
Bulletin of the EATCS no 93, pp. 118–133, October 2007

©c European Association for Theoretical Computer Science

T F L T C



A S

Turku Centre for Computer Science and,

Department of Mathematics, University of Turku

FIN-20014 Turku, Finland

asalomaa@utu.fi

D A  S 

R L  S-P G

Yo-Sub Han∗

Intelligence and Interaction Research Center

Korea Institute of Science and Technology

P.O.BOX 131, Cheongryang, Seoul, Korea

emmous@kist.re.kr

Abstract

We survey recent results on decision algorithms for subfamilies of regu-

lar languages. In particular, we look at the decision algorithms using state-

pair graphs constructed from finite-state automata. The algorithms rely on

the structural property of a finite-state automaton that is preserved in its

state-pair graph. We also review applications of state-pair graphs in differ-

ent subfamilies of regular languages.
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1 Introduction

There are many subfamilies of formal languages. Example are recursively enu-

merable languages, context-sensitive languages, context-free languages and regu-

lar languages. A subfamily sometimes includes another subfamily. For instance,

among the four example subfamilies, each subfamily includes the following sub-

families in order and this gives rise to the Chomsky hierarchy [6]. Furthermore, a

subfamily has many (often infinite) subfamilies depending on how to define sub-

families. For context-free languages, for example, there is an infinite hierarchy

for LL(k) languages and all LL(k) languages are a proper subfamily of context-

free languages [1]. Given a family L of languages and a language L, the decision

problem of L with respect to L is to decide whether or not L belongs to L.

In this column, we consider the decision problem of subfamilies of regular lan-

guages. Regular languages have many different subfamilies; for example, finite

languages, one-unambiguous regular languages [4], block-deterministic regular

languages [11] and so on. We investigate subfamilies of regular languages that

are defined by code properties such as prefix-freeness, suffix-freeness or infix-

freeness. Note that codes have been used in many different areas; for example,

information processing, data compression, cryptography and information trans-

mission [24]. Codes are categorized with respect to different conditions according

to the applications. For instance, prefix-freeness establishes prefix-free codes1. In

regular languages, prefix-freeness defines a subfamily L(p,r), prefix-free regular

languages, where all languages are prefix-free sets and regular. Namely,

L(p,r) = {L | L is regular and prefix-free.}

Similarly, we can define suffix-free, bifix-free, infix-free and outfix-free reg-

ular languages. Most of the decision problems related to code properties are de-

cidable for regular languages whereas they often become undecidable for context-

free languages [24]. We study decision algorithms for these subfamilies of regular

languages. We examine algorithms that use a particular graph, state-pair graph.

A state-pair graph is a directed graph computed from a finite-state automaton A

using pairs of states and pairs of transitions in A. We review the basic concepts

of state-pair graphs and decision algorithms for various subfamilies of regular

languages that are defined by code properties. We emphasize the link between the

structural property of state-pair graphs and these subfamilies of regular languages.

We define some basic notions in Section 2 and recall the formal definition of

a state-pair graph in Section 3. We review decision algorithms for prefix-free,

suffix-free and infix-free regular languages in Section 4. Then, we look at k-

intercode regular languages in two different cases in Section 5; 1) k is fixed and

1In the literature, prefix-free codes are often called prefix codes.
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2) k is unknown, where k is an index. Lastly, we turn to two finite languages, hy-

percodes and outfix-free regular languages in Section 6 and conclude the column

in Section 7.

2 Preliminaries

Let Σ be a finite alphabet of characters and Σ∗ be the set of all strings over Σ. The

number of characters in Σ is denoted by |Σ|. A language over Σ is any subset of

Σ
∗. The symbol ∅ denotes the empty language and the symbol λ denotes the null

string. Given a string x from a set X, let xR be the reversal of x, in which case

XR
= {xR | x ∈ X}.

