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1. Introduction

Codes play a crucial role in many areas such as informatiocegsing, data compression, cryptography,
information transmission and so on [18]. They are categdrizith respect to different conditions (for
example prefix-free, suffix-free, infix-fre@r outfix-freg according to applications [1, 18]. Since codes
are sets of strings, they are closely related to formal laggs: a code is language The conditions
that classify code types define proper subfamilies of giemigliage families. For regular languages, for
example, prefix-freeness defines the family of prefix-frepula languages, which is a proper subfam-
ily of regular languages. Prefix-freeness is fundamentabiting theory; for example, Huffman codes
are prefix-free sets. The advantage of prefix-free codesatsvib can decode a given encoded string
deterministically. Prefix-free regular languages haveaaly been used to defideterminisnfor gener-
alized automata [6] and for expression automata [12]. Rbgcetian et al. [11] considered prefix-free
regular expressions as patterns in text searching andrmgesian efficient algorithm for the prefix-free
regular-expression matching problem based on prefix-f&en

Regular languages are given by finite-state automata (FAsgular expressions. There are two
main types of FAs: deterministic finite-state automata (BFAnd nondeterministic finite-state au-
tomata (NFAs). NFAs provide exponential savings in spacepgared with DFAs but the problem to
convert a given DFA to an equivalent minimal NFA is PSPACHEaptete [15]. For finite languages,

Salomaa and Yu [23] showed tr@(klog;kﬂ) is a tight bound for converting am-state NFA to a DFA,
wherek is the size of an input alphabet.

There are at least two different models for the state conitglexoperations: The deterministic state
complexity model considers minimal DFAs and the nondeteistic state complexity considers minimal
NFAs.

Yu et al. [25, 27] investigated the deterministic state claxipy for various operations on regular
languages. Recently, Yu and his co-authors [5, 21, 26] exadnihe deterministic state complexity of
combined operations on regular languages. As special cdsgate complexity, Campeanu et al. [2]
and Han and Salomaa [9] examined the deterministic stateleaity of finite languages. Pighizzini
and Shallit [20] investigated the deterministic state claxipy of unary language operations. Moreover,
Han et al. [10] studied the deterministic state complexitprefix-free regular languages and Han and
Salomaa [8] looked into the deterministic state compleaftguffix-free regular languages.

Holzer and Kutrib [13] studied the nondeterministic staimplexity of regular languages. Jirasek et
al. [16] examined the nondeterministic state complexitgmhplementation of regular languages. Here
we consider the operational nondeterministic state coxitplef prefix-free regular languages. The
results of Holzer and Kutrib [13] provide upper bounds far frefix-free case but are usually not tight.
Since prefix-freeness is a fundamental code property, ihj®rtant to calculate the precise bounds.
There are several other results with respect to the statpleaity of various operations [3, 4, 22].

Prefix-free languages are used in many coding theory apiplisa and for this reason results on state
complexity of prefix-free regular languages may be usefuitheérmore, determining the state complex-
ity of operations on fundamental subfamilies of the regldaguages can provide valuable insights on
connections between restrictions placed on language tigfisiand descriptional complexity. We ob-
serve that we can convert an arbitrary (prefix-free) NFA tpraf(x-free) NFA with a single final state
that does not have any out-transitions without adding asigst Based on this observation, we compute
the nondeterministic state complexity of basic operatfongrefix-free regular languages.
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In Section 2, we define some basic notions. In Section 3, wengxathe worst-case nondeter-
ministic state complexity of binary operations (catenationion and intersection) of prefix-free regular
languages. The results are tight in the sense that we giverlbeund examples that match the upper
bounds. Given am-state prefix-free minimal NFA and ann-state prefix-free minimal NFAB, we
show that

e The nondeterministic state complexity bfA) - L(B)ism +n — 1.
e The nondeterministic state complexity bfA) U L(B) ism + n.
e The nondeterministic state complexity btA) N L(B) ismn — (m +n) + 2.

In Section 4, we study the nondeterministic state complexitleene star and reversal operations
for prefix-free regular languages. Givensanstate prefix-free minimal NFA4, we show that

e The nondeterministic state complexity bfA)* is m.

e The nondeterministic state complexity bfA)% is m.

e The nondeterministic state complexity bfA) is 2™~ or2m=1! + 1.

