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1. Introduction

Codes play a crucial role in many areas such as information processing, data compression, cryptography,
information transmission and so on [18]. They are categorized with respect to different conditions (for
example,prefix-free, suffix-free, infix-freeor outfix-free) according to applications [1, 18]. Since codes
are sets of strings, they are closely related to formal languages: a code is alanguage. The conditions
that classify code types define proper subfamilies of given language families. For regular languages, for
example, prefix-freeness defines the family of prefix-free regular languages, which is a proper subfam-
ily of regular languages. Prefix-freeness is fundamental incoding theory; for example, Huffman codes
are prefix-free sets. The advantage of prefix-free codes is that we can decode a given encoded string
deterministically. Prefix-free regular languages have already been used to definedeterminismfor gener-
alized automata [6] and for expression automata [12]. Recently, Han et al. [11] considered prefix-free
regular expressions as patterns in text searching and designed an efficient algorithm for the prefix-free
regular-expression matching problem based on prefix-freeness.

Regular languages are given by finite-state automata (FAs) or regular expressions. There are two
main types of FAs: deterministic finite-state automata (DFAs) and nondeterministic finite-state au-
tomata (NFAs). NFAs provide exponential savings in space compared with DFAs but the problem to
convert a given DFA to an equivalent minimal NFA is PSPACE-complete [15]. For finite languages,

Salomaa and Yu [23] showed thatO(k
n

log2 k+1 ) is a tight bound for converting ann-state NFA to a DFA,
wherek is the size of an input alphabet.

There are at least two different models for the state complexity of operations: The deterministic state
complexity model considers minimal DFAs and the nondeterministic state complexity considers minimal
NFAs.

Yu et al. [25, 27] investigated the deterministic state complexity for various operations on regular
languages. Recently, Yu and his co-authors [5, 21, 26] examined the deterministic state complexity of
combined operations on regular languages. As special casesof state complexity, Câmpeanu et al. [2]
and Han and Salomaa [9] examined the deterministic state complexity of finite languages. Pighizzini
and Shallit [20] investigated the deterministic state complexity of unary language operations. Moreover,
Han et al. [10] studied the deterministic state complexity of prefix-free regular languages and Han and
Salomaa [8] looked into the deterministic state complexityof suffix-free regular languages.

Holzer and Kutrib [13] studied the nondeterministic state complexity of regular languages. Jirásek et
al. [16] examined the nondeterministic state complexity ofcomplementation of regular languages. Here
we consider the operational nondeterministic state complexity of prefix-free regular languages. The
results of Holzer and Kutrib [13] provide upper bounds for the prefix-free case but are usually not tight.
Since prefix-freeness is a fundamental code property, it is important to calculate the precise bounds.
There are several other results with respect to the state complexity of various operations [3, 4, 22].

Prefix-free languages are used in many coding theory applications, and for this reason results on state
complexity of prefix-free regular languages may be useful. Furthermore, determining the state complex-
ity of operations on fundamental subfamilies of the regularlanguages can provide valuable insights on
connections between restrictions placed on language definitions and descriptional complexity. We ob-
serve that we can convert an arbitrary (prefix-free) NFA to a (prefix-free) NFA with a single final state
that does not have any out-transitions without adding any states. Based on this observation, we compute
the nondeterministic state complexity of basic operationsfor prefix-free regular languages.
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In Section 2, we define some basic notions. In Section 3, we examine the worst-case nondeter-
ministic state complexity of binary operations (catenation, union and intersection) of prefix-free regular
languages. The results are tight in the sense that we give lower bound examples that match the upper
bounds. Given anm-state prefix-free minimal NFAA and ann-state prefix-free minimal NFAB, we
show that

• The nondeterministic state complexity ofL(A) · L(B) is m + n − 1.

• The nondeterministic state complexity ofL(A) ∪ L(B) is m + n.

• The nondeterministic state complexity ofL(A) ∩ L(B) is mn − (m + n) + 2.

