Fundamenta Informaticae 81 (2007) 441-457 441
I0S Press

Outfix-Free Regular Languages and Prime Outfix-Free
Decompositiort

Yo-Sub Hanf*

Intelligence and Interaction Research Center, Korea tottiof Science and Technology
P.0.BOX 131, Cheongryang, Seoul, Korea

emmous@Kkist.re.kr

Derick Wood?

Department of Computer Science, Hong Kong University arge and Technology
Clear Water Bay, Kowloon, Hong Kong SAR

dwood@cs.ust.hk

Abstract. A string « is an outfix of a stringy if there is a stringw such thatr;wxs = y and

x = w1x9. A setX of strings is outfix-free if no string itX is an outfix of any other string itX.
Based on the properties of outfix strings, we develop a pahjabtime algorithm that determines
outfix-freeness of regular languages. Note that outfix-feggilar languages are always finite. We
consider two cases: 1) a language is given as a finite setiofjstand 2) a language is given by a
finite-state automaton. Furthermore, we investigate tiragputfix-free decomposition of outfix-
free regular languages and design a linear-time algorittahdomputes prime outfix-free decom-
position for outfix-free regular languages. We also denratesthe uniqueness of prime outfix-free
decomposition.

Keywords: regular languages, outfix-freeness, prime decompaosition

*A preliminary version of this paper appeared in fB®ceedings of the Second International Colloquium on Teteml
Aspects of ComputingCTAC’05, 2005 [13]. Part of this research research was@duout while Han was in HKUST.

fAddress for correspondence: Intelligence and InteracResearch Center, Korea Institute of Science and Technology
P.0.BOX 131, Cheongryang, Seoul, Korea

fHan was supported by the KIST Tangible Space Initiative G2&20050.

$Wood was supported by the Research Grants Council of Hong IGmmpetitive Earmarked Research Grant HKUST6197/
O1E.

442 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

1. Introduction

Codes play a crucial role in many areas such as informatiocggsing, data compression, cryptography
and information transmission [18]. They are categorizetth wéspect to different conditions (for exam-
ple, prefix-free, suffix-free, infix-fremr outfix-freg according to the applications [7, 8, 15, 16, 17, 20, 23].
Since a code is a set of strings, it idaaaiguage The conditions that classify code types define proper
subfamilies of given language families. For regular lanprsa for example, prefix-freeness defines the
family of prefix-free regular languages, which is a propdisfamily of regular languages.

Based on such subfamilies of regular languages, researblage investigated properties of these
languages and their decomposition problems. A decompodifia languagé. is a catenation of several
languaged.q, Lo, ..., Ly suchthatl = LiLs--- L andk > 2. We callL4, Lo, ..., L; factorsof L. If
L cannot be further decomposed exceptfor{ A} or {\} - L, we say thaf_ a primelanguage.

Czyzowicz et al. [5] studied prefix-free regular languaged the prime prefix-free decomposition
problem. They showed that the prime prefix-free decompusitif a prefix-free language is unique
and demonstrated the importance of prime prefix-free deositipn in practice. Prefix-free regular
languages are often used in the literature: to define therdetism of generalized automata [6] and of
expression automata [12], and to represent a pattern get [10

Han et al. [11] studied infix-free regular languages and ldgesl an algorithm to determine whether
or not a given regular expression defines an infix-free regalguage. They also designed an algorithm
for computing the prime infix-free decomposition of infixeér regular languages and showed that the
prime infix-free decomposition is not unique. Note that thienp prefix-free decomposition requires
each factor language to be prefix-free whereas the primefifexdecomposition requires each factor
language to be infix-free. Infix-free regular languages gise to faster regular-expression text match-
ing [2]. Infix-free languages are also used to compute faldxidwords [1, 4].

As a continuation of our investigations of subfamilies ajufar languages, it is natural to examine
outfix-free regular languages and the prime outfix-free dgmusition problem. Note that Ito and his co-
researchers [16] showed that an outfix-free regular largjisafinite and Han et al. [9] demonstrated that
the family of outfix-free regular languages is a proper stibsthe family of simple-regular languages.
(A simple-regular language is a set of strings spelled ouitmple paths in a given finite-state automa-
ton.) On the other hand, there was no known efficient algoritb determine whether or not a given
finite set of strings is outfix-free apart from using brutectarFurthermore, the decomposition of a finite
set of strings is not unique and the computation of the deoaitipn is believed to be NP-complete [22].
Therefore, our goal is to develop an efficient algorithm fetedmining outfix-freeness of a given finite
language and to investigate the prime outfix-free decontiposand its uniqueness.

