
Nondeterministic Seedless Oritatami Systems
and Hardness of Testing Their Equivalence

Yo-Sub Han1, Hwee Kim1(B), Makoto Ota2, and Shinnosuke Seki2

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemum-Gu, Seoul 120-749, Republic of Korea

{emmous,kimhwee}@yonsei.ac.kr
2 University of Electro-Communications, 1-5-1,

Chofugaoka, Chofu, Tokyo 182-8585, Japan
o1111032@edu.cc.uec.ac.jp, s.seki@uec.ac.jp

Abstract. The oritatami system (OS) is a model of computation by
cotranscriptional folding, being inspired by the recent experimental
succeess of RNA origami to self-assemble an RNA tile cotranscription-
ally. The OSs implemented so far, including binary counter and Tur-
ing machine simulator, are deterministic, that is, uniquely fold into one
conformation, while nondeterminism is intrinsic in biomolecular folding.
We introduce nondeterminism to OS (NOS) and propose an NOS that
chooses an assignment of Boolean values nondeterministically and eval-
uates a logical formula on the assignment. This NOS is seedless in the
sense that it does not require any initial conformation to begin with like
the RNA origami. The NOS allows to prove the co-NP hardness of decid-
ing, given two NOSs, if there exists no conformation that one of them
folds into but the other does not.

1 Introduction

In nature, an one-dimensional RNA sequence—a primary structure—folds itself
autonomously and forms a more complex secondary structure. It has been a con-
stant question to predict the secondary structure from a given primary struc-
ture, and based on experimental observations, researchers established various
RNA secondary structure prediction models including RNAfold [12], Pknots [9],
mFold [11] and KineFold [10]. Traditional models tend to rely on the energy
optimization of the whole structure.

Recently, biochemists showed that the kinetics—the step-by-step dynamics
of the reaction—plays an essential role in the geometric shape of the RNA fold-
ings [2], since the folding caused by intermolecular reactions is faster than the
RNA transcription rate [7]. By controlling cotranscriptional foldings, researchers
succeeded in cotranscriptionally assembling a rectangular tile out of RNA, which
is called RNA Origami [5] as depicted in Fig. 1. From this kinetic point of view,
Geary et al. [4] proposed a new folding model called the oritatami system (OS).
In general, OS defines a sequence of beads (which is the primary structure) and
a set of rules for possible intermolecular reactions between beads. For each bead
c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-43994-5 2

20 Y.-S. Han et al.

Fig. 1. RNA Origami [5]. The artwork is by Cody Geary.

in the sequence, the system takes a lookahead of a few upcoming beads and
determines the best location of the bead that maximizes the number of possible
interactions from the lookahead. Note that the lookahead represents the reaction
rate of the cotranscriptional folding and the number of interactions represents
the energy level. In OS, we call the secondary structure the conformation, and
the resulting secondary structure the terminal conformation.

Geary et al. implemented an OS to count in binary [3] and an OS to simulate
a cyclic tag system [4]. These OSs uniquely folds into one conformation, and
in this sense, they are deterministic. In contrast, nondeterminism is intrinsic in
biomolecular folding. Therefore, we define the nondeterministic OS (NOS) in
this paper, and examine its power. It turns out that nondeterminism can be
made use of for OSs to execute randomized algorithms. We propose an NOS
that evaluates a Boolean formula in disjunctive normal form (DNF formula) on
a random assignment. This NOS is in fact seedless like the RNA origami. More
importantly, the NOS proves the co-NP hardness of the OSEQ problem, which
asks, given two NOSs, if there exists no conformation that one folds into but
the other does not (Theorem 2). The equivalence test is indispensable in the
optimization of the design of a given OS. As we will see, the equivalence of two
deterministic OSs is testable in linear time (Theorem 1).

2 Preliminaries

Let Σ be a set of bead types, and Σ∗ be the set of finite strings of beads, i.e.,
strings over Σ, including the empty string λ. Let w = a1a2 · · · an be a string of
length n for some integer n and bead types a1, . . . , an ∈ Σ. The length of w is
denoted by |w|. For two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i, j] refer to the
substring aiai+1 · · · aj−1aj ; if i = j, then we denote it by w[i] instead. We use
wn to denote the string ww · · · w

︸ ︷︷ ︸

n

.

Oritatami systems operate on the hexagonal lattice. The grid graph of the
lattice is the graph whose vertices correspond to the lattice points and connected
if the corresponding lattice points are at unit distance hexagonally. For a point p
and a bead type a ∈ Σ, we call the pair (p, a) an annotated point, or simply a
point if being annotated is clear from context. Two annotated points (p, a), (q, b)
are adjacent if pq is an edge of the grid graph.