We give a comparison table between the deterministic stetglexity and the nondeterministic state
complexity in Section 5.

2. Preliminaries

Let X denote a finite alphabet of characters aiiddenote the set of all strings ovEr The size|X| of
¥ is the number of characters i A language ovek is any subset oE*. The symbol) denotes the
empty language and the symbotlenotes the null string. For stringsy andz, we say that is aprefix
of y if y = zz. We define a (regular) languadeto be prefix-free if a string: € L is not a prefix of
any other strings irl.. Given a stringe in a setX of strings, letz* be the reversal af, in which case
XE={2F |z e X}

An FA Ais specified by atupléQ, X, 4, s, F'), whereQ is a finite set of stateg; is an input alphabet,
§: Q x ¥ — 29 s a transition functions € Q is the start state anfl C Q is a set of final states.
If F consists of a single statg then we usef instead of{f} for simplicity. Let|Q| be the number
of states inQ). We define the siz¢A| of A to be the number of states i, namely|A| = |Q|. For a
transitiond(p, a) = ¢ in A, we say thap has arout-transitionandq has ann-transition Furthermorep
is asource stat®f ¢ andq is atarget stateof p. We say thatd is non-returningif the start state ol does
not have any in-transitions antlis non-exitingif all final states ofA do not have any out-transitions. If
d(q, a) has a single element, then we denoté(q,a) = ¢’ instead ofi(q, a) = {¢'} for simplicity.

A string z overX. is accepted bW if there is a labeled path fromto a final state such that this path
spells outr. We call this path amccepting path Then, the languag&(A) of A is the set of all strings
spelled out by accepting paths.ih We say that a state of is usefulif it appears in an accepting path
in A; otherwise, it isuseless Unless otherwise mentioned, in the following we assumedhatates of
an FA are useful.
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A regular expressiork is prefix-free if L(F) is prefix-free and an FA is prefix-free if L(A) is
prefix-free. Moreover, ifL(A) is prefix-free, themd must be non-exiting. Note that if a prefix-free FA
has several final states, then all final states are equivatehthus, can be merged into a single final state
since A is non-exiting. Therefore, a minimal NFA for a prefix-freguéar language must have a single
final state. We assume that a given NFA has\Abansitions since we can always transformrastate
NFA with A-transitions to an equivalent-state NFA without\-transitions [14].

For complete background knowledge in automata theory,ghdar may refer to textbooks [14, 24].

Before tackling the problem, we present a nice techniguedivas a lower bound for the size of
NFAs suggested by Glaister and Shallit [7] and establisimaria that is crucial to prove the tight bound
for the nondeterministic state complexity in the followisgctions. Notice that an FA for a non-trivial
prefix-free regular language (namely,L # {\}) must have at least 2 states since such FA needs at least
one start state and one final state.

Proposition 2.1. (Glaister and Shallit [7])
Let L C ¥* be aregular language. Suppose that there exists a set ®f pair

P={(z;,w;) |1 <i<n}
such that
1. z;w; € Lforl <i<n;
2. zywj ¢ Lforl <i,j <n,andi# j.
Then, a minimal NFA forl. has at least states.

The setP satisfying the conditions of Proposition 2.1 is callefbaling setfor L.

Lemma 2.1. Letn > 2 be an arbitrary integer. Then,states are necessary and sufficient in the worst-
case for an NFA of a prefix-free regular langudgéa™1)*b).

Proof:
The languagd. = L((a"~!)*b) is accepted by an NFA with states that consist of a cycle of length
n—1 of a-transitions and on&-transition from the start state to a final state.

Consider the following set of pairs of strings

P = {(a, a"_Qb), (az, a"_gb), e (a"_Q, ab), (a"_l, b), (a"_lb, A}

Now P is a fooling set for, and its cardinality is:. By Proposition 2.1, it follows that the nondeter-
ministic state complexity of. is exactlyn. O

We useN'SC(L) to denote the number of states of a minimal NFA fgrnamely, NSC(L) is the
nondeterministic state complexity af
3. Binary Operations

We examine the nondeterministic state complexity of cdaienaunion and intersection of prefix-free
regular languages.
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3.1. Catenation of prefix-free regular languages

For the catenation of regular languagé&, — 1)2"! is the state complexity for the DFA case [27]
andm + n is the state complexity for the NFA case [13]. From Han et HD][we know that in the
prefix-free case, the deterministic state complexity isdinin the sizes of the component automata and
the nondeterministic state complexity cannot be very miiitérdnt.