We define some basic notions in Section 2 and propose twoegffigigorithms that determine outfix-
freeness in Section 3. The first algorithm takes a set ofggtr@as input and determines outfix-freeness of
the set by constructing tries. The second algorithm takesrdeterministic) finite-state automaton (FA)
as input. Note that, given an FA, we can determine outfix-freenessofA) by checking whether or
not(L(A) «— X1)n L(A) is empty, where— denotes the sequential insertion operation [19]. However,
this approach does not consider the structural propertigswehereas our second algorithm is based on
the structural properties of. Moreover, our algorithm is much easier to understand amqdeiment. In
Section 4, we show that an outfix-free regular language hagae prime outfix-free decomposition and
the unique decomposition can be computed in linear timedsitte of the given deterministic finite-state
automaton (DFA). We suggest some open problems and conitlisdeaper in Section 5.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 443

2. Preliminaries

Let X denote a finite alphabet of characters aliddenote the set of all strings ovEr A language over
¥ is any subset oE*. The symbol() denotes the empty language and the symbdenotes the null
string. Given a string: = 1 - - -z, || is the number of characters inandx (i, j) = z;x41 -+ x; IS
the substring of: from position: to positionj, wherei < j. Given two stringse andy in X*, z is said
to be anoutfix of y if there is a stringw such thatr;wzy = y, wherex = x1x5. FOr examplegbe is an
outfix of abede. Given a sefX of strings, X is outfix-freeif no string in X is an outfix of any other string
in X. Given a stringe in a setX, let 2 be the reversal of, in which caseX” = {2 | z € X}.

An FA Ais specified by atuplé?, ¥, 6, s, F'), whereQ is a finite set of stateg; is an input alphabet,
§:Q x ¥ — 29 s a transition functions € Q is the start state anH C Q is a set of final states. If
F consists of a single statg, we usef instead of{ f} for simplicity. Let|Q| be the number of states
in @ and|d| be the number of transitions ih Then, the sizéA| of A is |Q| + |d]. Given a transition
d(p,a) = q, wherep,q € @ anda € X, we say thap has anout-transitionandq has anin-transition
Furthermorep is asource statef ¢ andq is atarget stateof p. We defineA to benon-returningif the
start state oA does not have any in-transitions ando benon-exitingif all final states ofA do not have
any out-transitions. We assume thathas onlyusefulstates; that is, each state appears on some path
from the start state to some final state and, therefore, there sink state andl may not be complete
in general. A stringe overX is accepted bw if there is a labeled path fromto a final state inF' that
spells outz. The languagd.(A) of an FA A is the set of all strings spelled out by paths frefo a final
state inF'.

Givenan FAA = (Q, X, 4, s, F) and a statg € @, we define theight FA A to be(Q, %, 6, ¢, F');
namely, we make to be the start state. Then, thght languageL of ¢ is the set of strings accepted
by Aﬁn

For complete background knowledge in automata theory,gagar may refer to textbooks [14, 25].

3. Outfix-free regular languages
We first define outfix-free regular expressions and langyagekthen present an algorithm to determine

whether or not a given regular language is outfix-free. Spmeéx-free, suffix-free, infix-free and outfix-
free languages are related to each other, we define all of éimelhshow their relationships.

o

Figure 1. The diagram shows inclusions of families of largsa where,s,b,i ando denote prefix-free, suffix-
free, bifix-free, infix-free, and outfix-free families, resgtively, andu denotes the set of all languages o¥emNote
that the outfix-free family is a proper subset of the prefeefand suffix-free families.

u

444 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

Definition 3.1. A languageL is

o prefix-freeif, for all distinct stringse, y € ¥*, x € L andy € L imply thatz andy are not prefixes
of each other.

o suffix-freeif, for all distinct stringse, y € ¥*, € L andy € L imply thatz andy are not suffixes
of each other.

o bifix-freeif L is prefix-free and suffix-free.

e infix-freeif, for all distinct stringsz,y € ¥*, © € L andy € L imply thatz andy are not
substrings of each other.

¢ outfix-freeif, for all distinct stringsz, y,z € ¥*, xz € L andzyz € Limply y = \.

For further details and definitions, refer to Ito et al. [L6]Shyr [24].

We say that a regular expressiéhis outfix-free if L(E) is outfix-free. The language defined by an
outfix-free regular expression is called amtfix-free regular languageln a similar way, we can define
prefix-free, suffix-free and infix-free regular expressians languages.

LetA = (Q,%,4,s, F) be a DFA for a regular languade Han and Wood [12] showed thatis non-
exiting if and only if L is prefix-free. Moreover, Han et al. [11] proposed an alganithat determines
whether or not a given regular expressiBris infix-free inO (| E|?) worst-case time. This algorithm can
also solve the prefix-free and suffix-free cases as well. &fbeg, it is natural to design an algorithm to
determine whether or not a given regular language is outfi®-fSince an outfix-free regular langudge
is finite [16, 18], the problem is decidable by first checkihgtiL is finite and, then, comparing all pairs
of strings inL, although it is certainly undesirable to do so.

3.1. Prefix-freeness

Since the family of outfix-free regular languages is a prapdfamily of prefix-free regular languages
as shown in Fig. 1, we consider prefix-freeness of a finitedagg first.

Given a finite set of string$V = {wi,ws,...,w,}, wheren is the number of strings i, we
construct a tri” for W. A trie is an ordered tree data structure that is used to steet of strings and
each edge in the tree has a single character label. If agod# has an end-marker, then it means that
the corresponding string from the root¢ds in /. Fig. 2 gives an example. For details on tries, refer to
data structure textbooks [3, 26].