In Section 4, we study the nondeterministic state complexity of Kleene star and reversal operations
for prefix-free regular languages. Given anm-state prefix-free minimal NFAA, we show that

• The nondeterministic state complexity ofL(A)∗ is m.

• The nondeterministic state complexity ofL(A)R is m.

• The nondeterministic state complexity ofL(A) is 2m−1 or 2m−1 + 1.

We give a comparison table between the deterministic state complexity and the nondeterministic state
complexity in Section 5.

2. Preliminaries

Let Σ denote a finite alphabet of characters andΣ∗ denote the set of all strings overΣ. The size|Σ| of
Σ is the number of characters inΣ. A language overΣ is any subset ofΣ∗. The symbol∅ denotes the
empty language and the symbolλ denotes the null string. For stringsx, y andz, we say thatx is aprefix
of y if y = xz. We define a (regular) languageL to be prefix-free if a stringx ∈ L is not a prefix of
any other strings inL. Given a stringx in a setX of strings, letxR be the reversal ofx, in which case
XR = {xR | x ∈ X}.

An FA A is specified by a tuple(Q,Σ, δ, s, F ), whereQ is a finite set of states,Σ is an input alphabet,
δ : Q × Σ → 2Q is a transition function,s ∈ Q is the start state andF ⊆ Q is a set of final states.
If F consists of a single statef , then we usef instead of{f} for simplicity. Let |Q| be the number
of states inQ. We define the size|A| of A to be the number of states inA; namely|A| = |Q|. For a
transitionδ(p, a) = q in A, we say thatp has anout-transitionandq has anin-transition. Furthermore,p
is asource stateof q andq is atarget stateof p. We say thatA is non-returningif the start state ofA does
not have any in-transitions andA is non-exitingif all final states ofA do not have any out-transitions. If
δ(q, a) has a single elementq′, then we denoteδ(q, a) = q′ instead ofδ(q, a) = {q′} for simplicity.

A string x overΣ is accepted byA if there is a labeled path froms to a final state such that this path
spells outx. We call this path anaccepting path. Then, the languageL(A) of A is the set of all strings
spelled out by accepting paths inA. We say that a state ofA is usefulif it appears in an accepting path
in A; otherwise, it isuseless. Unless otherwise mentioned, in the following we assume that all states of
an FA are useful.
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A regular expressionE is prefix-free ifL(E) is prefix-free and an FAA is prefix-free ifL(A) is
prefix-free. Moreover, ifL(A) is prefix-free, thenA must be non-exiting. Note that if a prefix-free FAA
has several final states, then all final states are equivalentand, thus, can be merged into a single final state
sinceA is non-exiting. Therefore, a minimal NFA for a prefix-free regular language must have a single
final state. We assume that a given NFA has noλ-transitions since we can always transform ann-state
NFA with λ-transitions to an equivalentn-state NFA withoutλ-transitions [14].

For complete background knowledge in automata theory, the reader may refer to textbooks [14, 24].
Before tackling the problem, we present a nice technique that gives a lower bound for the size of

NFAs suggested by Glaister and Shallit [7] and establish a lemma that is crucial to prove the tight bound
for the nondeterministic state complexity in the followingsections. Notice that an FA for a non-trivial
prefix-free regular languageL (namely,L 6= {λ}) must have at least 2 states since such FA needs at least
one start state and one final state.

Proposition 2.1. (Glaister and Shallit [7])
Let L ⊆ Σ∗ be a regular language. Suppose that there exists a set of pairs

P = {(xi, wi) | 1 ≤ i ≤ n}

such that

1. xiwi ∈ L for 1 ≤ i ≤ n;

2. xiwj /∈ L for 1 ≤ i, j ≤ n, andi 6= j.

Then, a minimal NFA forL has at leastn states.

The setP satisfying the conditions of Proposition 2.1 is called afooling setfor L.

Lemma 2.1. Let n ≥ 2 be an arbitrary integer. Then,n states are necessary and sufficient in the worst-
case for an NFA of a prefix-free regular languageL((an−1)∗b).