A path is a sequence P = p1p2 · · · pn of pairwise-distinct points p1, p2, . . . , pn

such that pipi+1 is at unit distance for all 1 ≤ i < n. Given a string w ∈ Σ∗ of

Nondeterministic Seedless Oritatami Systems 21

bead types of length n, a path annotated by w, or simply w-path, is a sequence Pw

of annotated points (p1, w[1]), . . . , (pn, w[n]), where p1 · · · pn is a path. Annotated
points of the w-path are regarded as a bead, and hence, we call them beads and,
in particular, we call the i-th point (pi, w[i]) the i-th bead of the w-path.

Let H ⊆ Σ × Σ be a symmetric relation, specifying between which types
of beads can form a hydrogen-bond-based interaction (h-interaction for short).
This relation H is called the ruleset. It is convenient to assume a special inert
bead type • ∈ Σ that never forms any h-interaction according to H.

Fig. 2. (Left) An example of an RNA tile generated by RNA Origami. (Right) A
conformation representing the RNA tile in OS. The directed solid line represents a
path, dots represent beads, and dotted lines represent h-interactions. The idea and
artwork were provided by Cody Geary.

A conformation C is a pair of a w-path Pw = (p1, w[1])(p2, w[2]) · · · and a
set H of h-interactions, where H ⊆ {{i, j} | 1 ≤ i, i + 2 ≤ j} and {i, j} ∈ H
implies that the i-th and j-th beads of the w-path form an h-interaction between
them. An example conformation is found in Fig. 2 (Right). The condition i+2 ≤ j
represents the topological restriction that two beads (pi, w[i]), (pi+1, w[i+1]),
adjacent to each other on the w-path, cannot form an h-interaction between
them. We say C is finite if its path is finite. From now on, when a conformation
is illustrated, any unlabeled bead is assumed to be labeled with •, that is, be
inert. For an integer α ≥ 1, C is of arity α if none of its beads interact with
more than α beads. On the hexagonal lattice where every point is adjacent to
six points, α > 6 is merely meaningless, but on another lattice larger α’s may.
Let Cα be the set of all conformations of arity-α.

A rule (a, b) in the ruleset H is used in the conformation C if there exists
{i, j} ∈ H such that w[i] = a and w[j] = b or w[i] = b and w[j] = a. A
conformation C is valid (with respect to H) if for all {i, j} ∈ H, (w[i], w[j]) ∈ H.
In a context with one fixed ruleset, only valid conformations with respect to the
ruleset are considered, and we may not specify with respect to what ruleset they
are valid.

Given a ruleset H and a valid finite conformation C1 = (Pw,H) with respect
to H, we say that another conformation C2 is an elongation of C1 by a bead a ∈ Σ
if C2 = (Pw · (p, a),H ∪ H ′) for some lattice point p and (possibly empty) set of
h-interactions H ′ ⊆ {{i, |w|+1} | 1 ≤ i ≤ |w|, (w[i], a) ∈ H}. Note that C2 is also
valid. For a conformation C and a finite string w ∈ Σ∗, by E(C,w), we denote
the set of all elongations of C by w, that is, E(C,w) = {C ′ ∈ C | C →∗

w C ′}.
For an arity α, let Eα(C,w) = E(C,w) ∩ Cα.

22 Y.-S. Han et al.

2.1 Oritatami System

An oritatami system (OS) is a 5-tuple Ξ = (H, α, d, σ, w), where H is a ruleset,
α is an arity, d ≥ 1 is a positive integer called the delay, σ is an initial valid
conformation of arity α called the seed, and w is a possibly-infinite string of
beads called a primary structure.

The delay d, arity-α oritatami system Ξ cotranscriptionally folds its primary
structure in the following way. For a string x ∈ Σ∗, a conformation C1, and an
elongation C2 of C1 by x[1], we say that Ξ (cotranscriptionally) folds x upon C1

into C2 if

C2 ∈ argmin
C∈Eα(C1,x[1])

min
{

ΔG(C ′)
∣

∣ C ′ ∈ Eα(C, x[2, k])), 2 ≤ k ≤ d
}

, (1)

where ΔG(C ′) is an energy function that assigns C ′ with the negation of
the number of h-interactions within C ′ as energy. Informally speaking, C2

is a conformation obtained by elongating C1 by the bead x[1] so as for the
beads x[1], x[2], . . . , x[d] to create as many h-interactions as possible. Then we

write C1
Ξ
↪→x C2, and the superscript Ξ is omitted whenever Ξ is clear from

context. Through the folding, the first bead of x is stabilized. In figures, we
conventionally color x—the fragment to be stabilized—in cyan.