Assume thatw; is a prefix ofw;, wherei # j; it implies that|w;| < |w;|. Then,w; andw; must
have the common path [from the root to theth nodeq that spells outv;. Therefore, if we reach
while constructing the path fap; in 7', we recognize that; is a prefix ofw;. Let us consider the case
when we construct a path far; first and, then, construct a path fef in 7. The path forw; ends at the
|w;|th nodeq that already has a child node for the pathdgt Therefore, we know thab; is a prefix of
some other string. Note that we can construct a tridfom O(|w;| + |wa| + - - - |wy,|) time, which is
linear in the size ofV'.

Lemma 3.1. Given a finite setV of strings, we can determine whether or higtis prefix-free in linear
time in the size of¥/ by constructing a trie foi/’. We can also determine suffix-freeness/fin the
same runtime by constructing a trie fiar ?.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 445

Figure 2. The trie fo = {aa, ba, baaa, baab, bba, bbb, bbbb}, where # denotes the end-marker for the corre-
sponding string.

Proof:

We construct a triél” for W in linear time and check if any internal node has an end-mnankele

traversingl” in liner time. If we identify any internal node with an end-rker, thenl?” is not prefix-free.
Otherwise IV is prefix-free. O

3.2. Outfix-freeness

We now consider outfix-freeness. Assume that we have twimdistringsw; andw, andws, is an outfix
of wy. This implies thatv; = xyz for some strings:, y andz such thatvs = zz andy # \. Moreover,
w1 andws have the common prefix and the common suffix. Fig. 3 illustrates suchy; andws.

abclaabblba al

| |

~ g

~ —

v v

Figure 3. A graphicalillustration of an outfix stringbcbaa is an outfix ofabcaabbbaa.

Based on the observations, we determine whether or not oimg st; is an outfix of another
string w9, Where|w;| > |ws|, as follows: We compare two characters, one fremand the other
from wo, from left to right (from 1 tojw.|) until two compared characters are different; sayithechar-
acters are different. If we completely read, then we recognize that, is a prefix ofw; and, therefore,
wy is an outfix ofw;. We repeat these character-by-character comparisonsrighirto left (from |ws|
to 1) until we have two different characters. Assume thatjthecharacters are different. 4f> j, then
we IS an outfix ofw;. Otherwisew, is not an outfix ofw;. For example; = 4 andj = 3 in Fig. 3.

Lemma 3.2. Given two stringsw; andws, where|w| > |ws|, we is an outfix ofw; if and only if there
is a positioni such thatwz (1, ¢) is a prefix ofw; andws (i+1, |we|) is a suffix ofw;.

446 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

Proof:
The proof is straightforward from the definition of outfix. O

Figure 4. An example of a trie for strings; = zyz andw, = zz. Note that both paths end with the same
subpath sequence in the trie sinceandws have the common suffix.

Let us consider the trié for w; andw,. Sincew; andws have the common prefix, both strings
share the common path from the root to a ngd¥ height: that spells outvs(1,4). Moreover, the path
for wo (i + 1, |ws]) in T is a suffix-path forw, (i + 1, |wy|) in T'. For example, in Fig. 4, the path far
is the common prefix-path and the path fois the common suffix-path. Thus, if a given finite $&t
of strings is not outfix-free, then there is such a pair ohgsi Since a node € T gives the common
prefix for all strings that pass through we only need to check whether some path frpto a leaf is a
suffix-path for some other path frogto another leaf.

Let T'(q) be the subtree df rooted aty € 7. Then, we can determine whether or not a path from
is a suffix-path for another path frogin 7'(¢) by determining the suffix-freeness of all paths froro
a leaf inT'(¢) based on the same algorithm for Lemma 3.1. The running tirfiegar in the the size of

T(q).

3.3. Complexity of outfix-freeness

The subfunction igrefix-free() in Fig. 5 determines whether or not the set of strings regmiesl by a
given trieT is prefix-free. Note that iprefix-free(") runs inO(|T'|) time, where|T'| is the number of
nodes in7".

Given a finite set?V = {w;,ws,...,w,} of strings, we can construct a trié in O(>""" ; |w;])
time and space, which is linear in the sizeldf, wheren > 1. Prefix-freeness and suffix-freeness
can be verified in linear time by Lemma 3.1. Thus, the totahig time for the algorithm Outfix-
freeness (OFF) in Fig. 5 is

O(T)+ > IT(q)l;

qeT

whereq is a hode that has more than one child. In the worst-case, veetba@xamine all nodes if; for
example,I" is a complete tree, where each internal node has the samesnainthildren. To compute
the size of)_ |T'(q)|, let us consider a string; € W that makes a pat’ from the root to a leaf in

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 447

Outfix-freenesstV = {wy,wa, ..., wy,})
Construct a trie” for W

if (is_prefix-free(”) = no)
thenreturnno

if (is_suffix-free(”) = no)
then returnno

for eachq € T that has more than one child
if (is_suffix-free(I’(¢)) = no)

then returnno

returnyes

Figure 5. An outfix-freeness checking algorithm for a giveiitdi set of strings.