Proof:
The languageL = L((an−1)∗b) is accepted by an NFA withn states that consist of a cycle of length
n−1 of a-transitions and oneb-transition from the start state to a final state.

Consider the following set of pairs of strings

P = {(a, an−2b), (a2, an−3b), . . . , (an−2, ab), (an−1, b), (an−1b, λ)}.

Now P is a fooling set forL and its cardinality isn. By Proposition 2.1, it follows that the nondeter-
ministic state complexity ofL is exactlyn. ut

We useNSC(L) to denote the number of states of a minimal NFA forL; namely,NSC(L) is the
nondeterministic state complexity ofL.

3. Binary Operations

We examine the nondeterministic state complexity of catenation, union and intersection of prefix-free
regular languages.
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3.1. Catenation of prefix-free regular languages

For the catenation of regular languages,(2m − 1)2n−1 is the state complexity for the DFA case [27]
andm + n is the state complexity for the NFA case [13]. From Han et al. [10], we know that in the
prefix-free case, the deterministic state complexity is linear in the sizes of the component automata and
the nondeterministic state complexity cannot be very much different.

Theorem 3.1. Given two prefix-free regular languagesL1 andL2, the nondeterministic state complex-
ity NSC(L1L2) for L1L2 is m + n − 1, wherem = NSC(L1) andn = NSC(L2).

Proof:
Let A = (Q1,Σ, δ1, s1, f1) andB = (Q2,Σ, δ2, s2, f2) be two NFAs recognizing prefix-free languages.
As observed above, without loss of generality, we can assumethat A andB have only one final state
that is non-exiting. We construct an NFAC for L(A)L(B) by merging the final statef1 of A and the
start states2 of B to give a single state that also eliminates all out-transitions of f1 of A. Namely,
C = (Q,Σ, δ, s1, f2), whereQ = Q1 ∪ Q2 \ {f1} and for each statep ∈ Q and a charactera ∈ Σ,

δ(p, a) =











s2 if p ∈ Q1 andδ1(p, a) = f1,

δ1(p, a) if p ∈ Q1 andδ1(p, a) 6= f1,

δ2(p, a) otherwise.

It is easy to verify thatL(C) = L(A)L(B) from the construction. SinceQ = Q1 ∪ Q2 \ {f1},
|Q| = m + n − 1 and, therefore, the construction shows thatm + n − 1 states are sufficient.

We next prove thatm + n − 1 states are necessary forL(A)L(B) in the worst-case. LetL1 =
L((am−1)∗b) andL2 = L((an−1)∗b). Then, by Lemma 2.1, we know thatNSC(L1) = m andNSC(L2)
= n.

Consider the following set consisting ofm + n − 1 pairs of strings:

P = {(a, am−2ban−1b), (a2, am−3ban−1b), . . . , (am−2, aban−1b), (am−1, ban−1b)} ∪

{(am−1ba, an−2b), (am−1ba2, an−3b), . . . (am−1ban−1, b), (am−1ban−1b, λ)}.

It is easy to verify thatP is a fooling set ofL1L2. By Proposition 2.1,m+n−1 states are necessary
and, therefore,NSC(L1L2) is m + n − 1.

Note that we cannot add the pair(am−1b, an−1b) to P since(am−1ban−1)(an−1b) ∈ L1L2, and
(am−1b)b ∈ L1L2. ut

Han et al. [10] showed thatm + n − 2 is the state complexity for the catenation of two prefix-free
minimal DFAs whose sizes arem andn. Theorem 3.1 shows that there is no exponential gap between
the DFA case and the NFA case. This is caused by the structuralproperty that a minimal FA for a prefix-
free regular language must be non-exiting and has only a single final state, and this structural property
gives rise to a simple construction for the automaton recognizing the catenation of prefix-free regular
languages.



98 Y.-S. Han et al. / Nondeterministic State Complexity of Basic Operations for Prefix-Free Regular Languages

3.2. Union of prefix-free regular languages

Han et al. [10] proved thatmn−2 is the state complexity of the union of anm-state prefix-free DFA and
ann-state prefix-free DFA using the Cartesian product of states. For the NFA case, we directly construct
an NFA for the union of two prefix-free regular languages without the Cartesian product of states.