Example 1 (Glider). Let us explain how the OS cotranscriptionally folds a motif
called the glider. Gliders offer a directional linear conformation and have been
heavily exploited in the existing studies on OS [3]. Consider a delay-3 OS whose
seed is the black conformation in Fig. 3 (a), primary structure is w = b•ac• bd•
c · · · , and the ruleset is H = {(a, a), (b, b), (c, c), (d, d)}.

By the fragment w[1, 3] = b • a, the seed can be elongated in many ways;
three of them are shown in Fig. 3 (a). The only bead on the fragment that may
form a new h-interaction is a (b is also capable according to H but no other b is
around). In order for the a to get next to the other a, on the seed, the b on the
fragment must be located to the east of the last bead of the seed; thus, the b
is stabilized there, as shown in Fig. 3 (b). The stabilization transcribes the next
bead w[4] = c. The sole other c around is on the seed but is too far for the c just
transcribed to get adjacent to. Thus, the only way for the fragment w[2, 4] = •ac
to form an h-interaction is to put the two a’s next to each other as before, and
for that, the • must be located to the southeast of the preceding b as shown
in Fig. 3 (c). The next bead to be transcribed, w[5], is inert, and hence, cannot
override the previous decision to put the two a’s next to each other. The first six
beads have been thus stabilized as shown in Fig. 3 (d), and the glider has thus
moved forward by distance 2.

It is easily induced inductively that gliders of arbitrary “flight distance” d
can be folded by a delay-3 OS; such long-distance gliders have been used in [3].
Moreover, as suggested in Fig. 3, a constant number of bead types are enough
for that (in this example, a, b, c, d, •).

Gliders also provide a medium to propagate 1-bit information at arbitrary
distance. The height (up or down) of the first bead determines whether the

Nondeterministic Seedless Oritatami Systems 23

Fig. 3. A glider folded by a delay-3 OS. (a) Three ways to elongate the current confor-
mation by the fragment b • a among many. (b) Three most stable elongations by the
fragment •ac. (c) Three ways to elongate the current conformation by the fragment ac•
among many. (d) The stabilization of b • ac • b.

last bead is stabilized up or down after the glider traverses the distance d. For
instance, the glider in Fig. 3 launches up and thus its last bead (the second b)
also comes up after traveling the distance d = 2; being launched down implies
being terminated down. This capability has been exploited for an OS to simulate
a cyclic tag system for Turing universality [3] and the NOS that we shall propose
in Sect. 3 also uses it. 	

Note that cotranscriptional folding, as formulated in (1), considers not only
elongations of C by x[2, d] but also those by prefixes of x[2, d], that is, x[2], x[2, 3],
. . . , x[2, d−1]. This is necessary to fully fold the primary structure till the end
or when there is not enough space around the last bead of C to elongate C by
the whole x[2, d] (See Fig. 4.). Otherwise, under the current energy function, the
optimization just ignores those “halfway” elongations because more beads never
rise energy. Under other “more realistic” energy functions, halfway elongations
would play a more active role in the folding.

The set F(Ξ) of all conformations foldable by Ξ is now defined recursively as

follows: σ ∈ F(Ξ), and if Ci ∈ Eα(σ,w[1, i]) is in F(Ξ) and Ci
Ξ
↪→w[i+1,i+d] Ci+1,

then Ci+1 ∈ F(Ξ). A finite conformation Ci ∈ Eα(σ,w[1, i]) foldable by Ξ is
terminal if one of the following conditions holds:

1. the primary structure w is finite and i = |w|;
2. either w is infinite or i < |w|, and there exists no conformation Ci+1 such

that Ci
Ξ
↪→w[i+1,i+δ] Ci+1.

Note that not only the conformation in Fig. 4 (d) but also the conformation in
Fig. 4 (f) is terminal by the second condition of the terminal conformation. By
F�(Ξ), we denote the set of all terminal conformations foldable by Ξ.

The OS Ξ is deterministic if any foldable conformation Ci ∈ Eα(σ,w[1, i]) is

either terminal or admits a unique conformation Ci+1 such that Ci
Ξ
↪→w[i+1,i+δ]

Ci+1, that is, every bead is stabilized uniquely. For example, the system in
Fig. 4 is nondeterministic. Note that nondeterministic systems fold into multiple
terminal conformations as suggested in Fig. 4. On the other hand, deterministic

24 Y.-S. Han et al.

Fig. 4. The two cases in which cotranscriptional folding considers “halfway” elonga-
tions. (b) and (e) show two most stable elongations of the current conformation (a);
the one in (e) is a halfway elongation. (b) to (d) show the case when folding is almost
over, and (e) and (f) show the case when there is not enough space. The conformations
in (d) and (f) are both terminal, though the one in (f) is “shorter.”

systems fold into exactly one terminal conformation by definition. Thus, an
oritatami system is deterministic if and only if the system folds into one terminal
conformation. The property of being deterministic is decidable in linear time.
Indeed, it suffices to run an OS and checks whether it encounters nondeterminism
or not.