T. If anodeq € T of height;j in path P has more than one child, then the suffix(j+1, |w;|) of
w; that starts fromy is used in issuffix-free(’(¢)) in OFF. In the worst-case, all suffixes @f can be
used by issuffix-free(T’(¢)). Thereforew; contributesO(|w;|?) to the total running time of OFF. Fig. 6
illustrates a worst-case example.

Figure 6. All suffixes of a stringy in T" are used to determine the outfix-freeness by OFF. The siteecum of
all suffixes ofw is O(|w|?).

Therefore, the total time complexity @3(|w [* + |wa|? + - - - + |w,|?) in the worse-case. If the size
of w; is O(k), for somek, then the running time i©(k%n). On the other hand, the all-pairs comparison
approach give®)(kn?) worst-case running time. Note that the size of each stririf’iis usually much
smaller than the number of stringsiivi; namely,k < n.

Theorem 3.1. Given a finite seW = {wy, wo, ..., w,} of strings, we can determine whether or figt
is outfix-free iNO(Y_7 |w;|*) time usingO (Y7 |w;|) space in the worse-case.

448 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

Now we characterize the family of outfix-free (regular) laages in terms of closure properties.

Theorem 3.2. The family of outfix-free (regular) languages is closed urggenation and intersection
but not under union, complement or star.

Proof:
We only prove the catenation case. The other cases can bedmstraightforwardly.

— S1 v 59 -
sloa [y | -
t T ‘ z
Ltl#by

Figure 7. The figure illustrates the first case in the proofteédrem 3.2, wherg; andt; € L; fori = 1,2. Since
s1 is a prefix oft;, L1 is not outfix-free.

Assume thatl = L; - Lo is not outfix-free whereag,; and L, are outfix-free. Then, there are two
distinct stringss andt € L, wheret is an outfix ofs. Namely,s = zyz, t = xz andy # \. Sinces and
t are a catenation of two strings from and L, s andt can be partitioned into two parts;= s;s5 and
t = t1to, Wheres;, t; € L; for i = 1,2. From the assumption thatis an outfix ofs, s andt¢ have the
common prefix and the common suffix as shown in Fig. 7. If we dgmses andt into sqs, andiyts,
then we have one of the following four cases:

1. s1 is a prefix oft;.
2. t is a prefix ofs;.
3. s9 is a suffix ofts.
4. tq is a suffix ofss.

For cases 1 and Z,; is not prefix-free and, therefore, not outfix-free — a contiéoh. For cases 3
and 4,L, is not suffix-free and, therefore, not outfix-free — a conithdn. Thus, the family of outfix-
free languages is closed under catenation. Ito et al. [1\§} galifferent proof. O

3.4. Outfix-freeness of finite-state automata

We design an algorithm that determines the outfix-freentaggiven FA A using the structural proper-
ties. Assume that two strings; = zyz andwy, = zz are accepted byl, wherey # X\ andw, is an
outfix of wy. Letp andq be the states that we reach after readirfgpm w; andw-, respectively inA (p
andq may be the same state). Sinog andw, are inL(A), yz € L andz € L in A. This follows
that L; U L is not suffix-free. We usstate-pair graphgo check the existence of sueh andws in
L(A).

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 449

Definition 3.2. Given an FAA = (Q, %, 4, s, F'), we define the state-pair graghy = (Vg, E¢), where
Ve is a set of nodes anfl; is a set of edges, as follows:

Ve ={(i,j) | iandj € Q} and
Eq={((i,5),a,(x,y)) | 6(i,a) = z andd(j,a) = y anda € X}.

The crucial property of state-pair graphs is that if there $$ringw spelled out by two distinct paths
in A, for example, one path is fromto and the other path is fromto y, then, there is a path from
(4,7) to (z,y) in G4 that spells out the same string Note that state-pair graphs do not require given
FAs to be deterministic. The state-pair gragh = (Viz, E) ofan FAA = (Q, X%, §, s, F') has at most
|Q|? nodes ands|? edges.

Note that an outfix-free FA is always non-exiting. If an FA @rexiting and has several final states,
then all final states can be merged into a single final statedimey are all equivalent. Therefore, we
assume that a given FA is non-exiting and has a single fing.sGiven an FAA = (Q, %, 4, s,), we
demonstrate how to determine the outfix-freenesk (of) using its state-pair graph. We first computer
its state-pair grapl¥’ 4, wherem = |@Q|. Next, we define a new DFA’ from G 4 by making(1,1) to be
the start state an@n, m) to be the final state and removing all non-reachable staves (ft, 1) in G 4.
Note that, by constructiomd’ is deterministic. We call’ the state-pair DFAof A.

Lemma 3.3. Given an FAA = (Q, %, 4, s, f), L(A) is outfix-free if and only ifL - U L is suffix-free
for all pair stategp, ¢) € Q' ofits state-pair DFM’ = (Q', ¥, 0', s/, f'), whereL— is the right language
of stateg in A.

