapping insertion of a string y into a string
x is defined as the set of strings x

nol← y = {x1yx2 | x = x1x2}. The
insertion operation is extended in the natural way for languages by setting
L1

nol← L2 =
⋃

x∈L1,y∈L2
x

nol← y. Following Kari [12] we define the left-iterated
insertion of L2 into L1 inductively by setting

LI
(0)(L1, L2) = L1 and LI

(i+1)(L1, L2) = LI
(i)(L1, L2)

nol← L2, i ≥ 0.

1 We use the term “non-overlapping” to make the distinction clear to outfix-guided
insertion which will be the main topic of this paper.

106 D.-J. Cho et al.

The left-iterated insertion closure of L2 into L1 is LI
∗(L1, L2) =

⋃∞
i=0

LI
(i)(L1, L2). It is well known that the iterated non-overlapping insertion oper-

ation does not preserve regularity [10,12]. The left-iterated insertion closure of
the string ab into itself is nonregular because LI

∗(ab, ab) ∩ a∗b∗ = {aibi | i ≥ 0}.
Next we define the main notion of this paper which can be viewed as a

generalization of the overlap assembly operation [2,4]. The “inside part” of a
string y can be outfix-guided inserted into a string x if a non-trivial outfix of y
overlaps with a substring of x in a position where the insertion occurs. This differs
from contextual insertion (as defined in [13]) in the sense that y must actually
contain the outfix that is matched with a substring of x (and additionally [13]
specifies a set of contexts where an insertion can occur).

Definition 1. The outfix-guided insertion of a string y into a string x is defined
as

x
ogi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε, v �= ε}.

Using the above notations, when x1uzvx2 ∈ x
ogi← y we say that the nonempty

substrings u and v are the matched parts. Note that the matched parts form a
non-trivial outfix of the inserted string y.

Since we are almost exclusively dealing with outfix-guided insertion, in the
following for notational simplicity we write just ← in place of

ogi←. Outfix-guided
insertion is extended in the usual way for languages by setting L1 ← L2 =⋃

wi∈Li,i=1,2 w1 ← w2.

Example 2. Outfix-guided insertion is not associative. Let Σ = {a, b, c, d}. Now
abcd ∈ (acd ← abc) ← abcd but abc ← abcd = ∅.

Since outfix-guided insertion is non-associative we define the (i + 1)th iter-
ated operation (analogously as was done with iterated overlap assembly [4]) by
inserting to a string of the ith iteration another string of the ith iteration.

Definition 3. For a language L define inductively

OGI
(0)(L) = L, and OGI

(i+1)(L) = OGI
(i)(L) ← OGI

(i)(L), i ≥ 0.

The outfix-guided insertion closure of L is OGI
∗(L) =

⋃∞
i=0 OGI

(i)(L).

For talking about specific iterated outfix-guided insertions, we use the nota-

tion x
[y]⇒ z to indicate that string z is in x ← y, x, y, z ∈ Σ∗. A sequence of

steps

x
[y1]⇒ z1

[y2]⇒ z2
[y3]⇒ · · · [ym]⇒ zm, m ≥ 1,

is called a derivation of zm from x.
When we want to specify the matched substrings, they are indicated by

underlining. If x = x1uvx2 derives z by inserting uzv (where u and v are the
matched prefix and suffix, respectively,) this is denoted

x1uvx2
uyv⇒ z.

Outfix-Guided Insertion 107

Also, sometimes underlining is done only in the inserted string if this makes it
clear what must be the matched substrings in the original string.

By a trivial derivation step we mean a derivation x
[x]⇒ x where x is obtained

from itself by selecting the outfix to consist of the entire string x. Every string
of length at least two can be obtained from itself using a trivial derivation step.
This means, in particular, that for any language L, L − (Σ ∪ {ε}) ⊆ OGI

(1)(L).
The sets OGI

(i)(L), i ≥ 1, cannot contain strings of length less than two and,
consequently OGI

(i)(L) ⊆ OGI
(i+1)(L), for all i ≥ 1.

Definition 3 iterates the outfix-guided insertion by inserting a string from the
ith iteration of the operation into another string in the ith iteration. Since the
operation is non-associative we can define iterated insertion in more than one
way. The right one-sided insertion of L2 into L1 outfix-guided inserts a string
of L2 into L1 and the iteration of the operation inserts a string obtained in the
process into L1. The iterated left one-sided outfix-guided insertion is defined
symmetrically. In fact, when considering iterated ordinary insertion, Kari [12]
uses a definition that we call left one-sided iterated insertion (and the operation
was defined as LI∗(L1, L2) above). Csuhaj-Varju et al. [2] define iterated overlap
assembly using right one-sided iteration of the operation.