Theorem 3.2. Given two prefix-free regular languagesL1 andL2, the nondeterministic state complex-
ity NSC(L1 ∪ L2) for L1 ∪ L2 is m + n, wherem = NSC(L1) andn = NSC(L2).

Proof:
Let A = (Q1,Σ, δ1, s1, f1) be a minimal NFA forL1 andB = (Q2,Σ, δ2, s2, f2) be a minimal NFA
for L2. We construct an NFAC for L1 ∪ L2 by introducing a new start state for the alternation ofL(A)
andL(B). Namely,C = (Q,Σ, δ, s, {f1, f2}), whereQ = Q1 ∪ Q2 ∪ {s} and for a stateq ∈ Q and a
charactera ∈ Σ,

δ(p, a) =











δ1(s1, a) ∪ δ2(s2, a) if p = s,

δ1(p, a) if p ∈ Q1,

δ2(p, a) if p ∈ Q2.

From C, we observe that the two final statesf1 andf2 are equivalent and, thus, mergef1 andf2.
Now we have

|C| = m + n + 1 − 1 = m + n

states. Therefore,m + n states are sufficient forL1 ∪ L2.
For the necessary condition, considerL1 = L((am−1)∗b) andL2 = L((cn−1)∗d), whereNSC(L1)

= m andNSC(L2) = n by Lemma 2.1. Define the following set of pairs of strings:

P = {(λ, am−1b), (a, am−2b), . . . , (am−2, ab), (am−1, b)} ∪

{(c, cn−2d), (c2, cn−3d), . . . , (cn−1, d), (cn−1d, λ)}.

The setP hasm + n elements and is a fooling set forL1 ∪ L2. This shows thatm + n states are
necessary by Proposition 2.1. Therefore,NSC(L1 ∪ L2) is m + n. ut

Theorem 3.2 shows that the state complexity of union of two prefix-free NFAs is linear in the sizes
of input FAs. The size of the resulting NFA differs by one fromthe case dealing with union of general
NFAs [13] due to the fact that the two final states of two prefix-free FAs are equivalent. We note that the
state complexity of union of two prefix-free DFAs is quadratic in the sizes of inputs [10].

3.3. Intersection of prefix-free regular languages

Given two FAsA = (Q1,Σ, δ1, s1, F1) andB = (Q2,Σ, δ2, s2, F2), we can construct an FAM =
(Q1 ×Q2,Σ, δ, (s1, s2), F1 ×F2) for the intersection ofL(A) andL(B) based on the Cartesian product
of states (see Hopcroft and Ullman [14] for details), where

δ((p, q), a) = (δ1(p, a), δ2(q, a)) for p ∈ Q1, q ∈ Q2 anda ∈ Σ.

Since the construction does not require input FAs to be deterministic, we know thatmn states are
sufficient forL(A)∩L(B) if |A| = m and|B| = n. Note thatmn is the tight bound for the intersection
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of regular languages given by either DFAs or NFAs [13, 27]. Onthe other hand, we observe that, in
the case whenL(A) andL(B) are prefix-free,M has some useless states and, thus, is not minimal
becauseL(A) andL(B) are prefix-free. Our approach is to reduce the number of states by identifying
and removing these useless states fromM based on structural properties of prefix-free NFAs.

First, we assign a unique number to each state from 1 tom in A and from 1 ton in B, where|A| = m
and|B| = n. Assume that themth state and thenth state are the final states inA andB, respectively.
The 1st state is the start state in bothA andB. Let A ∩c B denote the resulting intersection automaton
that we compute based on the Cartesian product of states. Then, (1, 1) is the start state and(m,n) is the
unique final state.

Proposition 3.1. Let A∩c B be the Cartesian product of states forL(A)∩L(B). Then, all states(m, i)
and(j, n), for 1 ≤ i ≤ n−1 and1 ≤ j ≤ m−1, do not appear in an accepting path inA ∩c B since
L(A) andL(B) are prefix-free.

