
A New Linearizing Restriction in the Pattern

Matching Problem�

Yo-Sub Han and Derick Wood

Department of Computer Science,
The Hong Kong University of Science and Technology

{emmous, dwood}@cs.ust.hk

Abstract. In the pattern matching problem, there can be a quadratic
number of matching substrings in the size of a given text. The lineariz-
ing restriction finds, at most, a linear number of matching substrings.
We first explore two well-known linearizing restriction rules, the longest-
match rule and the shortest-match substring search rule, and show that
both rules give the same result when a pattern is an infix-free set even
though they have different semantics. Then, we introduce a new lineariz-
ing restriction, the leftmost non-overlapping match rule that is suitable
for find-and-replace operations in text searching, and propose an efficient
algorithm when the pattern is a regular language according to the new
match rule.

Keywords: Automata and formal languages, design and analysis of al-
gorithms, string pattern matching.

1 Introduction

Regular expressions are popular in many applications such as editors, program-
ming languages and software systems in general. People often use regular ex-
pressions for searching in text editors or for UNIX command; for example, vi,
emacs and grep. There are two types of questions in the pattern matching that
one can ask. The first is the recognition problem: Does a string in a given text
match a particular pattern? The second is the searching problem: Identify all
matching substrings of a given text with respect to a particular pattern. Since
a pattern is a language, regular expressions are often used to represent patterns
for the pattern matching problem. If a given pattern is a single string, then we
have the string matching problem [3,8]. If a given pattern is a finite language,
then we have the multiple keyword matching problem [2]. If a pattern is given as
a regular expression, then the first problem is the regular language membership
problem and the second problem is the regular-expression matching problem.

Given a text T and a pattern L, we define a substring s of T to be a match-
ing substring with respect to L if s ∈ L. Many researchers have investigated

� The authors were supported under the Research Grants Council of Hong Kong Com-
petitive Earmarked Research Grant HKUST6197/01E.

M. Liśkiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 552–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Linearizing Restriction in the Pattern Matching Problem 553

the various regular-expression matching problems. Thompson [11] presented the
first regular expression matching algorithm for his UNIX editor, ed. Aho [1] sug-
gested an algorithm to determine whether or not T has a matching substring
with respect to a given regular expression pattern E in O(mn) time using O(m)
space, where m is the size of E and n is the size of T . Crochemore and Han-
cart [5] extended this result to find all end positions of matching substrings of
T with the same runtime and space complexity of Aho [1]. The algorithm is a
modified version of the algorithm of Aho [1] and both algorithms are based on
the Thompson automata [11].

It is, in applications such as grep, sufficient to obtain the end positions
of matching substrings to output lines that contain the matched substrings.
However, we often need to find both the start positions and the end positions of
matching substrings to replace or delete the matched strings. Myers et al. [10]
solved the problem of identifying start positions and end positions of matching
substrings of T with respect to E in O(mn log n) time using O(m log n) space.
Recently, Han et al. [6] proposed another algorithm that runs in O(mn2) time
using O(m) space based on the algorithm of Crochemore and Hancart [5].

Given a regular expression pattern E and a text T , there can be at most
n2 matching substrings in T with respect to E in the worst-case. For exam-
ple, E = (a + b)∗ and T = abbaabaaba · · · baba over the alphabet {a, b}. These
matching substrings often overlap and nest with each other. To avoid this situ-
ation, researchers restrict the search to find and report only a linear subset of
the matching substrings. There are two well-known linearizing restrictions: The
longest match rule, which is a generalization of the leftmost longest match rule
of IEEE POSIX [7] and the shortest-match substring search rule of Clarke and
Cormack [4]. These two rules have different semantics and, therefore, identify
different matching substrings in general for same E and T .

In Section 2, we define some basic notions. We revisit two linearizing restric-
tions in the literature and examine the relationship between them in Section 3.
We observe that the two rules allow overlapping strings, which is not suitable
for some applications, and we propose a new linearizing restriction, the leftmost
non-overlapping match rule in Section 4. The new rule does not allow overlapping
strings and guarantees a linear number of matching substrings. We demonstrate
that the new rule is suitable for find-and-replace operations in text searching.
Then, we apply the rule to the regular-expression matching problem and de-
velop an algorithm for the problem in Section 5. The algorithm is based on the
Thompson automata [11] and it is easy to implement as similar algorithms [1,5].

