Outfix-Free Regular Languages and Prime Outfix-Free Decomposition*

Yo-Sub Han^{†‡}

Intelligence and Interaction Research Center, Korea Institute of Science and Technology P.O.BOX 131, Cheongryang, Seoul, Korea emmous@kist.re.kr

Derick Wood§

Department of Computer Science, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR dwood@cs.ust.hk

Abstract. A string x is an outfix of a string y if there is a string w such that $x_1wx_2 = y$ and $x = x_1x_2$. A set X of strings is outfix-free if no string in X is an outfix of any other string in X. Based on the properties of outfix strings, we develop a polynomial-time algorithm that determines outfix-freeness of regular languages. Note that outfix-free regular languages are always finite. We consider two cases: 1) a language is given as a finite set of strings and 2) a language is given by a finite-state automaton. Furthermore, we investigate the prime outfix-free decomposition of outfix-free regular languages and design a linear-time algorithm that computes prime outfix-free decomposition for outfix-free regular languages. We also demonstrate the uniqueness of prime outfix-free decomposition.

Keywords: regular languages, outfix-freeness, prime decomposition

^{*}A preliminary version of this paper appeared in the *Proceedings of the Second International Colloquium on Theoretical Aspects of Computing*, ICTAC'05, 2005 [13]. Part of this research research was carried out while Han was in HKUST. †Address for correspondence: Intelligence and Interaction Research Center, Korea Institute of Science and Technology, P.O.BOX 131, Cheongryang, Seoul, Korea

[‡]Han was supported by the KIST Tangible Space Initiative Grant 2E20050.

[§]Wood was supported by the Research Grants Council of Hong Kong Competitive Earmarked Research Grant HKUST6197/ 01E.

1. Introduction

Codes play a crucial role in many areas such as information processing, data compression, cryptography and information transmission [18]. They are categorized with respect to different conditions (for example, *prefix-free, suffix-free, infix-free* or *outfix-free*) according to the applications [7, 8, 15, 16, 17, 20, 23]. Since a code is a set of strings, it is a *language*. The conditions that classify code types define proper subfamilies of given language families. For regular languages, for example, prefix-freeness defines the family of prefix-free regular languages, which is a proper subfamily of regular languages.

Based on such subfamilies of regular languages, researchers have investigated properties of these languages and their decomposition problems. A decomposition of a language L is a catenation of several languages L_1, L_2, \ldots, L_k such that $L = L_1 L_2 \cdots L_k$ and $k \ge 2$. We call L_1, L_2, \ldots, L_k factors of L. If L cannot be further decomposed except for $L \cdot \{\lambda\}$ or $\{\lambda\} \cdot L$, we say that L a prime language.

Czyzowicz et al. [5] studied prefix-free regular languages and the prime prefix-free decomposition problem. They showed that the prime prefix-free decomposition of a prefix-free language is unique and demonstrated the importance of prime prefix-free decomposition in practice. Prefix-free regular languages are often used in the literature: to define the determinism of generalized automata [6] and of expression automata [12], and to represent a pattern set [10].

Han et al. [11] studied infix-free regular languages and developed an algorithm to determine whether or not a given regular expression defines an infix-free regular language. They also designed an algorithm for computing the prime infix-free decomposition of infix-free regular languages and showed that the prime infix-free decomposition is not unique. Note that the prime prefix-free decomposition requires each factor language to be prefix-free whereas the prime infix-free decomposition requires each factor language to be infix-free. Infix-free regular languages give rise to faster regular-expression text matching [2]. Infix-free languages are also used to compute forbidden words [1, 4].

As a continuation of our investigations of subfamilies of regular languages, it is natural to examine outfix-free regular languages and the prime outfix-free decomposition problem. Note that Ito and his coresearchers [16] showed that an outfix-free regular language is finite and Han et al. [9] demonstrated that the family of outfix-free regular languages is a proper subset of the family of simple-regular languages. (A simple-regular language is a set of strings spelled out by simple paths in a given finite-state automaton.) On the other hand, there was no known efficient algorithm to determine whether or not a given finite set of strings is outfix-free apart from using brute force. Furthermore, the decomposition of a finite set of strings is not unique and the computation of the decomposition is believed to be NP-complete [22]. Therefore, our goal is to develop an efficient algorithm for determining outfix-freeness of a given finite language and to investigate the prime outfix-free decomposition and its uniqueness.