Theorem 3.1. Given two prefix-free regular languagés and L, the nondeterministic state complex-
ity NSC(L1 L) for LiLs ism +n — 1, wherem = NSC(L1) andn = N'SC(Ls).

Proof:

Let A = (Q1,%,01,s1, f1) andB = (Q2, X, 62, s2, f2) be two NFAs recognizing prefix-free languages.
As observed above, without loss of generality, we can asdhated and B have only one final state
that is non-exiting. We construct an NKA for L(A)L(B) by merging the final stat¢, of A and the
start states, of B to give a single state that also eliminates all out-trams#iof f; of A. Namely,
C=(Q,%,0,s1, f2), whereQ = Q1 U Q2 \ {f1} and for each state € ) and a character € ¥,

59 if p e @ anddi(p,a) = fi,
6(p7 CL) = 51(]97 (1) if b € Ql andél(pv (1) # f17
02(p,a)  otherwise.

It is easy to verify thatL(C) = L(A)L(B) from the construction. Sinc® = Q1 U Q2 \ {f1},
|Q| = m + n — 1 and, therefore, the construction shows that- n — 1 states are sufficient.

We next prove thatn + n — 1 states are necessary fb(A)L(B) in the worst-case. Lef; =
L((a™ 1)*b) andLy = L((a™~1')*b). Then, by Lemma 2.1, we know thAfSC(L;) =m andN'SC(L»)
=n.

Consider the following set consisting of + n — 1 pairs of strings:

P= {(a,a™ 2ba""'b), (a%,a™3ba""b),..., (a™ 2, aba™1b), (a™ ', ba"1b)} U
{(a™ ba, a™2b), (@™ *ba?,a"3b),... (a™ tba™ "1, b), (a™ tba" b, \)}.

It is easy to verify thaf is a fooling set ofl,; L. By Proposition 2.1y + n — 1 states are necessary
and, thereforeNSC(L1Ls) ism +n — 1.

Note that we cannot add the pdir™—1b,a"~'b) to P since (a™ 'ba"1)(a"1b) € LiLy, and
(am_lb)b € Lq1Lo. O

Han et al. [10] showed that: + n — 2 is the state complexity for the catenation of two prefix-free
minimal DFAs whose sizes are andn. Theorem 3.1 shows that there is no exponential gap between
the DFA case and the NFA case. This is caused by the strugiaaérty that a minimal FA for a prefix-
free regular language must be non-exiting and has only desfiml state, and this structural property
gives rise to a simple construction for the automaton reizag the catenation of prefix-free regular
languages.
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3.2.  Union of prefix-free regular languages

Han et al. [10] proved that:n — 2 is the state complexity of the union of anstate prefix-free DFA and
ann-state prefix-free DFA using the Cartesian product of stdtesthe NFA case, we directly construct
an NFA for the union of two prefix-free regular languages withthe Cartesian product of states.

Theorem 3.2. Given two prefix-free regular languagés and L», the nondeterministic state complex-
ity NSC(Ly U Ly) for Ly U Ly ism + n, wherem = NSC(L1) andn = N'SC(Ls).

Proof:
Let A = (Q1,%, 61,51, f1) be a minimal NFA forL; and B = (Q2, %, d2, s2, f2) be a minimal NFA
for Lo. We construct an NFA for L; U Lo by introducing a new start state for the alternatior.ofl)
andL(B). Namely,C' = (Q,%,4,s,{f1, f2}), where@Q = Q1 U Q2 U {s} and for a statg € @ and a
characten € ¥,

01(s1,a) U da(s2,a) if p=-s,

é(p,a) = q d1(p,a) if p e Q,
d2(p, a) if p € Q.

From C, we observe that the two final statgsand f, are equivalent and, thus, merggand f».
Now we have
ICl=m+n+1—-1=m+n

states. Thereforen + n states are sufficient fab; U Lo.
For the necessary condition, considar= L((a™1)*b) andLy = L((c"~')*d), whereN'SC(L1)
=m andN'SC(Ly) =n by Lemma 2.1. Define the following set of pairs of strings:

P= {(\a™ ), (a,a™2b),...,(a™ 2 ab), (a™ 1,b)} U
{(c,c"2d), (%, c"3d), ..., (" 1,d), (" 1d, \)}.