A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F), where

Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a transition

function, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be the

number of states in Q and |δ| be the number of transitions in δ. Then, the size |A|

of A is |Q| + |δ|. Given a transition δ(p, a) = q, we say that p has an out-transition

and q has an in-transition. Furthermore, p is a source state of q and q is a target

state of p. We say that A is non-returning if the start state of A does not have

any in-transitions and A is non-exiting if all final states of A do not have any out-

transitions. In the following, we always assume that A has only useful states; that

is, each state of A appears in some path from the start state to some final state.

Given an FA A = (Q,Σ, δ, s, F) and a state q ∈ Q, we define the right FA A−→q

to be (Q,Σ, δ, q, F); namely, we make q to be the start state. Then, the right

language L−→q of q is the set of strings accepted by A−→q .

Definition 1 is a list of codes that we use to define subfamilies of regular

languages in the following sections.

Definition 1. A language L is

• prefix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that x

and y are not prefixes of each other.

• suffix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that x

and y are not suffixes of each other.

• bifix-free if L is prefix-free and suffix-free.

• infix-free if, for all distinct strings x, y ∈ Σ
∗, x ∈ L and y ∈ L imply that x

and y are not substrings of each other.

• outfix-free if, for all distinct strings x, y, z ∈ Σ
∗, xz ∈ L and xyz ∈ L imply

y = λ.
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• a intercode of index k (or a k-intercode) if Lk+1 ∩ Σ
+Lk

Σ
+
= ∅.

• a hypercode if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that

x and y are not subsequences of each other.

A regular language L is prefix-free if L is a prefix-free set. We say that an

FA A is prefix-free if L(A) is prefix-free. We can establish similar notions for the

other code sets in Definition 1.

Lp Ls

Lb

Li ∪ Lo

Li Lo

Lh

Linter

Linter1= Lc

k-intercodes

Figure 1: The families of languages defined by code properties in Definition 1.

Solid lines indicate proper inclusions and a dotted line denotes a proper hierarchy.

The diagram does not, in general, indicate intersections or unions. The full dia-

gram with more code families can be found in Jürgensen and Konstantinidis [24].

For all unexplained notions related to formal languages, refer to the text-

books [21, 30]. For more details on coding theory, refer to Berstel and Perrin [3]

or Jürgensen and Konstantinidis [24].

3 State-pair graphs

FAs are the basic model used to represent regular languages in many applications.

FAs are essentially labeled directed graphs and each path from a start state to a

final state spells out an accepted string. There are two well-known families of FAs

in the literature: the Thompson automata [29] and the position automata [13, 26].

One advantage of using such families of FAs is that these automata preserve the

structural properties of corresponding regular expressions. Caron and Ziadi [5]

studied the structural properties of the position automata and Giammarresi et

al. [12] examined the structural properties of the Thompson automata.
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On the other hand, if we manipulate FAs, then these FAs easily lose cer-

tain structural properties; for example, if we catenate a position automaton and

a Thompson automaton, then the resulting automaton does not preserve either the

position automaton properties or the Thompson automaton properties. Neverthe-

less, one property remains unchanged in FAs: a path from a start state to a final

state spells out an accepted string. The use of state-pair graphs relies on this fact.

Applications of state-pair graphs have been already investigated earlier by Berstel

and Perrin [3], where this notion is called the square of an automaton.

We first recall the definition of a state-pair graph and its complexity from Han

et al. [17]. Given an FA A = (Q,Σ, δ, s, F), we assign a unique number for each

state from 1 to m, where 1 denotes the start state and m = |Q|. If A has a single

final state, then we assume that m denotes the final state.

Definition 2. Given an FA A = (Q,Σ, δ, s, F), we define the state-pair graph GA =

(VG, EG) of A, where VG is a set of nodes and EG is a set of labeled edges, as

follows:

VG = {(i, j) | i, j ∈ Q} and

EG = {((i, j), a, (x, y)) | δ(i, a) = x, δ( j, a) = y and a ∈ Σ}.

a

b

c

b

c

d

1

2

3

4

a

b

c

b

c

d

1, 1

2, 2

3, 3

4, 4

1, 2 3, 2 3, 4
b c

(a) (b)

2, 1 2, 3 4, 3
b c

Figure 2: (a) is an FA A and (b) is the corresponding state-pair graph GA. We omit

all nodes without transitions in GA.