Definition 4. Let L1 and L2 be languages. The right one-sided iterated inser-
tion of L2 into L1 is defined inductively by setting ROGI

(0)(L1, L2) = L2 and
ROGI

(i+1)(L1, L2) = L1 ← ROGI
(i)(L1, L2), i ≥ 0. The right one-sided inser-

tion closure of L2 into L1 is ROGI
∗(L1, L2) =

⋃∞
i=0 ROGI

(i)(L1, L2).
The left one-sided iterated insertion of L2 into L1 is defined inductively by

setting LOGI
(0)(L1, L2) = L1 and LOGI

(i+1)(L1, L2) = LOGI
(i)(L1, L2) ← L2,

i ≥ 0. The left one-sided insertion closure of L2 into L1 is LOGI
∗(L1, L2) =

⋃∞
i=0 LOGI

(i)(L1, L2).

The one-sided iterated insertion closures are defined for two argument lan-
guages. Naturally it would be possible to extend also the definition of unre-
stricted iterated outfix-guided insertion for two arguments. Note that for any lan-
guage L, OGI

(1)(L) = LOGI
(1)(L,L) = ROGI

(1)(L,L) = L ← L. On the other
hand, the iterated version of unrestricted outfix-guided insertion is considerably
more general than the one-sided variants. For any language L, ROGI

∗(L,L) and
LOGI

∗(L,L) are always included in OGI
∗(L) and, in general, the inclusions can

be strict.

Example 5. Let Σ = {a, b, c} and L1 = {aacc}, L2 = {abc}. Now
ROGI

∗(L1, L2) = a+bc+. For example, by inserting abc into aacc derives aabcc:

aacc
abc⇒ aabcc. (1)

A right one-sided iterated insertion of L2 into L1 could then be continued, for

example, as aacc
aabcc⇒ aaabcc. In this way right one-sided derivations can gen-

erate all strings of a+bc+. Since all inserted strings must contain the symbol b,

108 D.-J. Cho et al.

the first matched part must always belong to a+ and the second matched part
must belong to c+. This means that ROGI

∗(L1, L2) ⊆ a+bc+.
On the other hand, LOGI

∗(L1, L2) = {aabcc, aacc}. In a left one-sided iter-
ated insertion of L2 into L1, the only non-trivial derivation step is (1).

By denoting L3 = L1 ∪ L2, it can be verified that

OGI
∗(L3) = ROGI

∗(L3, L3) = LOGI
∗(L3, L3) = a+bc+ ∪ a2a∗c2c∗.

The next example illustrates that unrestricted outfix-guided insertion closure
of a language L′ can be larger than LOGI

∗(L′, L′). The language L used in the
proof of Theorem 9 in the next section gives an example where the unrestricted
insertion closure is larger than ROGI

∗(L,L) (as explained before Proposition 15).

Example 6. Let Σ = {a, b, c, d, e, f} and L′ = {abce, bcde, acdef}. We note that

abce
bcde⇒ abcde. Furthermore, it is easy to verify that by outfix-guided insert-

ing strings of L′ into L′ ∪ {abcde} one cannot produce more strings and, thus,
LOGI

∗(L′, L′) = L′ ∪ {abcde}. On the other hand, we have

acdef
abcde⇒ abcdef ∈ OGI

(2)(L′).

3 Outfix-Guided Insertion and Regular Languages

As can be expected, the family of regular languages is closed under outfix-guided
insertion. On the other hand, the answer to the question whether regular lan-
guages are closed under outfix-guided insertion closure seems less clear. From
Kari [12] we recall that it is easy to construct examples that establish the non-
closure of regular languages under iterated non-overlapping insertion. However,
such straightforward counter-examples do not work for the unrestricted outfix-
guided insertion closure. Using a more involved construction we establish that
even the outfix-guided insertion closure of a finite language need not be regular.
The nonclosure of regular languages under right one-sided insertion closure is
established by a more straightforward construction.

Proposition 7. If L1 and L2 are regular, then so is L1 ← L2.

It seems difficult to extend the proof of Proposition 7 for outfix-guided inser-
tion closure because on strings with iterated insertions, the computations on
corresponding prefix-suffix pairs can, in general, depend on each other and when
processing a part inserted in between, an NFA would need to keep track of such
pairs, as opposed to simply keep track of a set of states. On the other hand, it is
not equally easy as in the case of non-overlapping iterated insertion to construct
a counter-example, i.e., a regular language whose outfix-guided insertion closure
is nonregular.