Example 2 (Assignor). Let us exhibit here how nondeterminism is used in
the OS that we shall propose in Sect. 3, or more particularly, in its mod-
ule called the assignor. The OS is of delay 3, with a ruleset including
(10eb, 3a), (10eb, 9a), (12eb, 3eb), (12eb, 9a), (12eb, 4a). The OS folds the assignor
uniquely as shown in Fig. 5 (a), up to its fourth last bead. The last three beads
of the assignor are 10eb, 11eb and 12eb.

The fragment 10eb-11eb-12eb can be fold in two ways equally stably with
three h-interactions as shown in Fig. 5 (b-1) and (b-2), and no more no matter
how the fragment is folded. Hence, the bead 10eb is stabilized in two ways as
shown in Fig. 5 (c-1) and (c-2). The remaining beads 11eb and 12eb are stabilized
uniquely one after another as shown in Fig. 5 (d-1) and (d-2). The assignor
nondeterministically stabilizes the last bead 12eb up or down. In our NOS, this
random assignment of 1-bit information is propagated by gliders in the way
mentioned in Example 1. 	

Nondeterministic Seedless Oritatami Systems 25

Fig. 5. An assignor folded by a delay 3 OS. While stabilizing the bead 10eb, two elon-
gations equally give three interactions and the bead nondeterministically stabilizes at
two different points. (a) The conformation up to the fourth last bead. (b) Two ways to
elongate the current conformation by the fragment 10eb-11eb-12eb. (c) Ways to elongate
the current conformation by the fragment 11eb-12eb. (d) Two final conformations.

We say that an OS is seedless if its seed is (λ, ∅). A seedless OS can start
folding at any point of the lattice. If a conformation C is foldable, then any of
its congruence, that is, a conformation obtained by applying a combination of
translation, rotation, and reflection to C is also foldable. Therefore, fixing the
first bead to the origin of the lattice and the second bead to one specific neighbor
of the origin does not cause any loss of generality. In this sense, we can regard
an OS with a seed of at most 2 beads seedless. Furthermore, a seed of 3 beads
can make an OS seedless. Imagine an OS whose seed consists of 2 beads. if an
elongation of the seed by the first bead is foldable, then its reflection across the
seed, which is just a line segment, is also foldable. Hence, if the first bead is
stabilized uniquely, then it can be rather considered as a part of the seed. That
is the case for the OS we shall propose in Sect. 3. In this sense, the OS we propose
is seedless.

We formally define the equivalence of two oritatami systems.

Definition 1. Two oritatami systems Ξ1 and Ξ2 are equivalent if F�(Ξ1) =
F�(Ξ2), namely, if there is no terminal conformation that one folds into but the
other does not.

Then, we define oritatami system equivalence test.

Definition 2. Given two oritatami systems Ξ1 and Ξ2, oritatami system equiv-
alence test (OSEQ) is to determine whether or not they are equivalent.

Since it takes linear time to simulate a deterministic OS, we establish the
following theorem.

26 Y.-S. Han et al.

Theorem 1. For two deterministic oritatami systems, the OSEQ problem can
be solved in linear time.

On the other hand, the problem for NOSs turns out to be hard, and we shall
prove the following theorem in Sect. 3.

Theorem 2. The OSEQ problem is co-NP complete, even if the two input NOSs
differ only in ruleset, and their rulesets H1,H2 satisfy H1 = H2 ∪ {(a, b)} for
some rule (a, b).

3 Seedless NOS as a DNF Verifier

We propose a seedless NOS that evaluates a given DNF formula, i.e., a Boolean
formula in the disjunctive normal form, and then make use of it to prove the
coNP-hardness of deciding if two given NOSs are equivalent even under a severe
constraint.

A DNF formula φ is written as
∨

1≤i≤n Ci for some clauses C1, . . . , Cn that
is a logical AND (∧) of some of the Boolean variables v1, . . . , vm and their
negations. The DNF tautology problem asks if a given DNF formula is evaluated
to TRUE on all possible assignments. The problem is coNP-hard, since it can be
polynomially reduced from the dual problem of the satisfiability problem, which
is NP-complete [6].