For FAs with λ-transitions, we use a ∈ Σ ∪ {λ} for computing EG of GA. The

crucial property of GA is that if there is a string w spelled out by two distinct paths
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in A, for example, one path is from i to p and the other path is from j to q, then,

there is a path from (i, j) to (p, q) in GA that also spells out the same string w. The

complexity of GA is as follows:

Since we compute all pairs of states from A,

|VG| = |Q|2. (1)

Let |δi| be the number of out-transitions from state i in A. Then, |δ| =
∑m

i=1 |δi|,

where m = |Q|. Since a node (i, j) in GA can have at most |δi| × |δ j| out-transitions,

|EG| =

m∑

i, j=1

|δi| × |δ j| ≤ |δ|2. (2)

Therefore, by (1) and (2), GA has at most |Q|2 nodes and |δ|2 edges.

Proposition 3. Given an FA A = (Q,Σ, δ, s, F) and its state-pair graph GA, |GA| ≤

|Q|2 + |δ|2. Namely, |GA| = O(|A|2).

Note that the construction ofGA does not require an input FA A to be determin-

istic. In the following sections, we present recent results using state-pair graphs

for determining subfamilies of regular languages.

4 Prefix-free, suffix-free and infix-free regular lan-

guages

We first examine three well-known codes. Prefix-freeness and suffix-freeness are

symmetric. A language L is prefix-free if and only if LR is suffix-free. Infix-

freeness is stronger than both prefix-freeness and suffix-freeness as shown in

Fig. 1; if L is infix-free, then L is always prefix-free and suffix-free.

4.1 Prefix-free and suffix-free regular languages

Prefix-freeness has already been used in the literature. Prefix-freeness defines

Huffman codes [22] and determinism for generalized automata [10] and for ex-

pression automata [19]. Recently, Han et al. [16] considered prefix-free regular

expressions as patterns in text searching and designed an efficient algorithm for

the prefix-free regular-expression matching problem based on prefix-freeness.

If a given FA is deterministic, then it is easy to verify the prefix-freeness of

L(A); L(A) is prefix-free if and only if A is non-exiting [3, 19]. On the other hand,

if A is nondeterministic, then the condition that A is non-exiting is only necessary

but not sufficient. Thus, we have to check whether or not L(A)∩L(A)Σ+ = ∅. Let us
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examine what L(A)∩ L(A)Σ+ = ∅ implies in state-pair graphs. If L(A)∩ L(A)Σ+  

∅, then there are two distinct strings w1 = xy and w2 = x for some strings x

and y, where x, y  λ. Since w1 and w2 have a common prefix x, there is a path

from (1, 1) to (m, j) such that j  m. Based on this observation, Han et al. [16]

established the following result.

Theorem 4. Given an FA A = (Q,Σ, δ, s, f ), L(A) is prefix-free if and only if there

is no path from (1, 1) to (m, j), for any j  m, in GA, where 1 denotes the start

state and m = |Q| denotes the final state.

In Theorem 4, we implicitly assume that A has a single final state. This as-

sumption is valid since a prefix-free FA must be non-exiting and, thus, all final

state are equivalent and mergible into a single state. Using Theorem 4, they pro-

posed a prefix-freeness checking algorithm for an FA.

Prefix-Freeness(A = (Q,Σ, δ, s, f ))

if A is not non-exiting

then return no

Construct GA = (VG, EG) from A

DFS((1, 1)) in GA

if we meet a node (m, j) for some j, j  m

then return no

return yes

Figure 3: A prefix-freeness checking algorithm.