Next we show that regular languages, indeed, are not closed under iter-
ated outfix-guided insertion. For the construction we use the following technical
lemma.

Outfix-Guided Insertion 109

Lemma 8. Let Σ = {a1, a2, a3, b1, b2, b3} and define

L1 = {a3a1a2b1, a2b2b1b3, a1a2a3b2, a3b3b2b1, a2a3a1b3, a1b1b3b2}.

Then L1 ← L1 = L1.

Theorem 9. There exists a finite language L such that OGI
∗(L) is nonregular.

Proof (Sketch). Let Σ = {a1, a2, a3, b1, b2, b3} and define

L = {$a3a1b1b3$, a3a1a2b1, a2b2b1b3, a1a2a3b2, a3b3b2b1, a2a3a1b3, a1b1b3b2}.

Note that L−{$a3a1b1b3$} is equal to the language L1 from Lemma 8. For ease
of discussion we introduce names for the strings of L1: y1 = a3a1a2b1, y2 =
a2b2b1b3, y3 = a1a2a3b2, y4 = a3b3b2b1, y5 = a2a3a1b3, y6 = a1b1b3b2. and
define the finite set

Smiddle = {a1b1, a1a2b1, a1a2b2b1, a1a2a3b2b1, a1a2a3b3b2b1, a1a2a3a1b3b2b1}.

We claim that

OGI
∗(L) = {$a3(a1a2a3)iz(b3b2b1)ib3$ | i ≥ 0, z ∈ Smiddle}. (2)

To establish the inclusion from right to left, we note that

$a3a1b1b3$
[y1]⇒ $a3a1a2b1b3$

[y2]⇒ $a3a1a2b2b1b3$
[y3]⇒ $a3a1a2a3b2b1b3$

[y4]⇒
$a3a1a2a3b3b2b1b3$

[y5]⇒ $a3a1a2a3a1b3b2b1b3$
[y6]⇒ $a3a1a2a3a1b1b3b2b1b3$ = w1.

The first five insertions generate the strings $a3zb3$, z ∈ Smiddle, and the
last string w1 again has “middle part” a3a1b1b3. By cyclically outfix-guided
inserting the strings y1, . . . y6 into w1 we get all strings $a3(a1a2a3)z(b3b2b1)b3$,
z ∈ Smiddle, and the string $a3(a1a2a3)2a1b1(b3b2b1)2b3$. By simple induction it
follows that OGI

∗(L) contains the right side of (2).
To establish the converse inclusion, we verify using Lemma 8 that all strings

obtained by iterated outfix-guided insertion from strings of L must be obtained
as above, that is, all non-trivial derivations producing new strings must be as
above. �

We conjecture that the iterated outfix-guided insertion closure of a regular
language need not be even context-free. However, a construction of such a lan-
guage would seem to be considerably more complicated than the construction
used in the proof of Theorem 9.

Contrasting the result of Theorem 9 we show that unary regular languages
are closed under iterated outfix-guided insertion. The construction is based on a
technical lemma which shows that, for unary languages, outfix-guided insertion
closure can be represented as a variant of the iterated overlap assembly [2,4].

110 D.-J. Cho et al.

Definition 10. Let x, y ∈ Σ∗. The 2-overlap catenation of x and y, x�2
y, is

defined as

x�2
y = {z ∈ Σ+ | (∃u,w ∈ Σ∗)(∃v ∈ Σ≥2) x = uv, y = vw, z = uvw}.

For L ⊆ Σ∗, we define inductively 2OC
(0)(L) = L and 2OC

(i+1)(L) = 2OC
(i)

(L)�22OC
(i)(L), i ≥ 0. The 2-overlap catenation closure of L is 2OC

∗(L) =
⋃∞

i=0 2OC
(i)(L).

Due to commutativity of unary languages we get the following property which
will be crucial for establishing closure of unary regular languages under outfix-
guided insertion closure.

Lemma 11. If x, y ∈ a∗ are unary strings, then x ← y = x�2
y.

Corollary 12. If L is a unary language then OGI
∗(L) = 2OC

∗(L).