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string. Given two strings x
and y over Σ, x is a prefix of y if there exists z ∈ Σ∗ such that xz = y and
x is a suffix of y if there exists z ∈ Σ∗ such that zx = y. Furthermore, x is

554 Y.-S. Han and D. Wood

said to be a substring or an infix of y if there are two strings u and v such that
uxv = y. Given a string x = x1 · · ·xn, |x| is the number of characters in x and
x(i, j) = xixi+1 · · ·xj is the substring of x from position i to position j, where
i ≤ j. Given a set X of strings over Σ, X is infix-free if no string in X is an infix
of any other string in X . Given a string x, let xR be the reversal of x, in which
case XR = {xR | x ∈ X}. We define a (regular) language L to be infix-free if
L is an infix-free set. A regular expression E is infix-free if L(E) is infix-free.
We can define prefix-free and suffix-free regular expressions and languages in a
similar way.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be
the number of states in Q and |δ| be the number of transitions in δ. Then, the
size of A is |A| = |Q| + |δ|.

A string x over Σ is accepted by A if there is a labeled path from s to
a final state in F that spells out x. Thus, the language L(A) of a finite-state
automaton A is the set of all strings spelled out by paths from s to a final state
in F . We assume that A has only useful states; that is, each state appears on
some path from the start state to some final state.

A pattern is essentially a language. Given a pattern L and a text T , we define
a string x to be a matching substring of T with respect to L if x is a substring
of T and x ∈ L. The pattern matching problem is to identify all matching
substrings of T with respect to a given pattern L. If L is represented by a
regular expression E, then we obtain the regular-expression matching problem.
If E is prefix-free, then we obtain the prefix-free regular-expression matching
problem. The size |E| of a regular expression E is the total number of character
appearances in E.

3 Linearizing Restrictions

In the pattern matching problem for a text T , matching substrings of T often
overlap with or nest with other matching substrings. Moreover, in the worst-case,
there are a quadratic number of matching substrings of T . To avoid these situa-
tions, researchers have designed methods to find a linear subset of the matching
substrings while preserving specified properties for each matching string. We
call such methods linearizing restrictions. There are two well-known linearizing
restrictions in the matching problem.

3.1 Longest-Match Rule

The leftmost longest match rule is defined in the IEEE POSIX Standard [7] as
follows:

“The search is performed as if all possible suffixes of the string were
tested for a prefix matching the pattern; the longest suffix containing a
matching prefix is chosen, and the longest possible matching prefix of the
chosen suffix is identified as the matching sequence.”

A New Linearizing Restriction in the Pattern Matching Problem 555

The rule reports the matching substring whose start position is leftmost and
if there are several matching substrings with such a start position, then the
longest string is identified. Since it is simple and easy to implement, the rule has
been adopted in many tools such as regex, perl and tcl/tk. Note that the rule
reports at most one matching string.

The longest-match rule is a generalization of the rule of IEEE POSIX [7]
that performs a general search instead of identifying a single match string. The
longest-match rule is defined as follows: Given a text T and a pattern L, we
search for the longest matching prefix with respect to L from position i in T ,
for 1 ≤ i ≤ n, where n is the size of T . Since there can be at most one longest
matching prefix from each position, there are at most n matching substrings;
thus, the longest-match rule guarantees a linear number of matching strings in
the size of T .

Assume that we use the longest-match rule for the regular-expression match-
ing problem. Given a regular expression E and a string w, we can find the longest
prefix of w that belongs to L(E) in O(mn) time using O(m) space based on the
algorithm of Aho [1], where m is the size of E and n is the size of w. Now we
search for the longest prefix from each position in T with respect to L(E) and it
takes O(m|s1|)+O(m|s2|)+ · · ·+O(m|sn|) time, where s1, s2, . . . , sn are suffixes
of T . Since |s1| + |s2| + · · · + |sn| = O(n2), where n is the size of T , the total
complexity of the regular-expression matching problem using the longest-match
rule is O(mn2) time and O(m) space. Note that we can improve this running
time by using the algorithm of Myers [9] with additional space.

3.2 Shortest-Match Substring Search Rule

Clarke and Cormack [4] proposed a different linearizing restriction, the shortest-
match substring search:

“Locate the set of shortest nonnested (but possible overlapping) strings
that each match the pattern.”

We can rephrase the rule as follows: Given a text T and a pattern L, identify
all matching substrings of T with respect to L such that each matching sub-
string is not an infix of any other matching substrings; thus, the resulting set
of matching substrings by this rule is an infix-free set. They demonstrated that
the shortest-match substring search rule is appropriate for searching structured
text such as SGML and XML.