The sub-function DFS((1, 1)) in Prefix-Freeness (PF) in Fig. 3 is a depth-first

search that starts at node (1, 1) in GA. The construction GA = (V, E) from A takes

O(|Q|2 + |δ|2) time and DFS takes O(|V | + |E|) time. Therefore, the total running

time for PF is O(|Q|2 + |δ|2). For details on DFS, refer to the textbook [8]. Note

that PF takes an input as FAs. Thus, if a regular language is given by a regular

expression E, then we can construct the Thompson automaton AE for E since

|AE | = O(|E|) [21, 29]. Now PF guarantees the following result.

Theorem 5. Given an FA A, we can determine the prefix-freeness of L(A) in

O(|A|2) worst-case time.

Next, we consider suffix-freeness. Since L is prefix-free if and only if LR

is suffix-free by definition, we can establish the following statement from Theo-

rems 4 and 5.
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Theorem 6. Given an FA A, L(A) is suffix-free if and only if there is no path from

(1, i) to (m, m), for any i  1, in GA. Moreover, we can determine the suffix-

freeness of L(A) in O(|A|2) worst-case time.

To be precise for Theorem 6, we have to transform an FA with multiple final

states into an FA with a single final state before computing its state-pair graph:

We introduce a new final state f ′ and make f ′ to be a target state of all final states

by a λ-transition. Then, we change all final states except for f ′ to non-final states.

A language L is bifix-free if and only if L is prefix-free and suffix-free. Since

we can verify prefix-freeness and suffix-freeness in quadratic time, we can also

decide bifix-freeness in the same runtime using state-pair graphs.

Proposition 7. Given an FA A, we can determine the bifix-freeness of L(A) in

O(|A|2) worst-case time using its state-pair graph.

4.2 Infix-free regular languages

We turn to infix-freeness. Infix-free languages have been used in text search-

ing [7, 16] and computing forbidden words [2, 9]. Ito et al. [23] showed that it is

decidable whether or not a given regular language is infix-free and recently, Béal

et al. [2] proposed a polynomial-time algorithm that determines infix-freeness for

DFAs. We review the infix-freeness decision algorithm for general FAs based on

state-pair graphs designed by Han et al. [17].

Given an FA A, if L(A) is not infix-free, then there are two distinct strings w1

and w2 accepted by A and w2 is an infix of w1. This implies that there are two

distinct paths in A that spell out w1 and w2, respectively, and the path for w1 has a

subpath that spells out w2.

1 2 3 4

5 6 7 8

9
a b b a

a

b b a

b

Figure 4: Two strings abba and aabbab are spelled out by two distinct paths.

In Fig. 4, for example, the FA accepts w1 = aabbab and w2 = abba and the

subpath q2 → q5 → q6 → q7 → q8 of the path for w1 also spells out w2. We

can identify such strings in L(A) from its state-pair graph since both strings have

a common substring.
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Theorem 8. Given an FA A = (Q,Σ, δ, s, f ), L(A) is infix-free if and only if there

is no path from (1, i) to (m, j) apart from (1, 1) to (m, m), where 1 ≤ i ≤ m,

1 ≤ j ≤ m, 1 denotes the start state and m = |Q| denotes the final state. Moreover,

we can determine the infix-freeness of L(A) in O(|A|2) worst-case time.

The proof for Theorem 8 can be found in Han et al. [17].

5 Intercodes

While comma-free languages have not been studied to the extent of prefix-free

languages in the literature, the comma-free property was already introduced in

1958 [14]. Furthermore, Shyr and Yu [27] introduced intercodes, as a generaliza-

tion of comma-free codes, see also Yu [31]. Comma-free codes are the intercodes

of index one. Jürgensen et al. [25] have studied the decidability of the intercode

property.

Note that if an index k is given, then we can fairly easily check whether or

not L is an intercode of index k. However, if no index is given, then the problem

is not as straightforward. Jürgensen et al. [25] established that it is decidable

whether or not a given regular language is an intercode (of any index). There the

complexity of the decision algorithm is not discussed explicitly, but it is easy to

verify that an algorithm derived from the construction of the decidability proof is

not a polynomial-time algorithm in the general case where the input language is

specified by an NFA.