The setP hasm + n elements and is a fooling set fér, U Lo. This shows thatn + n states are
necessary by Proposition 2.1. Therefok&€SC(L; U Ly) is m + n. O

Theorem 3.2 shows that the state complexity of union of tvafiyifree NFAs is linear in the sizes
of input FAs. The size of the resulting NFA differs by one frdne case dealing with union of general
NFAs [13] due to the fact that the two final states of two préfee FAs are equivalent. We note that the
state complexity of union of two prefix-free DFAs is quadrati the sizes of inputs [10].

3.3. Intersection of prefix-free regular languages

Given two FAsSA = (Q1,%,61,s1, F1) and B = (Q2,X%, 02, s2, F»), we can construct an FA! =
(Q1 % Q2,%,9,(s1,s2), F1 x Fy) for the intersection of.(A) andL(B) based on the Cartesian product
of states (see Hopcroft and Uliman [14] for details), where

6((p,q),a) = (61(p,a),d2(q,a)) forp € Q1,q € Q2 anda € X.

Since the construction does not require input FAs to be atéstic, we know thainn states are
sufficient forL(A) N L(B) if |A| = m and|B| = n. Note thatmn is the tight bound for the intersection
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of regular languages given by either DFAs or NFAs [13, 27]. te other hand, we observe that, in
the case wher.(A) and L(B) are prefix-free,M has some useless states and, thus, is not minimal
becausd.(A) and L(B) are prefix-free. Our approach is to reduce the number ofsskgtédentifying

and removing these useless states fldnbased on structural properties of prefix-free NFAs.

First, we assign a unique number to each state fromniito A and from 1 ton in B, where|A| = m
and|B| = n. Assume that thenth state and theth state are the final states /hand B, respectively.
The 1st state is the start state in bettand B. Let A N. B denote the resulting intersection automaton
that we compute based on the Cartesian product of states, (Tlhe) is the start state angn, n) is the
unique final state.

Proposition 3.1. Let AN, B be the Cartesian product of states fdtd) N L(B). Then, all state$m, i)
and(j,n), for1 <i < n—-1landl < j < m—1, do not appear in an accepting pathAm,. B since
L(A) andL(B) are prefix-free.

If a state(m, ) for i # n appears in an accepting path, then the final statef A has an out-
transition and this contradicts thA{A) is prefix-free. Therefore, Proposition 3.1 is valid. Nowrfr¢the
observation, we know that we can remove all stétesi) and(j,n), forl <i <n—-landl < j <m-—1
since they are useless.
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Figure 1. An example of computing the intersection of twofigrree minimal NFAs based on the Cartesian
product of states. We omit all transitions. All states iedide two dotted boxes are useless.

Once we remove all useless states, the resulting automason h

mn—(m-—1)—(n—1)=mn—(m+mn)+2

states. This implies thatn — (m + n) + 2 states are sufficient fat(A) N L(B), where|A| = m and
|B| = n.
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Theorem 3.3. Given two prefix-free regular languagés and L, the nondeterministic state complex-
ity NSC(Ly N Ly) for Ly N Ly ismn — (m+n) +2, wherem = NSC(L1),n =NSC(Ly) and|X| > 3.

Proof:
The previous consideration together with Fig. 1 showsthat— (m + n) + 2 states are sufficient.

We prove the necessary condition by giving two prefix-fregutar languages that reach the bound.
Assume thak = {a, b, c}. Given a stringw over, let |w|, denote the number afs in w. Let

Ly = {wc| |w|l, =0 (modm — 1), forw € {a,b}*}
and
Ly = {wc | |w|py =0 (modn — 1), forw € {a,b}*}.
As in Lemma 2.1, one can show th&tSC(L;) =m andNSC(Ls) = n.
Define the following set of pairs of strings:
P={(c,)}U{(@¥,a™ =" ) |1<i<m—-1,1<j<n—1}L

Then, P has(m — 1)(n — 1) 4+ 1 elements and” is a fooling set forL; N Ly. This implies that
a minimal NFA for L; N Ly needs at leastm — 1)(n — 1) + 1 states. ThereforeVSC(Ly N L) =
mn — (m+n) + 2. O

4. Unary Operations

We consider the nondeterministic state complexity of Késtar, reversal and complementation of
prefix-free regular languages.