Proof:
— Assume thalLF U L7 is not suffix-free. Then, there are two strings andws in LF U L;, where

wo 1S a suffix ofw;. There are four cases to consider:

1. wy, W € Lﬁ-
Sincep is reachable froms in A, there is a path from to p and the path spells out a string This
implies thatA accepts both:w; andxws, wherezw, is an outfix ofxw; — a contradiction. Note
that(p, p) is also a state afl’.

2. wy € Ly andwsy € L.

Since all states ofi’ are reachable froml, 1) and A’ is deterministic, there is a path frofi, 1)
to (p, ¢) that spells out a string. This implies thatd accepts botlrw; andzws, wherezxw, is an
outfix of zw; — a contradiction.

3. w € L7 andws € Lﬁ.
This case is symmetric to the second case.

4, wi,we € L7.

This case is symmetric to the first case.

Therefore, ifL(A) is outfix-free, then.; U L is suffix-free.

450 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

<= Assume that’.(A) is not outfix-free. Then, there are two strings = xyz andws = zz accepted
by A, wherews is an outfix ofw;. Sincew; andws are spelled out by, there are two accepting
paths forw; andws, respectively. Lep andq be the states that we reach after readirfgom the two
accepting paths. This follows that the pgit ¢) is reachable fronfl, 1) in the state-pair graph of and,
thus, (p, ¢) is a state of its state-pair DFA’. Furthermore, from the accepting paths farandw,, we
know thatyz € Ly andz € L7 in A. Thus,L7 U L; is not suffix-free — a contradiction.
Therefore, ifL; U L is suffix-free, then(A) is outfix-free. O

Givenan FAA = (Q, X%, 4, s, f) and its state-pair DFA' = (Q’, X, 0, ¢, f'), we now need to check
whether or notL.; U L~ is suffix-free for all statép, q) € Q. SinceL~ in A is computed from its right
FA A-, we can construct an FB = (@B, ¥, 05, sB,) for L U Ly from A = (Qp, %, 6p, p, f)
andA = (Qq, %, 44,4, f), where

QB = {sB, [B} UQpUQ,
6B = {(SBa)\’p)a (SB,)\,(]), (fa)‘afB)} U 5}’ U 56]'

Note thatO(|B|) = O(|A| + |A4|) = O(]A]). Recently, Han et al. [11] proposed algorithms to
determine prefix-freeness, suffix-freeness, bifix-fresresl infix-freeness of a given (nondeterministic)
FA Ain O(|A]?) time. We use the algorithm to check suffix-freeness for eactGiven an FAA =
(Q,%,6,s, f), there are at mogt)|? pair states in its state-pair DFA and, for each pair statecave
decide the suffix-freeness & in O(|B|?) worst-case time.

Theorem 3.3. Given an FAA = (Q,%,4,s, f), we can determine the outfix-freeness Iof4) in
O(|Q|* +|Q|?|8|?) worst-case time.

Proof:
Since there are at mogp|? pair states in its state-pair DFA and, for each pair statekésO(|B|?) time
for checking the suffix-freeness éf B), the total running time is

QP x O(IB*) = |QI” x O(IAP*) = |Q* x O(IQI* +13]*) = O(1Q[" + Q|[*).

Therefore, we can check the outfix-freeness of a given FA iynomnial time. O

We note that if a given FA is deterministic, then we can speed up the algorithm in Téra®.3 by
skipping the construction of the state-pair graph. Notéweacompute the state-pair graph and its state-
pair DFA to find a common prefix of two stringsw; andwy because the input FA is nondeterministic.
However, if A is deterministic andv; andws have a common string, then both accepting paths must
have the same path for Therefore, we only need to check whether or het is suffix-free for eacly
in A. Since it take®)(|Q|* + |§|?) time for each state to check suffix-freeness and therégrstates,
the total runtime for determining outfix-freenessAfs O(|Q|* + |Q||5|?). SinceO(|Q]) = O(|d]) in
DFAs, we establish the following result.

Proposition 3.1. Given a DFAA = (@, %, 4, s, f), we can determine the outfix-freenessigfA) in
O(|Q?) worst-case time.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 451

4. Prime outfix-free regular languages and prime decomposiin

Decomposition is the reverse operation of catenatiof. #f L, - Lo, thenL is the catenation of.; and
L, andL; - Lo is a decomposition of. We call L, and L, factorsof L. Note that every language has
a decomposition. = {\} - L, whereL is a factor of itself. We cal{ \} atrivial language. We define a
languagel. to beprimeif L # L, - L, for any two non-trivial languages. Then, the prime decoritjpos
of L is to decomposé into Ly - Ly - ... - Ly, whereLq, Lo, ..., L are prime languages aid> 1 is a
constant.

Mateescu et al. [21, 22] showed that the primality of regldaguages is decidable and the prime de-
composition of a regular language is not unique even foieflailguages. Czyzowicz et al. [5] considered
prefix-free regular languages and showed that the primexgreft decomposition for a prefix-free regu-
lar languagél. is unique and the unique decomposition focan be computed i®(m) worst-case time,
wherem is the size of the minimal DFA fof.. Recently, Han et al. [11] investigated the prime infix-free
decomposition of infix-free regular languages and dematestrthat the prime infix-free decomposition
is not unique.