Recently, Han et al. [15] designed an algorithm that determines whether or not

a given regular language L is an intercode (of any index) using state-pair graphs.

The algorithm runs in polynomial time for both DFAs and NFAs. Besides having

better time complexity, the algorithm is conceptually easier to understand and

implement compared with the algorithm derived from Jürgensen et al. [25].

Note that intercode (regular) languages are a proper subfamily of bifix-free

(regular) languages as shown in Fig. 1. Thus, if a given FA A is not bifix-free, then

we immediately know that L(A) is not an intercode. Therefore, we can assume that

a given FA A is bifix-free and this guarantees that

1. A is non-returning and non-exiting.

2. A has a single final state.

From such an FA A = (Q,Σ, δ, s, f ), we can construct an FA A2 for the lan-

guage L(A)L(A) by merging f of the first copy of A and s of the second copy of A.

The FA A2 has 2|Q| − 1 states and 2|δ| transitions; namely, |A2| < 2|A|. We can

repeat this procedure to construct an FA for the catenation of several A’s. We use
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Ak to denote the FA for the catenation of k copies of A and Ai to denote the ith

component A of Ak, for 1 ≤ i ≤ k. We use (i, j) in Ak to denote the state i in A j of

Ak.

(1, 1) (m, k) (m, k+1)

Ak+1

(m, 1)

Figure 5: An example of an FA for the catenations of k+1 As.

The following results have been proved in Han et al. [15].

Lemma 9. Given an FA A and an index k, we can determine whether or not L(A)

is a k-intercode in k2 · O(|A|2) worst-case time.

Corollary 10. Given an FA A, we can determine the comma-freeness of L(A) in

O(|A|2) worst-case time since a k-intercode for k = 1 is a comma-free code.

Han et al. [15] also tackled the case when k is unknown. Instead of trying all

possible indices, which is very inefficient, they discovered that if L(A) is not a

k-intercode for a certain constant k, then L(A) is not an intercode for any index.

Lemma 11. Given an FA A, L(A) is not an intercode for any index k if L(A) is not

a (m+1)-intercode, where m is the number of states in A.

Using Lemmas 9 and 11, the decision problem for intercode regular languages

can be solved as follows:

Theorem 12. Given an FA A, we can determine whether or not L(A) is an inter-

code of index k, for some k, in O(|A|4) worst-case time.

The family of intercode (regular) languages has a proper hierarchy as illus-

trated in Fig. 1. Thus, if a regular language L is identified as a k-intercode, L may

be a (k−1)-intercode as well. This leads to a new problem that computes the small-

est k such that L(A) is a k-intercode but not a (k−1)-intercode in polynomial time.

Based on Theorem 12, Han et al. [15] suggested a polynomial-time algorithm that

relies on the binary search approach.

Theorem 13. Given an FA A, in O(log |Q|·|A|4) worst-case time, we can determine

whether or not L(A) is an intercode for some index k > 0, and if the answer is

positive we can find the smallest index l such that L(A) is an l-intercode but not

an (l−1)-intercode.
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6 Hypercodes and outfix-free regular languages

So far, all subfamilies of regular languages in the preceding sections can be infi-

nite. We now consider two subfamilies of regular languages that are always finite;

hypercodes and outfix-free regular languages.

6.1 Hypercodes

A set X of strings is a hypercode if a string in X is not a subsequence of any

other string in X. Based on hypercodes, Head and Thierrin [20] derived properties

of 0L languages. Hypercodes are a proper subfamily of outfix-free languages.

Moreover, hypercodes are always finite [28]. Since hypercodes are finite, we can

decide whether or not a given finite set of strings is a hypercode by comparing all

pairs of strings in the set, although it is certainly undesirable to do so. We look

at an efficient algorithm for the decision problem. Since an FA A for a hypercode

must be non-exiting and L(A) must be finite, we assume that A has a single final

state and has no back transitions that make cycles.