Algorithm 1. Evaluate a DNF formula with m variables and n clauses
formula on a randomly chosen assignment
1 for k = 1 to n do c[k] ← ∗;
2 for i = 1 to m do
3 Randomly assign TRUE or FALSE into vi.;
4 for k = 1 to n do
5 if The k-th clause involves vi and vi = FALSE then c[k] ← U;
6 else if The k-th clause involves ¬vi and vi = TRUE then c[k] ← U;

7 for k = 1 to n do
8 if c[k] = ∗ then return Satisfied;

9 return Unsatisfied

Algorithm 1 evaluates the DNF formula φ on a random assignment. For the
ease of explanation, we assume m is even (otherwise we just assume one more
imaginary variable that occurs nowhere). The seedless NOS Ξτ evaluates φ using
this algorithm. Both its delay and arity are set to 3 (in fact, the arity can be set
to any value larger). We conventionally use the term context to denote beads and
interactions around the current bead that we consider during the stabilization.

Its primary structure is of the form wsw1w2 · · · wmwv. We call the fac-
tors ws, w1, . . . , wm, wv modules. The NOS is to fold the primary structure in

Nondeterministic Seedless Oritatami Systems 27

Fig. 6. An overview of the NOS that evaluates a given DNF formula φ = (¬v1 ∧
¬v2) ∨ (v1 ∧ ¬v2) ∨ (v2), with two variables v1, v2 and three clauses C1, C2, C3, on the
assignment (v1, v2) = (T, F) that it chooses nondeterministically. The folding starts from
the purple arrow in the starter. In the last module called the verifier, the conformation
folds to psat since the formula is satisfied. Pink dashed lines represent an alternate
conformation that stops at punsat when the formula is not satisfied. (Color figure online)

a zigzag manner as outlined in Fig. 6. The first module ws named the starter
folds into the glider as shown in Fig. 7 and offers a linear scaffold of width O(n),
which serves as a “seed” for the succeeding modules. This module admits no
other conformation, and it is almost straightforward to design a module that
folds uniquely by hardcording the target conformation into the primary struc-
ture and ruleset. In fact, all the rules used in the glider in Fig. 7 are sufficient
(and necessary) for the primary structure of ws to fold into the glider. Note that
we use superscripts to indicate sets of bead types used for different modules, i.e.,
f2 is used for formatters and s is used for starters. Being thus folded, the starter
exposes below n copies of the sequence of bead types 10f2-9f2-8f2-7f2 at a fixed
interval (every 8 points), which shall be translated by succeeding modules as the
corresponding clause being satisfiable (denoted by ∗). This corresponds to the
initialization of the array c in line 1 of Algorithm 1.

The next module w1 consists of submodules. The first submodule is the
assignor explained in Example 2. It nondeterministically stabilizes its last bead
up or down, and the OS interprets up as TRUE being assigned to v1 and down as
false being assigned to v1 (See Fig. 6, where TRUE is assigned to v1, for instance.).
The assignor is succeeded by submodules called evaluators and buffers, which
occur alternately. The buffer is just a glider. There are n evaluators in w1; one for
each of the n clauses. The k-th evaluator, for Ck, takes the value (T/F) assigned

28 Y.-S. Han et al.

Fig. 7. The linear scaffold conformation into which the starter ws deterministically
folds. Three blue beads indicate the seed. (Color figure online)

Fig. 8. The possible four conformations of evaluators and formatters. We denote each
bead in the conformation by its order, from 1 to 12. In order to propagate the Boolean
value, all of the conformations start and end at the same height. Arrows at top and
bottom denote respectively the previous and updated evaluations of the corresponding
clause, though they are in different formats. The purple arrows from top indicate which
conformations the p-evaluator takes, depending on whether F or T is input from the
left; hence, the p-evaluator never takes the conformation (b).

to v1 from the left and the evaluation from the top as inputs, and outputs the
value of v1 to the right faithfully and the updated evaluation of whether the
clause Ck is still satisfiable or not according to the value of v1 to the bottom.
Therefore, four distinct conformations are sufficient for evaluators, and we chose
those in Fig. 8. There are three possible ways to update, depending on if Ck

includes v1, or its negation, or none of them. Hence, the OS employs three types
of evaluators: p, n, and e. For example, as shown in Fig. 8, the p-evaluator folds
into the conformation (a) no matter how the clause has been evaluated so far if
v1 = F, while it folds into (c) or (d) depending on the evaluation if v1 = T. Hence,
the p-evaluator never folds into (b). The clauses C1, C2 and C3 of the formula
evaluated in Fig. 6 include ¬v1, v1, and none of them, respectively, and hence the
first three evaluators are of type n, p, and e, respectively. Note that evaluators
output each evaluation in two distinct formats (U1, U2 for unsatisfied, ∗1, ∗2 for
satisfiable). They will be reformatted by a submodule called the formatter in
the succeeding zag, as 10-9-8-7 for ∗ and 10-9-4-3 for U. Analogously, for any
2 ≤ i ≤ m, the module wi first assigns T or F randomly to vi and update the
evaluation of clauses provided by the previous zag (of wi−1). As such, the folding
of wi corresponds to the i-th iteration of the for-loop at line 2–6 of Algorithm 1.