Clarke and Cormack [4] showed that there are at most linear number of
matching substrings in the size of T . Furthermore, they considered the case when
a pattern is a regular language described by a finite-state automaton A. Let k
be the maximum number of out-transitions from a state in A, m be the number
of states in A and n be the size of a given text T . They proposed an O(kmn)
worst-case running time algorithm using O(m) space. If we use the Thompson
automata [11], which are often used in the regular-expression matching problem,
then the running time is O(mn) since k is at most 2 in the Thompson automata.
Although the rule is simple and straightforward, the idea of this linearizing
restriction is shown to be very useful in various cases.

556 Y.-S. Han and D. Wood

3.3 Comparison of Two Linearizing Restrictions

Both the longest-match rule and the shortest-match substring search rule ensure
that the number of matching substrings is linear in the size of T . However, the
two rules have different semantics and, therefore, give different results for the
same text and the same pattern. For example, if T = abc and the pattern L =
{a, abc}, then the longest-match rule outputs abc whereas the shortest-match
substring search rule outputs a. Notice that both rules determine what to report
for given an arbitrary text T and an arbitrary pattern L; namely, there are no
restrictions on the pattern and on the text. On the other hand, Han et al. [6]
showed that, if L is prefix-free, then there can be at most n matching substrings
of T because of the prefix-freeness of L. From this work, we obtain:

Corollary 1. If L is prefix-free or suffix-free, then there are at most n matching
substrings of T with respect to L, where n is the size of a given text T .

Corollary 1 demonstrates that we can apply the linearizing restriction for
patterns to obtain a linear number of matching substrings. Then, one ques-
tion is that whether we can compromise the semantic difference between the
longest-match rule and the shortest-match substring search rule by applying the
linearizing restriction on patterns.

Theorem 1. Given a pattern L and a text T , if L is infix-free, then the longest-
match rule and the shortest-match substring search rule give the same result.
However, the converse does not hold.

Proof. Assume that a set S = {s1, . . . , sk} is the set of matching substrings of T
with respect to L, where k is the number of the matching substrings. Let n be the
size of T . Since L is infix-free, there are at most n matching substrings; namely,
k ≤ n [6]. By the definition of matching substrings, si ∈ S, for 1 ≤ i ≤ k, must
belong to L; it implies that S is a subset of L and, therefore, S is also infix-free.
Thus, S is the output of the shortest-match substring search rule. Note that all
strings in S start from different positions in T . (If any two strings si and sj , for
1 ≤ i �= j ≤ k, start from the same position, then the shorter string must be a
prefix of the longer string — a contradiction.) Since each string in S starts from
different position, all strings in S are identified as matching substrings by the
longest-match rule. Therefore, S is the output of both rules.

We demonstrate that the converse does not hold with the following counter
example; T = ab and L = {ab, c, cc}. Both rules output ab but L is not infix-
free. ��

Theorem 1 shows that we can eliminate the semantic difference between two
rules by choosing an infix-free pattern. Moreover, if we know that a given pattern
is an infix-free language, then an algorithm for one rule can be used for the
other rule. For example, if a given pattern is an infix-free regular language, then
we can use the algorithm of Clarke and Cormack [4] for the regular-expression
matching problem with the longest-match rule. In additions, we can use an infix-
free regular-expression matching algorithm [6] for both linearizing restriction
rules; the algorithm takes O(mn) time using O(m) space in the worst-case.

A New Linearizing Restriction in the Pattern Matching Problem 557

4 Leftmost Non-overlapping Match Rule

In the pattern matching, two matching substrings of a given text T may overlap
with each other. Assume that we want to find matching substrings of T and delete
them from T . Then, only one of two overlapping matching substrings should be
identified. For example, if T = BEFOREIGN and the pattern L = {BEFORE,
FOREIGN}, then both BEFORE and FOREIGN are matching substrings with
respect to L. However, if we delete BEFORE from T , then FOREIGN does not
exist anymore. Similar situations can happen if we do modification or replace-
ment for matching substrings. Therefore, if two matching substrings overlap,
then only the string that starts ahead of the other string is identified. Sometimes
one matching substring is nested in the other matching substring. Even in this
case, we choose the string that has an earlier start position. For example, if T =
AUTOPIAN and L = {TO, UTOPIA}, then UTOPIA is identified even though
TO is in L and shorter than UTOPIA since UTOPIA starts ahead of TO in T .
These two examples show that the previous two rules, the longest-match rule
and the shortest-match substring search rule, are not suitable for such find-and-
replace operations in text searching since both rules allow matching substrings
to overlap. We suggest a new linearizing restriction that is suitable for find-and-
replace operations by identifying only non-overlapping matching substrings.