Given an FA A = (Q,Σ, δ, s, f ), we assign a unique number for each state in A

from 1 to m, where m = |Q|. We construct a new FA A′ from A by duplicating A

and adding a self-loop with Σ to all states. Namely, A′
= (Q,Σ, δ′, s, f ), where

δ
′
= δ ∪ {(q,Σ, q) | q ∈ Q}.

We introduce a new state-pair graphs from A and A′ as follows:

Definition 14. Given an FA A = (Q,Σ, δ, s, f ) and an FA A′
= (Q,Σ, δ′, s, f ), we

define the state-pair graph GA = (VG, EG), where VG is a set of nodes and EG is a

set of edges, as follows:

VG = {(i, j) | i ∈ QA and j ∈ QA′} and

EG = {((i, j), a, (x, y)) | δ(i, a) = x and δ′( j, a) = y and a ∈ Σ},

where QA denotes Q of A and QA′ denotes Q of A′.

Note that the only difference between the new state-pair graph and the previous

state-pair graph in Section 3 is that the new graph is constructed from two similar

yet different FAs whereas the previous graph is constructed from a single FA. The

complexity of the new graph is same as before; |GA| = O(|A2|).

Fig. 6 illustrates a state-pair graph constructed as in Definition 14. The lan-

guage L(A) = {abc, ac} is not a hypercode since ac is a subsequence of abc whose

path is (1, 1) → (2, 4) → (3, 4) → (5, 5) in GA. Then, state-pair graphs ensure the

following result:



The Bulletin of the EATCS

129

1

A

2
b ca

3

4

5

a c

1 2
b ca

3

4

5

a c
Σ

Σ Σ

A′

1, 1

GA

b ca

a c

2, 2 3, 3 5, 5

4, 4

2, 4 3, 4a b
c

Σ Σ

Figure 6: Given an FA A, we construct a new FA A′ for deciding whether or

not L(A) is a hypercode. GA is the corresponding state-pair graph. Note that

L(A) = {abc, ac} is not a hypercode since ac is a subsequence of abc. We omit all

nodes that do not appear in any path from (1, 1) to (5, 5) in GA.

Theorem 15. Given an FA A = (Q,Σ, δ, s, f ), L(A) is a hypercode, if and only if

the state-pair graph GA for A has no path (i1, j1) → (i2, j2) → · · · → (ik, jk) that

satisfies the following conditions:

1. (i1, j1) = (1, 1) and (ik, jk) = (m, m).

2. there exists at least one pair of two adjacent nodes (iu, ju) → (iu+1, ju+1)

such that ju = ju+1 for 1 ≤ u < k.

Theorem 15 shows that given an FA A, we can check whether or not L(A) is a

hypercode in O(|A|2) worst-case time using its state-pair graph and DFS.

6.2 Outfix-free regular languages

We turn to outfix-freeness. Assume that we have two distinct strings w1 and w2

and w2 is an outfix of w1. This implies that w1 = xyz for some strings x, y and z

such that w2 = xz and y  λ. Moreover, w1 and w2 have a common prefix x and a

common suffix z. Fig. 7 illustrates such w1 and w2.

Based on this property, Han and Wood [18] investigated the case when a finite

language L is given by a finite set of strings; L = {w1, w2, . . . , wn}. Note that a

finite set of strings is often stored in a trie, which is an ordered tree data structure

that is used to store a set of strings and each edge in the tree has a single character

label.
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a b c a a b b b a a

a b c b a a

Figure 7: A graphical illustration of an outfix string; abcbaa is an outfix of

abcaabbbaa.

x

y

z

z

q

Figure 8: An example of a trie for strings w1 = xyz and w2 = xz. Note that

both paths end with the same subpath sequence in the trie because of a common

suffix z.