Nondeterministic Seedless Oritatami Systems 29

Fig. 9. (a) The glider-like conformation that a formatter takes on the input U1/U2.
(b) The alternative conformation of a formatter on the input ∗1/∗2. Blue and red
interactions are for the corresponding colored bead only. (Color figure online)

Fig. 10. The first part of the verifier uniquely folds thus and provides a scaffold on
which the rest of the verifier serves its role to verify the clauses.

The final module wv verifies if there is a clause still evaluated to be satisfiable,
or equivalently, if the last zag (of wm) exposes below the sequence 10f2-9f2-8f2-
7f2, corresponding to the termination process at line 7–9 (Note that we use super-
scripts to denote different sets of beads for different types of submodules.). The
module is named the verifier after this role. The verifier first folds into the confor-
mation shown in Fig. 10. Like the starter, this conformation is also hardcoded; all
the rules used are sufficient for the conformation to be folded as shown in Fig. 10.
The rest of the verifier is to thread its way from right to left through the recess
between the last zag and the floor just made by the first part of the verifier, as
shown in Fig. 6. More precisely, it is stretched straight along the floor and once
it “detects” a satisfiable clause, or the encoding of ∗, i.e., 10f2-9f2-8f2-7f2, it is
pulled up and starts being stretched straight along the zag above. The detection
is done by the segment 15v-16v-17v, which we name the probe. The probe forms two

30 Y.-S. Han et al.

Fig. 11. Detection of satisfiable clauses by the probe segment 15v-16v-17v. (Left) The
sequence 8f2-7f2, a part of the encoding of ∗, pulls the probe strongly by 3 h-interactions,
one more than the number of h-interactions between the probe and the floor. (Middle)
The sequence 4f2-3f2, a part of the encoding of U, cannot pull the probe as strongly
as the floor does. (Right) The rule (3f2, 16v2) added to Ξτ1 allows the probe for C1

to be pulled upward as well as leftward equally strongly when C1 is evaluated to be
unsatisfied.

h-interactions with the floor, but more h-interactions with the encoding of ∗ due
to the rules (17v, 8f2), (17v, 7f2), and (16v, 7f2) (see Fig. 11 (Left)). In contrast, the
probe can form only 1 h-interaction with the encoding of U, as shown in Fig. 11
(Middle) due to lack of rules. As a result, the last bead of the probe is stabilized
close to the zag above (at the point psat in Fig. 6) if and only if φ is satisfied by the
chosen assignment. The last probe is of distinct bead types as 15v2-16v2-17v2 for
the sake of proving hardness of OSEQ later.

It now suffices to explain the module wi for the i-th zigzag (1 ≤ i ≤ m)
into detail. Its primary structure is made up as waui,1
 ui,2
 · · ·
 ui,n
 wt �
fi,n � · · · � fi,2 � fi,1, where wa is the assignor, wt is a submodule called the
turner, and ui,k and fi,k are the evaluator and formatter for the k-th clause,
respectively, and triangles (
 and �) indicate sequences of 12 beads called e-
buffers and f-buffers respectively. Buffers keep a sufficient distance between the
consecutive submodules horizontally so as for them not to interact with each
other. As shown in Fig. 6, buffers in a consecutive zig and zag may get adjacent
to each other vertically. Should they involve a common bead type, an inter-buffer
interaction could prevent them from folding into a glider. Therefore, e-buffers and
f-buffers use pairwise-distinct sets of bead types. The turner wt is a hardcoded
submodule. Its two possible conformations, shown in Fig. 12, let multiple possible
paths arisen from the nondeterministic value assignment to vi converge into one
path (at this point, the system is allowed to “forget” the value).

Evaluator and formatter. The k-th evaluator ui,k and the k-th formatter fi,k

in the i-th zig and zag cooperatively update the evaluation of whether the k-th
clause is still satisfiable or already unsatisfied. The role of formatters is auxiliary:
as we already explained, the output of evaluators (∗/U) is encoded (as a sequence
of beads exposed below) redundantly, and formatters reformat them and ensure
that evaluators in the next zig suffice to be capable of reading one sequence of

Nondeterministic Seedless Oritatami Systems 31

Fig. 12. The two possible conformations of turners, which converge multiple possible
paths due to nondeterministic value assignment into one path. Purple box shows the
context for the next f-buffer. (Color figure online)

Fig. 13. The basic module is a modification of the glider and folds its primary struc-
ture 1μ2μ · · · 12μ into these two conformations deterministically depending on whether
the first bead 1μ is up or down.

beads for ∗ and one for U. The glider-based foundation, which we will explain
shortly, is modified in such a way that the evaluator and formatter inherit the
information transfer capability, which enables the n evaluators for the i-th zig,
that is, ui,1, ui,2, . . . , ui,n, to transfer the value randomly assigned to vi one after
another.