The 2-overlap closure of a regular language is always regular. The construc-
tion does not depend on a language being unary, so we state the result for regular
languages over an arbitrary alphabet. Csuhaj-Varju et al. [2] have shown that
iterated overlap assembly preserves regularity. The proof of Lemma 13 is inspired
by Theorem 4 of [2] but does not follow from it because [2] defines iteration of
operations as right one-sided iteration and, furthermore, 2-overlap catenation
has an additional length restriction on the overlapping strings.

Lemma 13. The 2-overlap catenation closure of a regular language is regular.

By Corollary 12 and Lemma 13 we have shown that unary regular lan-
guages are closed under outfix-guided insertion closure, contrasting the result of
Theorem 9 for general regular languages.

Theorem 14. The outfix-guided insertion closure of a unary regular language
is always regular.

The left and right one-sided insertion closures are restricted variants of
the general outfix-guided insertion closure, so Theorem9 does not, at least
not directly, imply the existence of regular languages L1 and L2 such that
LOGI

∗(L1, L2) or ROGI
∗(L1, L2) are non-regular. Here we show that the one-

sided outfix-guided insertion closures are not, in general, regularity preserving.
For left-one one-sided outfix-guided insertion closure the construction is similar
to that used in the proof of Theorem 9. However, this construction does not
work for right one-sided closure because if L is the language used in the proof
of Theorem 9, then ROGI

∗(L,L) is the finite language L ∪ {$a3a1a2b1b3$}.

Proposition 15. There exist finite languages L1, L2, L3 and L4 such that
ROGI

∗(L1, L2) and LOGI
∗(L3, L4) are non-regular.

Outfix-Guided Insertion 111

4 Outfix-Guided Insertion and Context-Free Languages

It is well known that the family of context-free languages is closed under ordi-
nary insertion. Contrasting the result of Proposition 7 we show that context-free
languages are not closed under (non-iterated) outfix-guided insertion.

Theorem 16. There exists a context-free language L such that L ← L is not
context-free.

It follows that context-free languages are not closed under one-sided outfix-
guided iteration because, for any language L, OGI

(1)(L) = ROGI
(1)(L,L) =

LOGI
(1)(L,L) = L ← L. On the other hand, the outfix-guided insertion of

a regular (respectively, context-free) language into a context-free (respectively,
regular) language is always regular.

Theorem 17. If L1 is context-free and L2 is regular, then L1 ← L2 and L2 ←
L1 are context-free.

The analogy of Theorem 17 does not hold for deterministic context-free lan-
guages. Techniques for proving that a language is not deterministic context-free
are known already from [9].

Theorem 18. If L1 is deterministic context-free and L2 is regular, the lan-
guages L1 ← L2 or L2 ← L1 need not be deterministic context-free.

Theorem 16 raises the question how complex languages can be obtained from
context-free languages using iterated outfix-guided insertion. Note that if L1 and
L2 are context-free, it is easy to verify that L1 ← L2 is at least deterministic
context-sensitive.

Proposition 19. If L1 and L2 are context-free then ROGI
∗(L1, L2) and LOGI

∗

(L1, L2) are context-sensitive.

In the proof of Proposition 19 it is sufficient to know that the languages
L1 and L2 are context-sensitive, and as a consequence it follows that context-
sensitive languages are closed under one-sided outfix-guided insertion closure.

Corollary 20. If L1 and L2 are context-sensitive then so are ROGI
∗(L1, L2)

and LOGI
∗(L1, L2).

We conjecture that, for any context-free language L, OGI
∗(L) must be

context-sensitive. Constructing a linear bounded automaton for OGI
∗(L) is more

difficult than in the case of the right or left one-sided insertion closures, because
a direct simulation of a derivation of w ∈ OGI

∗(L) (i.e., simulation of the iter-
ated outfix-guided insertion steps producing w) would need to remember, at a
given time, an unbounded number of substrings of the input.

Also we do not know how to make the procedure in the proof of Proposition 19
deterministic and it remains open whether the one-sided outfix-guided insertion
closures of context-free languages are always deterministic context-sensitive.

112 D.-J. Cho et al.

5 Deciding Closure Under Outfix-Guided Insertion

We say that a language L is closed under outfix-guided insertion, or og-closed
for short, if outfix-guided inserting strings of L into L does not produce strings
outside of L, that is, (L ← L) ⊆ L.

A natural algorithmic problem is then to decide for a given language L
whether or not L is og-closed. If L is regular, by Proposition 7, we can decide
whether or not L is og-closed. For a given DFA A, Proposition 7 yields only an
NFA for the language L(A) ← L(A). In general, the NFA equivalence or inclu-
sion problem is PSPACE complete [22], however, inclusion of an NFA language
in the language L(A) can be tested efficiently when A is deterministic.