Once we construct a trie for L, then two strings w1 and w2 share a common

path from the root if they have a common prefix. See Fig. 8 for an example.

Therefore, we only need to check whether or not a sub-trie of T is suffix-free.

If a sub-trie is not suffix-free, then L is not outfix-free. By carefully analyzing

this procedure, Han and Wood [18] designed an efficient decision algorithm and

proved its correctness.

Theorem 16. Given a finite set L = {w1, w2, . . . , wn} of strings, we can determine

whether or not L is outfix-free in O(

n∑

i

|wi|
2) time using O(

n∑

i

|wi|) space in the

worse-case.

Now consider two stings w1 = xyz and w2 = xz in DFAs. If a DFA A =

(Q,Σ, δ, s, f ) accepts both w1 and w2, then there is a unique path from s to a state q

that spells out x, which is a common prefix of w1 and w2. Then, A−→q accepts yz and

z. This implies that L−→q is not suffix-free.
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Proposition 17. Given a DFA A = (Q,Σ, δ, s, f ), L(A) is outfix-free if and only if

L−→q is suffix-free for all q ∈ Q.

However, if a given FA is nondeterministic, then Proposition 17 does not hold

anymore. Nevertheless, if an NFA A is not outfix-free, then its state-pair graph

has a similar property to the property used in Proposition 17. To make use of this

property, Han and Wood [18] introduced a state-pair DFA for A from its state-pair

graph GA as follows:

Definition 18. Given an FA A = (Q,Σ, δ, s, f ), we define the state-pair graph GA =

(VG, EG), where VG is a set of nodes and EG is a set of edges, as follows:

VG = {(i, j) | i and j ∈ Q} and

EG = {((i, j), a, (x, y)) | δ(i, a) = x and δ( j, a) = y and a ∈ Σ}.

Then, we define a new DFA A′ by making (1, 1) to be the start state and (m, m)

to be the final state and removing all non-reachable states from (1, 1) in GA. We

call A′ a state-pair DFA.

We can decide the outfix-freeness of L(A) using its state-pair DFA.

Lemma 19. Given an FA A = (Q,Σ, δ, s, f ), L(A) is outfix-free if and only if

L−→p ∪ L−→q is suffix-free for all pair states (p, q) ∈ Q′ of its state-pair DFA A′
=

(Q′,Σ, δ′, s′, f ′), where L−→q is the right language of state q in A.

Han and Wood [18] gave a proof for Lemma 19 and proposed an algorithm

that checks the outfix-freeness of L(A) as follows; from A and its state-pair

DFA A′
= (Q′,Σ, δ′, s′, f ′), we check whether or not L−→p ∪ L−→q is suffix-free for

all state (p, q) ∈ Q′. Since L−→q in A is computed from its right FA A−→q , we con-

struct an FA B = (QB,Σ, δB, sB, fB) for L−→p ∪ L−→q from A−→p = (Qp,Σ, δp, p, f ) and

A−→q = (Qq,Σ, δq, q, f ), where

QB = {sB, fB} ∪ Qp ∪ Qq,

δB = {(sB, λ, p), (sB, λ, q), ( f , λ, fB)} ∪ δp ∪ δq.

Since O(|B|) = O(|A−→p |+ |A−→q |) = O(|A|), this algorithm runs in polynomial time

and gives the following result [18].

Theorem 20. Given an FA A = (Q,Σ, δ, s, f ), we can determine the outfix-freeness

of L(A) in O(|A|4) worst-case time.
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7 Conclusions

An FA A for a regular language L is more than just an acceptor for L; A preserves

the structural property of L. State-pair graphs were proposed to make use of these

properties in FAs. We have surveyed a few number of decision algorithms using

state-pair graphs for subfamilies of regular languages defined by code properties.

We want to remark that all presented algorithms run in polynomial time. However,

we do not know if there exist better time complexity algorithms for any subfamily

of regular languages that has been considered. For instance, it is open if we can

determine the prefix-freeness of L(A) in subquadratic time.
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