We examine prime outfix-free regular languages and decatigpusEven though outfix-free regular
languages are finite [16], the primality test for finite laagas is believed to be NP-complete [22]. Thus,
the decomposition problem for finite languages is beyonghtri We design a linear-time algorithm to
determine whether or not a given finite language is prime>cfriie. We also investigate prime outfix-
free decomposition and its uniqueness.

4.1. Prime outfix-free regular languages

Definition 4.1. A regular languagd. is aprime outfix-free language if. # L, - L for any outfix-free
regular languages, and L.

From now on, when we say prime, we mean prime outfix-free.Sive are dealing with outfix-free
regular languages, there are no back-edges in FAs for sughdges. We call DFAs without back-edges
acyclic DFAs(ADFASs). Furthermore, outfix-free FAs are always non-exjtsince they are prefix-free.
Note that if an FA is non-exiting and has several final stattesn all final states are equivalent and,
therefore, can be merged into a single final state.

Definition 4.2. We define a staté in an ADFA A to be abridge staté if the following two conditions
hold:

1. Stateb is neither a start nor a final state.

2. For any stringw € L(A), its path inA must pass through. Therefore, we can partitiod at b
into two subautomatal; and A, as described below.

Given an ADFAA = (Q,X,4,s, f) and a bridge state € @, whereL(A) is outfix-free, we can
partition A into two subautomatal; and A, as follows:

L4 Al = (thvél’svb);

The definition of bridge states in this paper is differentirthe definition of bridge states in Han et al. [11] althouglhbo
definitions have similar conditions.

452 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

(01 is a set of states that appear on some path fréaw in A including boths andb.
41 is a set of transitions that appear on some path fedaw in A.

o Ay =(Q2,%,02,b, f),
Q- is a set of states that appear on some path fréonf in A including bothb and f.
09 is a set of transitions that appear on some path freef in A.

Fig. 8 illustrates a partitioning at a bridge state.

) OO,
S &bl

Figure 8. An example of partitioning of an FA at a bridge state

It is easy to verify thatL.(A) = L(A;) - L(A3) from the second requirement in Definition 4.2.
Namely, bridge states are closely related to the deconiposif an FA.

Lemma 4.1. If a minimal DFA A has a bridge state, whefg A) is outfix-free, thenl.(A) is not prime.

Proof:

Since A has a bridge state we can partitionA into A; and A, atb andL(A) = L(A;)L(A2). Ito et
al. [16] showed that if.(A) = L(A;)L(A,) is outfix-free, thenL(A;) and L(Az) are both outfix-free.
Therefore, ifA has a bridge state, thei{ A) is not prime. O

Lemma 4.2. If a minimal DFA A does not have any bridge states dr{di) is outfix-free, thenl.(A) is
prime.

Proof:

Assume that. is not prime. ThenL can be decomposed &s - Lo, whereL; and L, are outfix-free.
Czyzowicz et al. [5] showed that given prefix-free language® andC such thatdA = B - C, A is
regular if and only ifB andC are regular. Thus, if. is regular, then.; and L, must be regular since
all outfix-free languages are prefix-free. L&t and A, be minimal DFAs forL; and Lo, respectively.
SinceA; and A, are non-returning and non-exiting, there are only one staté and one final state for
each of them. We catenaty and A, by merging the final state of; and the start state of; as a single
stateb. Then, the catenated automaton is the minimal DFAIfoA,) - L(A3) = L and has a bridge
stateb — a contradiction. O

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 453

We can rephrase Lemma 4.1 as followsLlis prime, then its minimal DFA does not have any bridge
states. Then, from Lemmas 4.1 and 4.2, we obtain the follpweésult.

Theorem 4.1. An outfix-free regular languagg is prime if and only if the minimal DFA for. does not
have any bridge states.

Lemma 4.1 shows that if a minimal DFA for an outfix-free regular languagehas a bridge state,
then we can decompodeinto a catenation of two outfix-free regular languages uttiegoridge state. In
addition, if we have a sd® of bridge states il and decomposd at a bridge staté € B, thenB \ {b}
is the set of bridge states for the resulting two automatx #ie decomposition.

Theorem 4.2. Let A be a minimal DFA for an outfix-free regular language thathbedge states. Then,
L(A) can be decomposed inko-1 prime outfix-free regular languages, namélyA) = L1 Loy - - L1
andLi, Lo, ..., L1 are prime.

Proof:

Let(by,b9,...,b;) be the sequence of bridge states frota f in A. We prove the statement by induction
onk. Itis sufficient to show thaf.(A) = L'L” such thatl’ is accepted by a DFA with k£ — 1 bridge
states and.” is a prime outfix-free regular language.