If a state(m, i) for i 6= n appears in an accepting path, then the final statem of A has an out-
transition and this contradicts thatL(A) is prefix-free. Therefore, Proposition 3.1 is valid. Now from the
observation, we know that we can remove all states(m, i) and(j, n), for 1 ≤ i ≤ n−1 and1 ≤ j ≤ m−1
since they are useless.

1,1 1,2 1,3 1,n

2,1

m,1 m,n

m-1,n

m,n-1

n−1

m−1

Figure 1. An example of computing the intersection of two prefix-free minimal NFAs based on the Cartesian
product of states. We omit all transitions. All states inside the two dotted boxes are useless.

Once we remove all useless states, the resulting automaton has

mn − (m − 1) − (n − 1) = mn − (m + n) + 2

states. This implies thatmn − (m + n) + 2 states are sufficient forL(A) ∩ L(B), where|A| = m and
|B| = n.
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Theorem 3.3. Given two prefix-free regular languagesL1 andL2, the nondeterministic state complex-
ity NSC(L1 ∩ L2) for L1∩L2 is mn− (m+n)+2, wherem = NSC(L1), n = NSC(L2) and|Σ| ≥ 3.

Proof:
The previous consideration together with Fig. 1 shows thatmn − (m + n) + 2 states are sufficient.

We prove the necessary condition by giving two prefix-free regular languages that reach the bound.
Assume thatΣ = {a, b, c}. Given a stringw overΣ, let |w|a denote the number ofa’s in w. Let

L1 = {wc | |w|a ≡ 0 (modm − 1), for w ∈ {a, b}∗}

and
L2 = {wc | |w|b ≡ 0 (modn − 1), for w ∈ {a, b}∗}.

As in Lemma 2.1, one can show thatNSC(L1) = m andNSC(L2) = n.
Define the following set of pairs of strings:

P = {(c, λ)} ∪ {(aibj , am−1−ibn−1−jc) | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1}.

Then,P has(m − 1)(n − 1) + 1 elements andP is a fooling set forL1 ∩ L2. This implies that
a minimal NFA forL1 ∩ L2 needs at least(m − 1)(n − 1) + 1 states. Therefore,NSC(L1 ∩ L2) =
mn − (m + n) + 2. ut

4. Unary Operations

We consider the nondeterministic state complexity of Kleene star, reversal and complementation of
prefix-free regular languages.

4.1. Kleene star of prefix-free regular languages

We examine the Kleene star operation of prefix-free NFAs. Forthe prefix-free minimal DFA case, Han
et al. [10] showed thatm is the tight bound, wherem is the number of states.

We first consider the Kleene plus operation and study Kleene star later. Given a prefix-free minimal
NFA A = (Q,Σ, δ, s, f), we construct a new NFAA′ = (Q,Σ, δ′, s, f), where

δ′(p, a) =

{

δ(p, a) if p 6= f ,

δ(s, a) if p = f .
(1)

Note that, by the construction,L(A′) = L(A)+. We show thatA′ must be minimal.

Lemma 4.1. A is a minimal NFA if and only ifA′ is a minimal NFA.

Proof:

=⇒ Assume thatA′ is not minimal. This implies that there is a minimal NFAB such thatL(B) =
L(A)+ and|B| < |A′|. SinceL(B) = L(A)+, B must accept all stings inL(A). We mark all states and
transitions of accepting paths for the strings ofL(A) in B. The newly marked states and transitions give
rise to a new NFAC.
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Claim 1. C is non-exiting.
Assume thatC is not non-exiting. Then, there is an accepting path for a string w ∈ L(A) that passes
through a final statefB in B. Let u be a proper prefix string ofw that is spelled out by reachingfB.
Sinceu ∈ L(B) = L(A)+, u = u1u2 · · · uk, for k ≥ 1, andui ∈ L(A) for 1 ≤ i ≤ k. Note that ifu is
a prefix string ofw, thenu1 is also a prefix ofw sinceu1 is a prefix ofu. This implies that bothw and
u1 are inL(A) — a contradiction. Therefore,C is non-exiting.