The basic module is to fold its primary structure 1μ2μ · · · 11μ12μ (we use Greek
letters to represent a set of different bead types) into one of the two gliders shown in
Fig. 13 deterministically depending on the two possible contexts (in another con-
text, it could admit another conformation, but in the proposed NOS, the such
context is never encountered). It is implemented using the following ruleset R:
R = {(2μ, 11γ), (3μ, 1α), (3μ, 3α), (3μ, 10γ), (5μ, 2μ), (6μ, 11γ), (6μ, 1μ), (6μ, 10β),
(6μ, 12β), (7μ, 10γ), (8μ, 5μ), (9μ, 2μ), (9μ, 4μ), (9μ,7β), (9μ,9β), (9μ,11β), (10μ,1μ),
(11μ, 8μ), (12μ, 4β), (12μ, 6β), (12μ, 8β), (12μ, 10β), (12μ, 3μ), (12μ, 4μ), (12μ, 7μ)}
where {(α, β, γ, μ)}={(fb,f2,eb, {p1,n1,e1}), (eb, {p1,n1,e1}, fb, f1), (fb, f1, eb,
{p2, n2, e2}), (eb, {p2, n2, e2}, fb, f2)}.

32 Y.-S. Han et al.

The evaluator and formatter are derived by “equipping” the basic module
with the capability of “reading” the output of the module above; formally speak-
ing, we add some rules to the basic ruleset R that attract some factor of the
primary structure (called input reader) towards the output so that the resulting
module favors another conformation over the glider. Here, one design criterion
should be noted: we designed the NOS in such a manner that a module (eval-
uator/formatter) taking a glider represents the evaluation U. In Fig. 8, the two
non-glider conformations are illustrated. Note that these conformations properly
propagate the value (F/T) randomly assigned to vi by the assignor.

Let us focus attention to the evaluator ui,k, which evaluates the k-th
clause Ck according to the value randomly assigned to vi and the evaluation
made so far by the previous evaluators u1,k, u2,k, . . . , ui−1,k. There are three
possibilities to be taken into account depending on whether Ck contains the
positive literal vi, its negation ¬vi, or none of them. That is, three types of eval-
uators (p, n, and e) are needed. The p-type evaluator is supposed to fold into
the glider (U) no matter what the previous evaluation is if vi = F, but be capable
of taking both the glider and a non-glider conformation so as to propagate the
previous evaluation as it is when vi = T, corresponding to line 5. The n-type
evaluator is supposed to behave analogously but the roles of F and T are flipped,
corresponding to line 6. The e-type evaluator should propagate the previous
evaluation as it is no matter which value is assigned to vi.

The evaluator ui,k is sandwiched from above and below by two formatters.
Since the evaluator interacts with both of them, a bead type common in these
formatters would cause misfolding. Therefore, the NOS implements evaluators in
consecutive zigs using two pairwise-distinct sets of bead types, even if they are of
the identical type. This results in, for instance, two sets of bead types {p1, p2} for
the type-p evaluators. Similarly, the NOS uses two distinct sets of bead types for
each type of evaluators and the formatter, which we distinguish with numbers.

We propose the following two sets RT, RF of extra rules, which enable the
module to read the output when vi = T and when vi = F, respectively:
RT = {(2μ, 9β), (3μ, 8β), (4μ, 7β), (5μ, 10fb)} where {(β, μ)} = {(f2, p1), (f2, e1),
(f1, p2), (f1, e2)}, and RF = {(5μ, 8β), (6μ, 7β), (7μ, 10fb)} where {(β, μ)} =
{(f2, n1), (f2, e1), (f1, n2), (f1, e2)}.

Rules in RT convert the module with sets of bead types {p1, p2} into the
type-p evaluator, while rules in RF convert the module with {n1, n2} into the
type-n evaluator. Note that these extra rulesets do not interfere with each other,
and adding both of them converts the module with {e1, e2} into the type-e
evaluator. Figure 14 shows foldings with newly added rules.