Definition 1. We define the leftmost non-overlapping match rule as follows:

Given a text T , we identify the leftmost matching substring. Then, we
move to the next position of the matching substring in T and repeat the
identification of the leftmost matching substring in the remaining text
until we cannot find it anymore. For example, if two matching strings
overlap, then we choose the string whose start position is ahead of the
other string’s start position and discard the other string; see (a) in Fig. 1.
If there are more than two matching substrings that start from the same
position, then we choose the shortest string among them; see (b) in Fig. 1.

B E F O R E I G N E D I T O R

(a) (b)

Fig. 1. The figure illustrates the leftmost non-overlapping match rule. (a) When the

pattern is {BEFORE, FOREIGN}; the rule chooses BEFORE. (b) When the pattern

is {EDIT, EDITOR}; the rule chooses EDIT.

Let G(L, T) denote the set of matching substrings of the given text T with
respect to a given pattern L by the leftmost non-overlapping match rule. Let
|G(L, T)| be the number of strings in G(L, T). For example, G(L = {aa, ab, ba, bb},
T = abcbabb) = {(1, 2), (4, 5), (6, 7)} and |G(L, T)| = 3. Note that although the
substring T (5, 6) = ab is in L, it is not in G(L, T) since it overlaps with another

558 Y.-S. Han and D. Wood

matching substring T (4, 5). From the definition of the leftmost non-overlapping
match rule, we obtain the following results.

Proposition 1. The leftmost non-overlapping match rule ensures that the num-
ber of matching substrings of T is at most n, where n is the size of T . Namely,
|G(L, T)| ≤ n

Proof. Assume that the number of matching substrings of T is greater than
n. Then, by the pigeonhole principle, there must be two distinct substrings s1

and s2 that start from the same position in T — a contradiction. Therefore,
|G(L, T)| ≤ n. ��
Proposition 2. If two distinct matching pairs (u1, v1) and (u2, v2) ∈ G(L, T),
then either v1 < u2 or v2 < u1.

Proof. By the match rule of Definition 1, two strings must be non-overlapping.
Then, there are only two possible cases as shown in Fig. 2. ��

T

T

u1 v1 u2 v2

u2 v2 u1 v1

Fig. 2. Two possible cases of two non-overlapping substrings of T

Proposition 1 shows that we always have a linear number of matching sub-
strings in the size of a given text by the leftmost non-overlapping match rule.
Note that we do not require L to be a particular type of language such as a regu-
lar language or a context-free language. Similar to the longest-match rule or the
shortest-match substring search rule, the leftmost non-overlapping match rule can
be treated as a general principle for any text search application. Since regular ex-
pressions are often used for the matching problem, we study the regular-expression
matching problem with the leftmost non-overlapping match rule in Section 5.

5 Regular-Expression Matching Problem

We consider the regular-expression matching problem using the leftmost non-
overlapping match rule. Before we present an algorithm for this problem, we
explain an example. Assume that we are given a regular expression E = a(a+b)∗c
for the text in Fig. 3. Then, G(L(E), T) = {(1, 5), (8, 11), (12, 14)}.

Note that T (1, 5), T (8, 11) and T (12, 14) are not the only matching sub-
strings of T with respect to L(E). T (3, 5) = abc and T (13, 14) = ac are also

A New Linearizing Restriction in the Pattern Matching Problem 559

T a b a b c b c a b b c a a c b b

Fig. 3. The output of G(L(E), T), where E = a(a + b)∗c

in L(E). Nevertheless, since both T (3, 5) and T (13, 14) overlap other matching
substrings of T and they are not the leftmost matching substrings, the leftmost
non-overlapping match rule does not identify them. For example, both T (1, 5)
and T (3, 5) are in L(E) but T (1, 5) is selected since T (1, 5) is the leftmost match-
ing substring.