We partition A into two subautomatad’ and A” at b;. Note thatL(A’) and L(A”) are outfix-
free languages by the proof of Lemma 4.1. Sintehas no bridge stated,” = L(A”) is prime by
Theorem 4.1. By the definition of bridge states, all pathstrpass througftb, bo, ..., bx_1) in A’ and,
therefore,A’ hask—1 bridge states. Thus, il hask bridge states, theh(A) can be decomposed into
k+1 prime outfix-free regular languages. O

Ito et al. [16] showed that if an outfix-free regular langudgis written asL. = L4 Lo, for two regular
languaged.; and Ly, then bothZ; and L, must be outfix-free. Then, the minimal DFA férmust have
a corresponding bridge state fof and L, by Lemma 4.1. This shows thdt can be decomposed if
and only if its minimal DFA has a bridge state. Therefore, teo$bridge states define the unique prime
decomposition of a given minimal DFA for an outfix-free regulanguage. From this observation and
Theorem 4.2, we establish the following result.

Proposition 4.1. The prime outfix-free decomposition for an outfix-free regulnguage is always
unique.

We now demonstrate how to compute a set of bridge states defirizefinition 4.2 from a minimal
DFA A in O(m) time, wherem is the size ofA. Let G(V, E) be a labeled directed graph for a given
minimal DFAA = (Q, X, 0, s, f), whereV = Q andE = §. We say that a path i is simpleif it does
not have a cycle.

Lemma 4.3. Let P, ; be arbitrary simple path fromto f in G. Then, all bridge states of are states
on P37f-

Proof:
Assume that a statgis a bridge state and is not df, ;. This assumption immediately contradicts the
second requirement of bridge states. O

454 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

Assume that we have a simple path ; from s to f in G = (V, E), which can be computed in
O(|V| + |E|) worst-case time using Depth-First Search (DFS). For detail DFS, refer to the text-
book [3]. All states onP; s form a set of candidate bridge states; namély,= {s, b1, b2, ..., by, f}.
Our approach is to take all states@p as bridge state candidates and to identify all states tioddtei
any requirements in Definition 4.2 and remove them fi@m Consequently, the remaining states are
the bridge states.

We use DFS to exploré from s. We visit all states iz first. While exploringG, we maintain the
following two values, for each statec @,

anc: The index: of a stateh; € Cp such that there is a path frolnto ¢ and there is no path from
b; € Cptogqforj > i. Theancof b; is:.

max: The indexi of a stateh; € Cp such that there is a path frogrto b; and there is no path from
q to b; for ¢ < j without visiting any state ii€p.

The max value of a statey means that there is a path fropto bax. If b; has amax value and
max # i+1, then it means that there is another simple path fépto b,,,x Without passing through
bit1.

When a statg € @ \ Cp is visited during DFSq inheritsanc of its preceding state. A statehas
two types of child state: One type is a subBewf states inCz and the other is a subsé of Q \ Cp;
namely, all states i} are candidate bridge states and all stategsimre not candidate bridge states.
Once we have explored all children @fwe updatemax of ¢ as follows:

max = maxi(ma. .anc), ma. .Jnax
X(qu)f(q),qug(q),

whereq.anc denotes thanc value of¢g andg.max denotes thenax value ofg.
Fig. 9 provides an example of DFS after updatingd, max) for all states in.

(2,6)

Figure 9. An example of DFS that computem€, max), for each state in, for a givenCp = {s,b1,
b27 b37 b4; b5; bﬁa f}

If a stateb;, € Cp does not have any out-transitions except for a transitidnitpe Cp (for example,
bg in Fig. 9), thenp; has(i,i+1) when DFS is completed. Once we have completed DFS and codthpute
(anc, max) for all states in, we remove states frof; that violate the requirements to be bridge states.
Assumeb; € Cp has(i, j), wherei+1 < j. We remove; 1, b;12, . ..,bj—1 fromCp since that there is a
path fromb; to b;; that is, there is another simple path frépto f without visiting b; 1, bi12, ..., bj_1.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 455

Then, we remove and f from Cp. For example, we havfh;, b, } after removing states that violate the
requirements fron€z in Fig. 9. This algorithm gives the following result.

Theorem 4.3. Given a minimal DFAA for an outfix-free regular language:
1. We can determine the primality éf 4) in O(m) time,
2. We can compute the unique outfix-free decompositioh(ef) in O(m) time if L(A) is not prime,

wherem is the size ofA.

Proof:

Since we use DFS twice to compuig and @nc, max) for all states inA4, the runtime isO(m). Once
we have computedafic, max) for all states, then we remove states that violate the reguénts from
Cp. It takes linear time in the size 6fz, which is at mosin. Therefore, the total runtime for computing
bridge states ofl is O(m). Then, by Theorems 4.1 and 4.2, the two results are true. 0

5. Conclusions

We have investigated the outfix-free regular languagesst,Rive suggested an efficient algorithm to
verify whether or not a given sé = {w;, wo,...,w,} of strings is outfix-free. We then established
that the verification take® (>, |w;|?) worst-case time, where is the number of strings ifl’. We
also considered the case when a languagggiven by an FA.