We define some basic notions in Section 2 and propose two efficient algorithms that determine outfix-freeness in Section 3. The first algorithm takes a set of strings as input and determines outfix-freeness of the set by constructing tries. The second algorithm takes a (nondeterministic) finite-state automaton (FA) as input. Note that, given an FA A, we can determine outfix-freeness of L(A) by checking whether or not $(L(A) \leftarrow \Sigma^+) \cap L(A)$ is empty, where \leftarrow denotes the sequential insertion operation [19]. However, this approach does not consider the structural properties of A whereas our second algorithm is based on the structural properties of A. Moreover, our algorithm is much easier to understand and implement. In Section 4, we show that an outfix-free regular language has a unique prime outfix-free decomposition and the unique decomposition can be computed in linear time in the size of the given deterministic finite-state automaton (DFA). We suggest some open problems and conclude this paper in Section 5.

2. Preliminaries

Let Σ denote a finite alphabet of characters and Σ^* denote the set of all strings over Σ . A language over Σ is any subset of Σ^* . The symbol \emptyset denotes the empty language and the symbol λ denotes the null string. Given a string $x = x_1 \cdots x_n$, |x| is the number of characters in x and $x(i, j) = x_i x_{i+1} \cdots x_j$ is the substring of x from position i to position j, where $i \leq j$. Given two strings x and y in Σ^* , x is said to be an *outfix* of y if there is a string w such that $x_1wx_2 = y$, where $x = x_1x_2$. For example, *abe* is an outfix of *abcde*. Given a set X of strings, X is *outfix-free* if no string in X is an outfix of any other string in X. Given a string x in a set X, let x^R be the reversal of x, in which case $X^R = \{x^R \mid x \in X\}$.

An FA A is specified by a tuple $(Q, \Sigma, \delta, s, F)$, where Q is a finite set of states, Σ is an input alphabet, $\delta : Q \times \Sigma \to 2^Q$ is a transition function, $s \in Q$ is the start state and $F \subseteq Q$ is a set of final states. If F consists of a single state f, we use f instead of $\{f\}$ for simplicity. Let |Q| be the number of states in Q and $|\delta|$ be the number of transitions in δ . Then, the size |A| of A is $|Q| + |\delta|$. Given a transition $\delta(p, a) = q$, where $p, q \in Q$ and $a \in \Sigma$, we say that p has an *out-transition* and q has an *in-transition*. Furthermore, p is a source state of q and q is a target state of p. We define A to be non-returning if the start state of A does not have any in-transitions and A to be non-exiting if all final states of A do not have any out-transitions. We assume that A has only useful states; that is, each state appears on some path from the start state to some final state and, therefore, there is no sink state and A may not be complete in general. A string x over Σ is accepted by A if there is a labeled path from s to a final state in F that spells out x. The language L(A) of an FA A is the set of all strings spelled out by paths from s to a final state in F.

Given an FA $A = (Q, \Sigma, \delta, s, F)$ and a state $q \in Q$, we define the *right FA* $A_{\overrightarrow{q}}$ to be $(Q, \Sigma, \delta, q, F)$; namely, we make q to be the start state. Then, the *right language* $L_{\overrightarrow{q}}$ of q is the set of strings accepted by $A_{\overrightarrow{q}}$.

For complete background knowledge in automata theory, the reader may refer to textbooks [14, 25].

3. Outfix-free regular languages

We first define outfix-free regular expressions and languages, and then present an algorithm to determine whether or not a given regular language is outfix-free. Since prefix-free, suffix-free, infix-free and outfix-free languages are related to each other, we define all of them and show their relationships.

Figure 1. The diagram shows inclusions of families of languages, where p,s,b,i and o denote prefix-free, suffix-free, bifix-free, infix-free, and outfix-free families, respectively, and u denotes the set of all languages over Σ . Note that the outfix-free family is a proper subset of the prefix-free and suffix-free families.

Definition 3.1. A language *L* is

- *prefix-free* if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not prefixes of each other.
- suffix-free if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not suffixes of each other.
- *bifix-free* if *L* is prefix-free and suffix-free.
- *infix-free* if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not substrings of each other.
- *outfix-free* if, for all distinct strings $x, y, z \in \Sigma^*$, $xz \in L$ and $xyz \in L$ imply $y = \lambda$.

For further details and definitions, refer to Ito et al. [16] or Shyr [24].