ExpressionMatching (A, T)

Q = null({s})
if f ∈ Q then output λ
for j = 1 to n

Q = null(goto(Q, wj))
if f ∈ Q then output j

Fig. 4. A regular-expression matching procedure for finding all the end positions of

matching substrings of T with respect to A, where A = (Q, Σ, δ, s, f) is a Thompson

automaton and T = w1 · · ·wn is a text

We show that the regular-expression matching problem with the leftmost
non-overlapping match rule can be solved using a double scan of T based on the
algorithm of Crochemore and Hancart [5].

Theorem 2 (Crochemore and Hancart [5]). Given a regular expression E
and a text T , we can find all the end positions of matching substrings of T with
respect to L(E) in O(mn) worst-case time with O(m) space using Expression-
Matching, where m is the size of E and n is the size of T .

The algorithm ExpressionMatching (EM) in Fig. 4 is a modified version of
Aho’s algorithm [1] that determines whether or not a given text has a substring
accepted by a given finite-state automaton. EM has two sub-functions: The func-
tion null(Q) computes all states in A that can be reached from a state in the
set Q of states by null transitions and the goto(Q, wj) function gives all states
that can be reached from a state in Q by a transition with wj , the current
input character. For details of the algorithm, the sub-functions and the time
complexity, refer to Aho [1] or Crochemore and Hancart [5].

Given a regular expression E and a text T = w1 · · ·wn, we first compute all
start positions of matching substrings of T with respect to E. We prepend Σ∗ to
ER; thus, allowing matching to begin at any position in T R. We construct the
Thompson automaton [11] A for Σ∗ER and run ExpressionMatching (A, T R).

560 Y.-S. Han and D. Wood

T a b a b c b c a b b c a a c b b

Fig. 5. The output of a single scan of T R with respect to Σ∗ER using EM, where

E = a(a + b)∗c

For example, if we run EM on the text in Fig. 3, then we obtain the following
positions as indicated by “↓” in Fig. 5.

Since it takes O(m) time to compute the Thompson automaton for E [11]
and O(mn) time to run EM, where m is |E| and n is |T |, we can compute all
start positions of matching substrings in O(mn) time using O(m) space. Let
P = {q1, . . . , qk} be the set of the start positions of matching substrings after
the single scan of T R, where k is the number of matching start positions and
qi < qj for i < j. Then, we read a character from qi position of T to find a
corresponding shortest matching string with respect to E. Once we find one
matching substring T (qi, j), where qi < j, we move to the next start position in
P that is greater than j to avoid the overlapping. A full algorithm is given in
Fig. 6.

ReverseEM (A, T, P)

Q = { }, i = 1
for j = qi to n

Q = null(goto(Q,wj))
if f ∈ Q

output (qi, j)
while (qi < j)

i = i + 1
j = qi

fi
rof

Fig. 6. A reverse-scan matching procedure for a given Thompson automaton A =

(Q,Σ, δ, s, f) for E, a text T = w1 · · ·wn and a set P = {q1, . . . , qk} of the start

positions of matching substrings of T with respect to E

For example, if we run ReverseEM for the result in Fig. 5, where P =
{1, 3, 8, 12, 13}, then the algorithm first outputs (1, 5). The algorithm skips 3
in P since it makes an overlapping with the current output (1, 5) and goes to 8
in P to avoid an overlapping. Fig. 7 illustrates this step.

ReverseEM is based on EM in Fig. 4 and the while loop in ReverseEM
speeds up for finding the next matching substring by skipping inappropriate start
positions and ensures that the algorithm prohibits the overlapping matching
substrings. Note that the while loop is executed at most k times in total even

A New Linearizing Restriction in the Pattern Matching Problem 561

T a b a b c b c a b b c a a c b b

P

Fig. 7. An example of ReverseEM to find corresponding end positions for a given

set P according to the leftmost non-overlapping match rule, where E = a(a+b)∗c. The

algorithm skips position 3 and moves to position 8 after reporting (1, 5) as a matching

substring of T .

though it is inside the for loop. Therefore, the worst-case time complexity of
ReverseEM is still O(mn) using O(m) space.

Theorem 3. Given a pattern regular expression E and a text T , we can com-
pute the set of matching substrings that conforms the leftmost non-overlapping
match rule in O(mn) worst-case time using O(m) space, where m is the size of
E and n is the size of T .

Theorem 4. A pair (u, v) is recognized by ReverseEM if and only if (u, v) ∈
G(L(E), T), where E is a given pattern regular expression and T is a given text.

Proof. Assume that we have computed the set P = {q1, . . . , qk} of the start
positions of matching substrings using EM in Fig. 4, where k is the number of
start positions of matching substrings.