4.1. Kleene star of prefix-free regular languages

We examine the Kleene star operation of prefix-free NFAs.tReprefix-free minimal DFA case, Han
et al. [10] showed that is the tight bound, where: is the number of states.

We first consider the Kleene plus operation and study Kletardaer. Given a prefix-free minimal
NFA A= (Q,X%,4,s, f), we construct a new NFA' = (Q, X%, 4, s, f), where

) _ ) dpa)  ifp# S,
o(p.) _{ i(s,a) ifp=f.

Note that, by the constructiod,(A") = L(A)*. We show thatd’ must be minimal.

(1)

Lemma 4.1. A is a minimal NFA if and only ifA’ is a minimal NFA.

Proof:

— Assume thatd’ is not minimal. This implies that there is a minimal NFAsuch thatZ.(B) =
L(A)" and|B| < |A’|. SinceL(B) = L(A)*, B must accept all stings ih(A). We mark all states and
transitions of accepting paths for the stringg.¢f4) in B. The newly marked states and transitions give
rise to a new NFAC.
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Claim 1. C is non-exiting.
Assume that is not non-exiting. Then, there is an accepting path foriagtv € L(A) that passes
through a final statg¢z in B. Letu be a proper prefix string ab that is spelled out by reachinfy.
Sinceu € L(B) = L(A)T, u = ujug - - - ug, for k > 1, andu; € L(A) for 1 < i < k. Note that ifu is
a prefix string ofw, thenu; is also a prefix ofv sincew; is a prefix ofu. This implies that bothw and
up are inL(A) — a contradiction. Thereforé;, is non-exiting.

Claim 2. L(A) = L(C).
SinceL(A) C L(C) by construction, we only need to show thatd) O L(C). Assume thaf(A) 2
L(C). This implies that there is an accepting path for a steing L(C) \ L(A). SinceC'is a subgraph
of B,w € L(B) = L(A)". Note thatw = wyws---wy, for k > 1, andw; € L(A) for1 < i < k.
Therefore, the accepting path ferin C must spell outvyws - - - wy. Sincew; € L(A), there is a final
state on the accepting path ferin C' and it contradicts Claim 1. Thereforé(A) O L(C) and, thus,
the claim is true.

Note that|C| < |Q] sinceC' is a subgraph oB. Then, Claim 2 shows that there exists a smaller
NFA for L(A) — a contradiction.

<= Assume tha#{ is not minimal. This implies that there exists a minimal NEAuch thatL (C') =
L(A) and|C| < |A]. SinceL(C) is prefix-free, it is non-exiting and has a single final stathen, we
use the same construction above and obtain a new &Fguch thatZ.(C’) = L(C)™ = L(A)*. Since
|IC'| = |C| < |A|] = |A'|, there is a smaller NFA fok(A’) — a contradiction. 0

Lemma 4.1 guarantees that states are sufficient fat(A)*. Since for everyn > 1 there exists a
prefix-free languagé. with N'SC(L) = m, we obtain the following statement from Lemma 4.1.

Theorem 4.1. Given a prefix-free regular languade the nondeterministic state complexitySC(L™)
for L™ is m, wherem = N'SC(L).

Given a prefix-free minimal NFAM = (Q, X, 0, s, f), we have constructed a minimal NFA' =
(Q,%,d,s, f) such thatL.(A’) = L(A)™. Now we change the start state 4f to f and denote the
resulting NFA asB; namelyB = (Q, %, ¥, f, f).

Lemma 4.2. Given suchd’ = (Q, X, ¥, s, f) andB = (Q, %, ¥, f, f),
1. L(B) = L(A) U{\}.
2. A’ is minimal if and only if B is minimal.

Proof:
We only prove the first result. The second result can be pragad) an argument similar to that for the
proof of Lemma 4.1.