The outputs of an evaluator are redundant: ∗ is encoded as 1μ10μ11μ12μ or
7μ8μ9μ10μ whereas U is encoded as 1μ6μ7μ12μ or 3μ4μ9μ10μ. The redundant
output is reformatted by formatters in the i-th zag so as for an input to the
evaluators in the next (i+1-th) zig to be encoded in a unique format. Unlike the
evaluator, formatters do not have to propagate 1-bit information horizontally.
The conformation of the turner fixes the first bead of the first formatter fi,n

in the i-th zag up. The following ruleset Rformat converts the module with sets

Nondeterministic Seedless Oritatami Systems 33

Fig. 14. (a) Folding of n-evaluators and e-evaluators when vi = F and the input is ∗.
Newly added rules are colored in pink. (b) Folding of p-evaluators and e-evaluators
when vi = T and the input is ∗. (Color figure online)

of bead types {f1, f2} into the formatter, which takes the conformation (c) in
Fig. 8 if the output of the evaluator above is U or the conformation (d) if the
output is ∗: Rformat = {(2μ, 9β), (2μ, 11β), (3μ, 8β), (3μ, 11β), (4μ, 8β), (4μ, 1β)}
where {(β, μ)} = {(p1, f1), (n1, f1), (e1, f1), (p2, f2), (n2, f2), (e2, f2)}. Figure 9
shows foldings with newly added rules.

We establish the following theorem for Ξτ .

Theorem 3. Let Ξτ be the seedless NOS generated from a DNF formula φ.
Then, φ is tautology if and only if there is no conformation of Ξτ that reaches
the point punsat.

Once we establish a robust design of Ξτ , we now prove the hardness of OS
equivalence test by variations of Ξτ . Note that the size of the ruleset in Ξτ is
constant, and it takes O(nm) time to construct the primary structure of Ξτ from
a DNF formula with n clauses and m variables. Thus, we can construct Ξτ that
represents the given formula in O(nm) time. The OSEQ problem admits as a
polynomial no-certificate a conformation that one of the two given OSs can fold
but the other cannot. It hence belongs to coNP. The coNP-hardness of OSEQ is
proved by reduction from DNF tautology. We derive Ξτ1 from Ξτ by adding one
additional rule (16v2, 3f1), which makes the verification of Ξτ1 nondeterministic
when φ is not tautology as illustrated in Fig. 11. Thus, φ is tautology if and only
if Ξτ and Ξτ1 are equivalent. This proves that OSEQ is coNP-complete even
if two OSs are seedless and identical except for their rulesets H1,H2 such that
H1 ⊆ H2 and |H2| − |H1| = 1.

4 Conclusions

We have designed a seedless NOS that solves the DNF tautology problem, and
demonstrated the hardness of testing the equivalence of two OSs using the
designed NOS. Since this is the first attempt to exploit nondeterminism and
seedlessness in the design of OS, our future work includes applying nondeter-
minism and seedlessness to solve other problems. It is an open problem whether

34 Y.-S. Han et al.

we can design an equivalent seedless OS from a given OS or not. Also note that
we map an instance of DNF formulas to an NOS that is unique to that input.
This notion is called semi-uniformity [8] compared to circuit uniformity [1], where
we provide a computing device solely according to the length of the input. Intro-
ducing circuit uniformity to the design of OS is another open problem.

Acknowledgments. We would like to thank the anonymous reviewers for the careful
reading of the paper and many valuable suggestions.

Kim was supported by NRF Grant funded by the Korean Government (NRF-
2013-Global Ph.D. Fellowship Program). The work of S. S. was supported in part by
JST Program to Disseminate Tenure Tracking System, MEXT, Japan, No. 6F36, and
by JSPS Grant-in-Aid for Research Activity Start-up No. 15H06212 and for Young
Scientists (A) No. 16H05854.

References

1. Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6(4),
733–744 (1977)

2. Frieda, K.L., Block, S.M.: Direct observations of cotranscriptional folding in an
adenine riboswitch. Science 338(6105), 397–400 (2012)

3. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Efficient universal computation by
greedy molecular folding (2015). CoRR, abs/1508.00510

4. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold
greedily during transcription. In: Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science (2016, to appear)

5. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

6. Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Reading (2011)
7. Lai, D., Proctor, J.R., Meyer, I.M.: On the importance of cotranscriptional RNA

structure formation. RNA 19, 1461–1473 (2013)
8. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Nat. Comput. 2(3),
265–285 (2003)

9. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

10. Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA
folding path and structure prediction including pseudoknots and knots. Nucleic
Acids Res. 33, W605–W610 (2005)

11. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 31(13), 3406–3415 (2003)

12. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148
(1981)

	Nondeterministic Seedless Oritatami Systems and Hardness of Testing Their Equivalence
	1 Introduction
	2 Preliminaries
	2.1 Oritatami System

	3 Seedless NOS as a DNF Verifier
	4 Conclusions
	References