Proposition 21. There is a polynomial time algorithm to decide whether for a
given DFA A the language L(A) is og-closed.

The method used in Proposition 21 does not yield an efficient algorithm if the
regular language L is specified by an NFA. The complexity of deciding og-closure
of a language accepted by an NFA remains open. On the other hand, using a
reduction from the Post Correspondence Problem it follows that the question
whether or not a context-free language is og-closed in undecidable.

Theorem 22. For a given context-free language L, the question whether or not
L is og-closed is undecidable.

6 Conclusion

Analogously with the recent overlap assembly operation [2,4], we have intro-
duced an overlapping insertion operation on strings and have studied closure
and decision properties of the outfix-guided insertion operation. While closure
properties of non-iterated outfix-guided insertion are straightforward to estab-
lish, the questions become more involved for the outfix-guided insertion closure.
As the main result we have shown that the outfix-guided insertion closure of a
finite language need not be regular.

Much work remains to be done on outfix-guided insertion. One of the main
open questions is to determine upper bounds for the complexity of the outfix-
guided insertion closures of regular languages. Does there exist regular languages
L such that the outfix-guided insertion closure of L is non-context-free?

Acknowledgments. Cho and Han were supported by the Basic Science Research Pro-
gram through NRF funded by MEST (2015R1D1A1A01060097), the Yonsei University
Future-leading Research Initiative of 2015 and the International Cooperation Program
managed by NRF of Korea (2014K2A1A2048512). Ng and Salomaa were supported by
Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.

Outfix-Guided Insertion 113

References

1. Bertram, J.S.: The molecular biology of cancer. Mol. Asp. Med. 21(6), 167–223
(2000)

2. Csuhaj-Varju, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages.
Theoret. Comput. Sci. 374, 74–81 (2007)

3. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual inser-
tions/deletions with applications to biomolecular computation. In: String Process-
ing and Information Retrieval Symposium, pp. 47–54 (1999)

4. Enaganti, S., Ibarra, O., Kari, L., Kopecki, S.: On the overlap assembly of strings
and languages. Nat. Comput. (2016). dx.doi.org/10.1007/s11047-015-9538-x

5. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA over-
lap assembly, manuscript (2016)

6. Enaganti, S.K., Kari, L., Kopecki, S.: A formal language model of dna polymerase
enzymatic activity. Fundam. Inform. 138, 179–192 (2015)

7. Flavell, R., Sabo, D., Bandle, E., Weissmann, C.: Site-directed mutagenesis: effect
of an extracistronic mutation on the in vitro propagation of bacteriophage qbeta
RNA. Proc. Natl. Acad. Sci. 72(1), 367–371 (1975)

8. Galiukschov, B.: Semicontextual grammars (in Russian). Mat. Log. Mat.
Lingvistika 38–50 (1981)

9. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9,
620–648 (1966)

10. Haussler, D.: Insertion languages. Inf. Sci. 31, 77–89 (1983)
11. Hemsley, A., Arnheim, N., Toney, M.D., Cortopassi, G., Galas, D.J.: A simple

method for site-directed mutagenesis using the polymerase chain reaction. Nucleic
Acids Res. 17(16), 6545–6551 (1989)

12. Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University
of Turku (1991)

13. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

14. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)

15. Lee, J., Shin, M.K., Ryu, D.K., Kim, S., Ryu, W.S.: Insertion and deletion muta-
genesis by overlap extension PCR. In: Braman, J. (ed.) In Vitro Mutagenesis Pro-
tocols, 3rd edn, pp. 137–146. Humana Press, New York (2010)

16. Liu, H., Naismith, J.H.: An efficient one-step site-directed deletion, insertion, single
and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8(1), 91–101
(2008)

17. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

18. Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characteriza-
tions of languages in Chomsky hierarchy by means of insertion-deletion systems.
Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)

19. Pǎun, G.: On semicontextual grammars. Bull. Math. Soc. Sci. Math. Rouman. 28,
63–68 (1984)

20. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, Cambridge (2009)

21. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2, 321–336 (2003)

22. Yu, S.: Regular languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/s11047-015-9538-x

	Outfix-Guided Insertion
	1 Introduction
	2 Definition of (Iterated) Outfix-Guided Insertion
	3 Outfix-Guided Insertion and Regular Languages
	4 Outfix-Guided Insertion and Context-Free Languages
	5 Deciding Closure Under Outfix-Guided Insertion
	6 Conclusion
	References