We say that a regular expression E is outfix-free if L(E) is outfix-free. The language defined by an outfix-free regular expression is called an *outfix-free regular language*. In a similar way, we can define prefix-free, suffix-free and infix-free regular expressions and languages.

Let $A = (Q, \Sigma, \delta, s, F)$ be a DFA for a regular language L. Han and Wood [12] showed that A is nonexiting if and only if L is prefix-free. Moreover, Han et al. [11] proposed an algorithm that determines whether or not a given regular expression E is infix-free in $O(|E|^2)$ worst-case time. This algorithm can also solve the prefix-free and suffix-free cases as well. Therefore, it is natural to design an algorithm to determine whether or not a given regular language is outfix-free. Since an outfix-free regular language L is finite [16, 18], the problem is decidable by first checking that L is finite and, then, comparing all pairs of strings in L, although it is certainly undesirable to do so.

3.1. Prefix-freeness

Since the family of outfix-free regular languages is a proper subfamily of prefix-free regular languages as shown in Fig. 1, we consider prefix-freeness of a finite language first.

Given a finite set of strings $W = \{w_1, w_2, \dots, w_n\}$, where *n* is the number of strings in *W*, we construct a trie *T* for *W*. A trie is an ordered tree data structure that is used to store a set of strings and each edge in the tree has a single character label. If a node *q* in *T* has an end-marker, then it means that the corresponding string from the root to *q* is in *W*. Fig. 2 gives an example. For details on tries, refer to data structure textbooks [3, 26].

Assume that w_i is a prefix of w_j , where $i \neq j$; it implies that $|w_i| < |w_j|$. Then, w_i and w_j must have the common path in T from the root to the *i*th node q that spells out w_i . Therefore, if we reach qwhile constructing the path for w_j in T, we recognize that w_i is a prefix of w_j . Let us consider the case when we construct a path for w_j first and, then, construct a path for w_i in T. The path for w_i ends at the $|w_i|$ th node q that already has a child node for the path for w_j . Therefore, we know that w_i is a prefix of some other string. Note that we can construct a trie for W in $O(|w_1| + |w_2| + \cdots + |w_n|)$ time, which is linear in the size of W.

Lemma 3.1. Given a finite set W of strings, we can determine whether or not W is prefix-free in linear time in the size of W by constructing a trie for W. We can also determine suffix-freeness of W in the same runtime by constructing a trie for W^R .

Figure 2. The trie for $W = \{aa, ba, baaa, baab, bba, bbb, bbbb\}$, where # denotes the end-marker for the corresponding string.

Proof:

We construct a trie T for W in linear time and check if any internal node has an end-marker while traversing T in liner time. If we identify any internal node with an end-marker, then W is not prefix-free. Otherwise, W is prefix-free.

3.2. Outfix-freeness

We now consider outfix-freeness. Assume that we have two distinct strings w_1 and w_2 and w_2 is an outfix of w_1 . This implies that $w_1 = xyz$ for some strings x, y and z such that $w_2 = xz$ and $y \neq \lambda$. Moreover, w_1 and w_2 have the common prefix x and the common suffix z. Fig. 3 illustrates such w_1 and w_2 .

Figure 3. A graphical illustration of an outfix string; *abcbaa* is an outfix of *abcaabbbaa*.

Based on the observations, we determine whether or not one string w_1 is an outfix of another string w_2 , where $|w_1| \ge |w_2|$, as follows: We compare two characters, one from w_1 and the other from w_2 , from left to right (from 1 to $|w_2|$) until two compared characters are different; say the *i*th characters are different. If we completely read w_2 , then we recognize that w_2 is a prefix of w_1 and, therefore, w_2 is an outfix of w_1 . We repeat these character-by-character comparisons from right to left (from $|w_2|$ to 1) until we have two different characters. Assume that the *j*th characters are different. If i > j, then w_2 is an outfix of w_1 . Otherwise, w_2 is not an outfix of w_1 . For example, i = 4 and j = 3 in Fig. 3.

Lemma 3.2. Given two strings w_1 and w_2 , where $|w_1| \ge |w_2|$, w_2 is an outfix of w_1 if and only if there is a position *i* such that $w_2(1, i)$ is a prefix of w_1 and $w_2(i+1, |w_2|)$ is a suffix of w_1 .

Proof:

The proof is straightforward from the definition of outfix.