Claim 2. L(A) = L(C).
SinceL(A) ⊆ L(C) by construction, we only need to show thatL(A) ⊇ L(C). Assume thatL(A) 6⊇
L(C). This implies that there is an accepting path for a stringw ∈ L(C) \ L(A). SinceC is a subgraph
of B, w ∈ L(B) = L(A)+. Note thatw = w1w2 · · ·wk, for k > 1, andwi ∈ L(A) for 1 ≤ i ≤ k.
Therefore, the accepting path forw in C must spell outw1w2 · · ·wk. Sincew1 ∈ L(A), there is a final
state on the accepting path forw in C and it contradicts Claim 1. Therefore,L(A) ⊇ L(C) and, thus,
the claim is true.

Note that|C| < |Q| sinceC is a subgraph ofB. Then, Claim 2 shows that there exists a smaller
NFA for L(A) — a contradiction.

⇐= Assume thatA is not minimal. This implies that there exists a minimal NFAC such thatL(C) =
L(A) and|C| < |A|. SinceL(C) is prefix-free, it is non-exiting and has a single final state.Then, we
use the same construction above and obtain a new NFAC ′ such thatL(C ′) = L(C)+ = L(A)+. Since
|C ′| = |C| < |A| = |A′|, there is a smaller NFA forL(A′) — a contradiction. ut

Lemma 4.1 guarantees thatm states are sufficient forL(A)+. Since for everym ≥ 1 there exists a
prefix-free languageL with NSC(L) = m, we obtain the following statement from Lemma 4.1.

Theorem 4.1. Given a prefix-free regular languageL, the nondeterministic state complexityNSC(L+)
for L+ is m, wherem = NSC(L).

Given a prefix-free minimal NFAA = (Q,Σ, δ, s, f), we have constructed a minimal NFAA′ =
(Q,Σ, δ′, s, f) such thatL(A′) = L(A)+. Now we change the start state ofA′ to f and denote the
resulting NFA asB; namelyB = (Q,Σ, δ′, f, f).

Lemma 4.2. Given suchA′ = (Q,Σ, δ′, s, f) andB = (Q,Σ, δ′, f, f),

1. L(B) = L(A′) ∪ {λ}.

2. A′ is minimal if and only ifB is minimal.

Proof:
We only prove the first result. The second result can be provedusing an argument similar to that for the
proof of Lemma 4.1.

Sincef is now a start state,λ ∈ L(B). Let w = w1w2 · · ·wk be a string inL(A′). This implies that
there is an accepting path forw in A′. Sinceδ′(s,w1) = δ′(f,w1) by (1), we reach the same set of states
after readingw1 in bothA′ andB. Consequently, we can follow the same accepting path inB sinceδ′ is
the same. Similarly, we can show that if a stringw 6= λ ∈ L(B), thenw ∈ L(A′). ut

Lemma 4.2 gives an upper bound of the nondeterministic statecomplexity forL∗. We can easily
show that the upper bound is reachable based on Theorem 4.1.



102 Y.-S. Han et al. / Nondeterministic State Complexity of Basic Operations for Prefix-Free Regular Languages

Theorem 4.2. Given a prefix-free regular languageL, the nondeterministic state complexityNSC(L∗)
for L∗ is m, wherem = NSC(L).

For the Kleene star of regular languages, the deterministicstate complexity is2n−1 + 2n−2 [27] and
the nondeterministic state complexity ism + 1 [13], wherem is the number of states in both cases. On
the other hand, we have the same boundm if the input regular language is prefix-free. Intuitively, the
reason can be viewed to be the fact that minimal FAs for a prefix-free regular language have a single final
state that is non-exiting.

4.2. Reversal of prefix-free regular languages

We investigate the nondeterministic state complexity of reversal on prefix-free regular languages. Note
that if L is prefix-free, thenLR is suffix-free. Therefore, the complexity is also related tothe reversal of
suffix-free regular languages.