Sincef is now a start state\ € L(B). Letw = wyws - - - wy, be a string inL(A’). This implies that
there is an accepting path farin A’. Sinced’ (s, wy) = §'(f,w1) by (1), we reach the same set of states
after readingu; in both A’ and B. Consequently, we can follow the same accepting path sinced’ is
the same. Similarly, we can show that if a stringZ A € L(B), thenw € L(A’). 0

Lemma 4.2 gives an upper bound of the nondeterministic statgplexity for L*. We can easily
show that the upper bound is reachable based on Theorem 4.1.
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Theorem 4.2. Given a prefix-free regular languade the nondeterministic state complexitySC(L*)
for L* is m, wherem = N'SC(L).

For the Kleene star of regular languages, the determirssdie complexity i€”~! + 27—2 [27] and
the nondeterministic state complexityris+ 1 [13], wherem is the number of states in both cases. On
the other hand, we have the same boundf the input regular language is prefix-free. Intuitiveliet
reason can be viewed to be the fact that minimal FAs for a pfedixregular language have a single final
state that is non-exiting.

4.2. Reversal of prefix-free regular languages

We investigate the nondeterministic state complexity @érsal on prefix-free regular languages. Note
that if L is prefix-free, ther.? is suffix-free. Therefore, the complexity is also relatedhi® reversal of
suffix-free regular languages.

Theorem 4.3. Given a prefix-free regular languade the nondeterministic state complexitySC(L%)
ism, wherem = NSC(L).

Proof:
Sincem = NSC(L), there is aminimal NFA = (Q, 3, 4, s, f) that acceptd,, where|Q| = m. Remark
that A has a single final state and it is non-exiting. Based on thigtstral property, we can obtain an
NFA A% for L by flipping the directions of all transitions and intercharthe start state and the final
state. Namely, the new NFA® = (Q, %, 6%, f,s). SinceL” = L(Af), and both4 and A® have the
same sef) of states, we know that states are sufficient fat”.

Next, we demonstrate that the bound is reachable.ZLet L((a™ !)*b). It is already proved in
Lemma 2.1 thatV'SC(L) = m. Consider the following set of pairs of strings:

P ={(\, bam_l), (b, am_l), (ba, am_z), el (bam_?’,az), (ba"_Q,a)}.

Note thatP’ is the reversal of the fooling sét used in Lemma 2.1. It is clear th& is a fooling
set for L' and hasn elements. Then, a minimal NFA fdr”? needs at least: states by Proposition 2.1.
Therefore NSC(LT) = m. O

If we compute the minimal DFA foL(A4)*, then we need an exponential number of states since we
have to determinizel’*. For example, the state complexity of reversal of a prefse-fminimal DFA is
2m=2 4 1, wherem is the number of states [10].

4.3. Complementation of prefix-free regular languages

The complementation of NFA is a hard operation with respecttate complexity. It is well known
that2™ is the tight upper bound for transforming arstate NFA to a DFA [19]. The complementation
of ann-state DFA does not change the state complexity since itlgiimperchanges final states and
non-final states. Thus, based on the subset constructioknowe that2” states are sufficient for the
complementation of an-state NFA. For the tight bound, Jiraskova [17] recentigwed tha™ states
are necessary whek| = 2.

We use a modification of the construction of Jiraskova fbv computing the nondeterministic state
complexity of the complementation of prefix-free regulargaages.
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Lemma 4.3. Given ann-state prefix-free NFM = (Q, %, §, s, f), 2"~ ! + 1 states are sufficient for its

complement languagg(A).

Proof:

We first determinized using the subset construction. Lét be the resulting DFA. Note that’ has
2" states (some of them may be useless states), and the fimal atatthe subsets ¢f that containf.
Since L(A) is prefix-free,L(A’) is also prefix-free and, thus, we can merge2alt! final states into a
single final statef’ in A’. Therefore, the number of states for a DFA fofA) is 2"~ ! + 1. Now we
interchange final states and non-final states and the reg##a is an NFA forL(A). O

Next we show that the upper bound of Lemma 4.3 for the compiwieprefix-free languages can
almost be reached. We need the following two lemmas.

Lemma4.4. Let ¥ = QU {#} be an alphabet, wheré ¢ Q. LetL; C Q*andL = Ly - #. Then
NSC(L) =NSC(Ly) + 1.