Figure 4. An example of a trie for strings $w_1 = xyz$ and $w_2 = xz$. Note that both paths end with the same subpath sequence in the trie since w_1 and w_2 have the common suffix z.

Let us consider the trie T for w_1 and w_2 . Since w_1 and w_2 have the common prefix, both strings share the common path from the root to a node q of height i that spells out $w_2(1, i)$. Moreover, the path for $w_2(i + 1, |w_2|)$ in T is a suffix-path for $w_1(i + 1, |w_1|)$ in T. For example, in Fig. 4, the path for xis the common prefix-path and the path for z is the common suffix-path. Thus, if a given finite set Wof strings is not outfix-free, then there is such a pair of strings. Since a node $q \in T$ gives the common prefix for all strings that pass through q, we only need to check whether some path from q to a leaf is a suffix-path for some other path from q to another leaf.

Let T(q) be the subtree of T rooted at $q \in T$. Then, we can determine whether or not a path from q is a suffix-path for another path from q in T(q) by determining the suffix-freeness of all paths from q to a leaf in T(q) based on the same algorithm for Lemma 3.1. The running time is linear in the the size of T(q).

3.3. Complexity of outfix-freeness

The subfunction is_prefix-free(T) in Fig. 5 determines whether or not the set of strings represented by a given trie T is prefix-free. Note that is_prefix-free(T) runs in O(|T|) time, where |T| is the number of nodes in T.

Given a finite set $W = \{w_1, w_2, \dots, w_n\}$ of strings, we can construct a trie T in $O(\sum_{i=1}^n |w_i|)$ time and space, which is linear in the size of W, where $n \ge 1$. Prefix-freeness and suffix-freeness can be verified in linear time by Lemma 3.1. Thus, the total running time for the algorithm Outfix-freeness (OFF) in Fig. 5 is

$$O(|T|) + \sum_{q \in T} |T(q)|,$$

where q is a node that has more than one child. In the worst-case, we have to examine all nodes in T; for example, T is a complete tree, where each internal node has the same number of children. To compute the size of $\sum |T(q)|$, let us consider a string $w_i \in W$ that makes a path P from the root to a leaf in

Outfix-freeness($W = \{w_1, w_2, \dots, w_n\}$) Construct a trie T for Wif (is_prefix-free(T) = no) then return no if (is_suffix-free(T) = no) then return no for each $q \in T$ that has more than one child if (is_suffix-free(T(q)) = no) then return no

return yes

Figure 5. An outfix-freeness checking algorithm for a given finite set of strings.

T. If a node $q \in T$ of height j in path P has more than one child, then the suffix $w_i(j+1, |w_i|)$ of w_i that starts from q is used in is_suffix-free(T(q)) in OFF. In the worst-case, all suffixes of w_i can be used by is_suffix-free(T(q)). Therefore, w_i contributes $O(|w_i|^2)$ to the total running time of OFF. Fig. 6 illustrates a worst-case example.

Figure 6. All suffixes of a string w in T are used to determine the outfix-freeness by OFF. The size of the sum of all suffixes of w is $O(|w|^2)$.

Therefore, the total time complexity is $O(|w_1|^2 + |w_2|^2 + \dots + |w_n|^2)$ in the worse-case. If the size of w_i is O(k), for some k, then the running time is $O(k^2n)$. On the other hand, the all-pairs comparison approach gives $O(kn^2)$ worst-case running time. Note that the size of each string in W is usually much smaller than the number of strings in W; namely, $k \ll n$.

Theorem 3.1. Given a finite set $W = \{w_1, w_2, \dots, w_n\}$ of strings, we can determine whether or not W is outfix-free in $O(\sum_{i=1}^{n} |w_i|^2)$ time using $O(\sum_{i=1}^{n} |w_i|)$ space in the worse-case.

Now we characterize the family of outfix-free (regular) languages in terms of closure properties.

Theorem 3.2. The family of outfix-free (regular) languages is closed under catenation and intersection but not under union, complement or star.

Proof:

We only prove the catenation case. The other cases can be proved straightforwardly.

Figure 7. The figure illustrates the first case in the proof of Theorem 3.2, where s_i and $t_i \in L_i$ for i = 1, 2. Since s_1 is a prefix of t_1 , L_1 is not outfix-free.