Theorem 4.3. Given a prefix-free regular languageL, the nondeterministic state complexityNSC(LR)
is m, wherem = NSC(L).

Proof:
Sincem =NSC(L), there is a minimal NFAA = (Q,Σ, δ, s, f) that acceptsL, where|Q| = m. Remark
thatA has a single final state and it is non-exiting. Based on this structural property, we can obtain an
NFA AR for LR by flipping the directions of all transitions and interchange the start state and the final
state. Namely, the new NFAAR = (Q,Σ, δR, f, s). SinceLR = L(AR), and bothA andAR have the
same setQ of states, we know thatm states are sufficient forLR.

Next, we demonstrate that the bound is reachable. LetL = L((am−1)∗b). It is already proved in
Lemma 2.1 thatNSC(L) = m. Consider the following set of pairs of strings:

P ′ = {(λ, bam−1), (b, am−1), (ba, am−2), . . . , (bam−3, a2), (ban−2, a)}.

Note thatP ′ is the reversal of the fooling setP used in Lemma 2.1. It is clear thatP ′ is a fooling
set forLR and hasm elements. Then, a minimal NFA forLR needs at leastm states by Proposition 2.1.
Therefore,NSC(LR) = m. ut

If we compute the minimal DFA forL(A)R, then we need an exponential number of states since we
have to determinizeAR. For example, the state complexity of reversal of a prefix-free minimal DFA is
2m−2 + 1, wherem is the number of states [10].

4.3. Complementation of prefix-free regular languages

The complementation of NFA is a hard operation with respect to state complexity. It is well known
that2n is the tight upper bound for transforming ann-state NFA to a DFA [19]. The complementation
of an n-state DFA does not change the state complexity since it simply interchanges final states and
non-final states. Thus, based on the subset construction, weknow that2n states are sufficient for the
complementation of ann-state NFA. For the tight bound, Jirásková [17] recently showed that2n states
are necessary when|Σ| = 2.

We use a modification of the construction of Jirásková [17]for computing the nondeterministic state
complexity of the complementation of prefix-free regular languages.
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Lemma 4.3. Given ann-state prefix-free NFAA = (Q,Σ, δ, s, f), 2n−1 + 1 states are sufficient for its
complement languageL(A).

Proof:
We first determinizeA using the subset construction. LetA′ be the resulting DFA. Note thatA′ has
2n states (some of them may be useless states), and the final states are the subsets ofQ that containf .
SinceL(A) is prefix-free,L(A′) is also prefix-free and, thus, we can merge all2n−1 final states into a
single final statef ′ in A′. Therefore, the number of states for a DFA forL(A) is 2n−1 + 1. Now we
interchange final states and non-final states and the resulting FA is an NFA forL(A). ut

Next we show that the upper bound of Lemma 4.3 for the complement of prefix-free languages can
almost be reached. We need the following two lemmas.

Lemma 4.4. Let Σ = Ω ∪ {#} be an alphabet, where# 6∈ Ω. Let L1 ⊆ Ω∗ andL = L1 · #. Then
NSC(L) = NSC(L1) + 1.

Proof:
We note thatL is prefix-free and hence the minimal NFA forL has exactly one final state and it is non-
exiting. Any in-transition of the unique final statef has to be labeled by#. Hence from a minimal
NFA for L we can construct an NFA forL1 simply by making all source states off to be final states and
removingf . This shows that if the minimal NFA forL hasn states, then the minimal NFA forL1 needs
at mostn − 1 states.

On the other hand, letA = (Q,Ω, δ, s, F ) be a minimal NFA forL1. (Since strings ofL1 do not
contain occurrences of#, the transitions ofA do not use the symbol#.) Then we can construct forL
an NFAA′ = (Q ∪ {f},Σ, δ1, s, f), f 6∈ Q, where forq ∈ Q ∪ {f}, x ∈ Σ,

δ1(q, x) =











δ(q, x) if q ∈ Q,x ∈ Ω,

f if q ∈ F, x = #,

∅ otherwise.