Second, we have demonstrated that an outfix-free regulgudmyeL has a unique outfix-free de-
composition and the unique decomposition can be computétsm) time, wherem is the size of the
minimal DFA for L.

As we have observed, outfix-free regular languages are fieiee However, this observation does
not hold for the context-free languages. For example, timeragular languag€w | w = a’cb’,i > 1}
is context-free, outfix-free and infinite. Moreover, there aon-context-free languages that are outfix-
free; for example{w | w = a’bict,i > 1}. Thus, it is reasonable to investigate the properties a@d th
structure of the family of outfix-free languages.

Acknowledgements
We wish to thank the referee for the careful reading and mathyable suggestions. Especially, the
referee’s comments help to improve the algorithm for Theo8e3.

References

[1] Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, Bciortino, M.: Computing forbidden words of regular
languages.Fundamenta Informatica®6(1-2), 2003, 121-135.

[2] Clarke, C. L. A, Cormack, G. V.: On the use of regular eeqmions for searching texBCM Transactions
on Programming Languages and Systeh®3), 1997, 413-426.

456 Y.-S. Han and D. Wood / Outfix-Free Regular Languages andd”@nitfix-Free Decomposition

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, [@troduction to Algorithms McGraw-Hill Higher
Education, 2001.

[4] Crochemore, M., Mignosi, F., Restivo, A.: Automata arattsidden Words.Information Processing Letters
67(3), 1998, 111-117.

[5] Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Lindame Prime Decomposition Of Regular Prefix Codes,
International Journal of Foundations of Computer Scierieg 2003, 1019-1032.

[6] Giammarresi, D., Montalbano, R.: Deterministic Geieead Automata,Theoretical Computer Scienl5
1999, 191-208.

[7] Golomb, S., Gordon, B., Welch, L.: Comma-Free CodElse Canadian Journal of Mathematjd€), 1958,
202-2009.

[8] Han, Y.-S., Salomaa, K., Wood, D.: Intercode RegulardguzagesFundamenta Informatica&@6(1-2), 2007,
113-128.

[9] Han, Y.-S., Trippen, G., Wood, D.: Simple-regular exgsiens and language®roceedings of DCFS’'Q5
2005, 146-157.

[10] Han, Y.-S., Wang, Y., Wood, D.: Prefix-Free Regular-Eegsion MatchingProceedings of CPM'03_ecture
Notes in Computer Science 3537, 2005, 298-309.

[11] Han, Y.-S., Wang, Y., Wood, D.: Infix-free Regular Exps®ns and Languagesnternational Journal of
Foundations of Computer Sciend&(2), 2006, 379-393.

[12] Han, Y.-S., Wood, D.: The Generalization of Generalizaitomata: Expression Automatanternational
Journal of Foundations of Computer Scient§(3), 2005, 499-510.

[13] Han, Y.-S., Wood, D.: Outfix-free Regular Languages Briche Outfix-free Decompositiofroceedings of
ICTAC’05, Lecture Notes in Computer Science 3722, 2005, 96-109.

[14] Hopcroft, J., Ullman, J.Introduction to Automata Theory, Languages, and Compatafl edition, Addison-
Wesley, Reading, MA, 1979.

[15] Ito, M., Jurgensen, H., Shyr, H.-J., Thierrin, G.: Kefix-suffix languages]nternational Journal of Com-
puter Mathematics30, 1989, 37-56.

[16] Ito, M., Jurgensen, H., Shyr, H.-J., Thierrin, G.: @uand Infix Codes and Related Classes of Languages,
Journal of Computer and System Sciend@s1991, 484-508.

[17] Jurgensen, H.: Infix code®roceedings of Hungarian Computer Science Confereh@@4, 25—-29.

[18] Jurgensen, H., Konstantinidis, S.: Codes,Ward, Language, Grammd6G. Rozenberg, A. Salomaa, Eds.),
vol. 1 of Handbook of Formal LanguageSpringer-Verlag, 1997, 511-607.

[19] Kari, L.: On Language Equations with Invertible Opéwas., Theoretical Computer SciencE32(2), 1994,
129-150.

[20] Long, D. Y., Ma, J., Zhou, D.: Structure of 3-infix-outfimaximal codes,Theoretical Computer Science
18§1-2), 1997, 231-240.

[21] Mateescu, A., Salomaa, A., Yu, $n the Decomposition of Finite Languag@&schnical Report 222, TUCS,
1998.

[22] Mateescu, A., Salomaa, A., Yu, S.: Factorizations aigu@aages and Commutativity Conditios;ta Cyber-
netica 15(3), 2002, 339-351.

[23] Shyr, H., Yu, S.: Intercodes and some related properigoochow J. Math16(1), 1990, 95-107.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages andéP@nuitfix-Free Decomposition 457

[24] Shyr, H.-J.: Lecture Notes: Free Monoids and Languaggdon Min Book Company, Taichung, Taiwan
R.O.C, 1991.

[25] Wood, D.: Theory of Computatigniohn Wiley & Sons, Inc., New York, NY, 1987.

[26] Wood, D.: Data structures, algorithms, and performanc&ddison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993.