=⇒ If (u, v) is recognized by ReverseEM, then T (u, v) ∈ L(E) and u ∈
P since output in ReverseEM gives (qi, j) and qi ∈ P . It is clear that there
are no matching substring T (u, v′), where v′ < v, from the algorithm; namely,
T (u, v) is the shortest matching substring among all matching substrings that
start from the same position u in T . Now assume that T (u, v) overlaps with
another matching substring T (u′, v′) and T (u, v) is not the leftmost matching
substrings; hence, u′ < u < v′. Then, when ReverseEM recognizes (u′, v′), the
value of j becomes v′. After the output (u′, v′), ReverseEM executes the while
loop to choose the next start position from P that is greater than the current
position j. Since u < j = v′, u cannot be chosen as a start position because of the
while loop. It implies that the algorithm skips the start position u and therefore
(u, v) cannot be recognized by the algorithm — a contradiction; there cannot
be a such matching substring T (u′, v′) in T . Therefore, if (u, v) is recognized by
ReverseEM, then (u, v) ∈ G(L(E), T).

⇐= Since (u, v) ∈ G(L(E), T), T (u, v) is the shortest matching substring
from position u in T with respect to L and u must be in P . If u is q1 in P , then
it is clear that ReverseEM recognizes (u, v). Assume u = qi, where 1 < i ≤ k.
Now the only possible case that ReverseEM fails to recognize (u, v) is when u
is skipped by the while in the algorithm; namely, u < j for some j. It implies
that there is an output (q′, j), where q′ < u < j and q′ ∈ P . It contradicts that
T (u, v) is the leftmost non-overlapping matching substring of T . Therefore, this
situation is not possible and (u, v) must be recognized by ReverseEM. ��

562 Y.-S. Han and D. Wood

6 Conclusions

We have investigated linearizing restrictions for the pattern matching problem.
We have reexamined the longest-match rule that is a generalization of the rule
of IEEE POSIX [7] and the shortest-match substring search rule [4] and have
shown that the two rules give the same result when the given pattern is an infix-
free language. Note that both rules have different semantics and give different
outputs in general. Then, we have introduced a new linearizing restriction, the
leftmost non-overlapping match rule, which should be useful for implementing
find-and-replace operations in text searching.

Furthermore, we have proposed an O(mn) worst-case running time algorithm
for the regular-expression matching problem using the new linearizing rule based
on the algorithm of Crochemore and Hancart [5].

Acknowledgment

We appreciate Shixiong Ma for introducing us to the idea of the linearizing
restriction for the pattern matching problem.

References

1. A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor, Al-
gorithms and Complexity, volume A of Handbook of Theoretical Computer Science,
255–300. The MIT Press, Cambridge, MA, 1990.

2. A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18:333–340, 1975.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

4. C. L. A. Clarke and G. V. Cormack. On the use of regular expressions for
searching text. ACM Transactions on Programming Languages and Systems,
19(3):413–426, 1997.

5. M. Crochemore and C. Hancart. Automata for matching patterns. In G. Rozen-
berg and A. Salomaa, editors, Linear modeling: background and application,
volume 2 of Handbook of Formal Languages, 399–462. Springer-Verlag, 1997.

6. Y.-S. Han, Y. Wang, and D. Wood. Prefix-free regular-expression matching.
In Proceedings of CPM’05, 298–309. Springer-Verlag, 2005. Lecture Notes in
Computer Science 3537.

7. IEEE. IEEE standard for information technology: Portable Operating System Inter-
face (POSIX) : part 2, shell and utilities. IEEE Computer Society Press, Sept. 1993.

8. D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323–350, 1977.

9. E. W. Myers. A four Russians algorithm for regular expression pattern matching.
Journal of the ACM, 39(2):430–448, Apr. 1992.

10. E. W. Myers, P. Oliva, and K. S. Guimãraes. Reporting exact and approximate
regular expression matches. In Proceedings of CPM’98, 91–103. Springer-Verlag,
1998. Lecture Notes in Computer Science 1448.

11. K. Thompson. Regular expression search algorithm. Communications of the
ACM, 11:419–422, 1968.

	Introduction
	Preliminaries
	Linearizing Restrictions
	Longest-Match Rule
	Shortest-Match Substring Search Rule
	Comparison of Two Linearizing Restrictions

	Leftmost Non-overlapping Match Rule
	Regular-Expression Matching Problem
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