This means that if the minimal NFA forL hasn states, then the minimal NFA forL1 needs at least
n − 1 states. ut

Lemma 4.5. Let Σ = Ω ∪ {#} be an alphabet, where# 6∈ Ω. Let L ⊆ Σ∗ andL1 ⊆ Ω∗ be regular
languages such that

L ∩ (Ω∗ · #) = L1 · #. (2)

ThenNSC(L) ≥ NSC(L1).

Proof:
Let A = (Q,Σ, δ, s, F ) be a minimal NFA forL. It is sufficient to show thatL1 can be recognized by an
NFA that has the same set of statesQ.

We defineB = (Q,Ω, γ, s, F1) whereγ is the restriction ofδ to Q × Ω (that is,γ is undefined for
the symbol#) and

F1 = {q ∈ Q | δ(q,#) ∈ F}.

By the choice ofF1, it follows thatB acceptsw ∈ Ω∗ if and only if A acceptsw#. By (2), it follows
thatL(B) = L1. ut
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Now the following lemma gives a lower bound for the complement of prefix-free languages.

Lemma 4.6. Let Σ be an alphabet of cardinality at least three andn ≥ 2. There exists a prefix-free
regular languageL3 overΣ with NSC(L3) = n such thatNSC(L3) ≥ 2n−1.

Proof:
We denoteΣ = Ω ∪ {#}, # 6∈ Ω. SinceΩ has at least two letters, from Jirásková [17] we know that
there exists a regular languageL2 ⊆ Ω∗ such that

NSC(L2) = n − 1 andNSC(Ω∗ − L2) = 2n−1. (3)

We define the prefix-free languageL3 as L3 = L2 · #. By (3) and Lemma 4.4, we know that
NSC(L3) = n. We note thatΣ∗ − L3 consists of all strings overΣ that do not end with# and the
strings of(Σ∗ − L2) · #. Hence(Σ∗ − L3) ∩ (Ω∗#) = (Ω∗ − L2) · #. Consequently, by Lemma 4.5
and (3) it follows that

NSC(Σ∗ − L3) ≥ 2n−1. ut

We conclude with the following result that follows from Lemma 12 and Lemma 4.6.

Theorem 4.4. The nondeterministic state complexity of the complement ofann-state NFA language is
at most2n−1 + 1. For eachn ≥ 1, there exists a languageL over a three letter alphabet recognized by
an NFA withn states such that the nondeterministic state complexity ofL is at least2n−1.

The result of Theorem 4.4 means that the the worst-case nondeterministic state complexity of com-
plementation is either2n−1 + 1 or 2n−1. The lower bound construction obtained as an extension of the
construction from Jirásková [17] requires an alphabet ofsize 3 and the question remains open for alpha-
bet size 2. Holzer and Kutrib [13] have established a lower bound 2n−2 for the nondeterministic state
complexity of complementation of general regular languages over a binary alphabet.

5. Conclusions

We have investigated the nondeterministic state complexity of basic operations for prefix-free regular
languages. If a minimal NFAA is prefix-free, thenA has only one final state andA is non-exiting. Based
on these structural properties, we have examined the nondeterministic state complexity with respect to

operation prefix-free DFAs prefix-free NFAs

L1 · L2 m + n − 2 m + n − 1

L1 ∪ L2 mn − 2 m + n

L1 ∩ L2 mn − 2(m + n) + 6 mn − (m + n) + 2

L∗
1 m m

LR
1 2m−2 + 1 m

L1 m 2m−1 or 2m−1 + 1

Table 1. State complexity of basic operations between prefix-free DFAs [10] and prefix-free NFAs.
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catenation, union, intersection, Kleene star, reversal and complementation. Table 1 shows the comparison
between the deterministic state complexity and the nondeterministic the state complexity.

We know that if a languageL is prefix-free, then its reversalLR is suffix-free by definition. Therefore,
it is natural to investigate whether or not similar results hold for the nondeterministic state complexity of
suffix-free regular languages.
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