Proof:
We note thatl is prefix-free and hence the minimal NFA férhas exactly one final state and it is non-
exiting. Any in-transition of the unique final stafehas to be labeled by. Hence from a minimal
NFA for L we can construct an NFA fdt; simply by making all source states pto be final states and
removingf. This shows that if the minimal NFA fok hasn states, then the minimal NFA fdr; needs
at mostn — 1 states.

On the other hand, lett = (Q, 2,4, s, F') be a minimal NFA forL;. (Since strings of.; do not
contain occurrences @#, the transitions ofd do not use the symbg@¥.) Then we can construct fdr
anNFAA = (QU{f},2,01,s,f), f € Q,whereforg e QU {f},z € %,

dg,x)ifge Q,xz € Q,
51(q7$): flquF,l':#,
() otherwise.

This means that if the minimal NFA faE hasn states, then the minimal NFA fat; needs at least
n — 1 states. O

Lemma4.5. Let ¥ = QU {#} be an alphabet, wherg ¢ Q. Let L C ¥* andL; C Q* be regular
languages such that

LO(Q - #) =Ly #. (2)
ThenNSC(L) > NSC(Ly).

Proof:
LetA = (Q, X%, 4, s, F') be a minimal NFA forL. It is sufficient to show that, can be recognized by an
NFA that has the same set of stafgs

We defineB = (Q, 2,7, s, F1) where~ is the restriction ob to @ x Q (that is,~ is undefined for
the symbok#) and

Fi={qeQ|dqg#) € F}.
By the choice off, it follows that B acceptsw € Q* if and only if A acceptsw#. By (2), it follows
that L(B) = L;. O
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Now the following lemma gives a lower bound for the complebtw@prefix-free languages.

Lemma 4.6. Let & be an alphabet of cardinality at least three and: 2. There exists a prefix-free
regular languagé s overY with N'SC(L3) = n such thatV'SC(L3) > 2" 1.

Proof:
We denote = Q U {#}, # ¢ Q. Since2 has at least two letters, from Jiraskova [17] we know that
there exists a regular langua@ie C Q* such that

NSC(Ly) =n—1andNSC(Q* — Ly) = 2" 1. (3)

We define the prefix-free languadg as Ly = Lo - #. By (3) and Lemma 4.4, we know that
NSC(Ls) = n. We note thato* — L consists of all strings over that do not end with# and the
strings of(X* — La) - #. Hence(X* — L3) N (Q*#) = (* — L) - #. Consequently, by Lemma 4.5
and (3) it follows that

NSC(X* — Lz) > 2L, O

We conclude with the following result that follows from Lerari2 and Lemma 4.6.

Theorem 4.4. The nondeterministic state complexity of the complemeraroi-state NFA language is
at most2"~! + 1. For eachn > 1, there exists a languageover a three letter alphabet recognized by
an NFA withn states such that the nondeterministic state complexify isfat leas2” .

The result of Theorem 4.4 means that the the worst-case temdgistic state complexity of com-
plementation is eithe2”~! + 1 or 2"~!. The lower bound construction obtained as an extensioneof th
construction from Jiraskova [17] requires an alphabedizé 3 and the question remains open for alpha-
bet size 2. Holzer and Kutrib [13] have established a lowemb@"”~2 for the nondeterministic state
complexity of complementation of general regular langsameer a binary alphabet.

5. Conclusions

We have investigated the nondeterministic state complefitbasic operations for prefix-free regular
languages. If a minimal NFAl is prefix-free, them has only one final state antlis non-exiting. Based
on these structural properties, we have examined the nenmli@istic state complexity with respect to

operation  prefix-free DFAs prefix-free NFAs
Ly Ly m-+n—2 m-+n-—1

L1 ULy mn — 2 m+n

LiNLy mn—2m+n)+6 mn—(m+n)+2
Ly m m

LE 2m=2 4 1 m

I m om—1 grom-1 41

Table 1. State complexity of basic operations between pfefix DFAs [10] and prefix-free NFAs.
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catenation, union, intersection, Kleene star, reversdtamplementation. Table 1 shows the comparison
between the deterministic state complexity and the nonahértéstic the state complexity.

We know that if a languagg is prefix-free, then its reversal” is suffix-free by definition. Therefore,
it is natural to investigate whether or not similar resuttddifor the nondeterministic state complexity of
suffix-free regular languages.
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