Assume that $L = L_1 \cdot L_2$ is not outfix-free whereas L_1 and L_2 are outfix-free. Then, there are two distinct strings s and $t \in L$, where t is an outfix of s. Namely, s = xyz, t = xz and $y \neq \lambda$. Since s and t are a catenation of two strings from L_1 and L_2 , s and t can be partitioned into two parts; $s = s_1 s_2$ and $t = t_1 t_2$, where $s_i, t_i \in L_i$ for i = 1, 2. From the assumption that t is an outfix of s, s and t have the common prefix and the common suffix as shown in Fig. 7. If we decompose s and t into s_1s_2 and t_1t_2 , then we have one of the following four cases:

- 1. s_1 is a prefix of t_1 .
- 2. t_1 is a prefix of s_1 .
- 3. s_2 is a suffix of t_2 .
- 4. t_2 is a suffix of s_2 .

For cases 1 and 2, L_1 is not prefix-free and, therefore, not outfix-free — a contradiction. For cases 3 and 4, L_2 is not suffix-free and, therefore, not outfix-free — a contradiction. Thus, the family of outfixfree languages is closed under catenation. Ito et al. [16] gave a different proof.

3.4. **Outfix-freeness of finite-state automata**

We design an algorithm that determines the outfix-freeness of a given FA A using the structural properties. Assume that two strings $w_1 = xyz$ and $w_2 = xz$ are accepted by A, where $y \neq \lambda$ and w_2 is an outfix of w_1 . Let p and q be the states that we reach after reading x from w_1 and w_2 , respectively in A (p and q may be the same state). Since w_1 and w_2 are in L(A), $yz \in L_{\overrightarrow{n}}$ and $z \in L_{\overrightarrow{q}}$ in A. This follows that $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is not suffix-free. We use *state-pair graphs* to check the existence of such w_1 and w_2 in L(A).

Definition 3.2. Given an FA $A = (Q, \Sigma, \delta, s, F)$, we define the state-pair graph $G_A = (V_G, E_G)$, where V_G is a set of nodes and E_G is a set of edges, as follows:

$$V_G = \{(i, j) \mid i \text{ and } j \in Q\} \text{ and}$$
$$E_G = \{((i, j), a, (x, y)) \mid \delta(i, a) = x \text{ and } \delta(j, a) = y \text{ and } a \in \Sigma\}.$$

The crucial property of state-pair graphs is that if there is a string w spelled out by two distinct paths in A, for example, one path is from i to x and the other path is from j to y, then, there is a path from (i, j) to (x, y) in G_A that spells out the same string w. Note that state-pair graphs do not require given FAs to be deterministic. The state-pair graph $G_A = (V_G, E_G)$ of an FA $A = (Q, \Sigma, \delta, s, F)$ has at most $|Q|^2$ nodes and $|\delta|^2$ edges.

Note that an outfix-free FA is always non-exiting. If an FA is non-exiting and has several final states, then all final states can be merged into a single final state since they are all equivalent. Therefore, we assume that a given FA is non-exiting and has a single final state. Given an FA $A = (Q, \Sigma, \delta, s, f)$, we demonstrate how to determine the outfix-freeness of L(A) using its state-pair graph. We first computer its state-pair graph G_A , where m = |Q|. Next, we define a new DFA A' from G_A by making (1, 1) to be the start state and (m, m) to be the final state and removing all non-reachable states from (1, 1) in G_A . Note that, by construction, A' is deterministic. We call A' the state-pair DFA of A.

Lemma 3.3. Given an FA $A = (Q, \Sigma, \delta, s, f)$, L(A) is outfix-free if and only if $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is suffix-free for all pair states $(p,q) \in Q'$ of its state-pair DFA $A' = (Q', \Sigma, \delta', s', f')$, where $L_{\overrightarrow{q}}$ is the right language of state q in A.

Proof:

 \implies Assume that $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is not suffix-free. Then, there are two strings w_1 and w_2 in $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$, where w_2 is a suffix of w_1 . There are four cases to consider:

1. $w_1, w_2 \in L_{\overrightarrow{p}}$.

Since p is reachable from s in A, there is a path from s to p and the path spells out a string x. This implies that A accepts both xw_1 and xw_2 , where xw_2 is an outfix of xw_1 — a contradiction. Note that (p, p) is also a state of A'.

2. $w_1 \in L_{\overrightarrow{p}}$ and $w_2 \in L_{\overrightarrow{q}}$.

Since all states of A' are reachable from (1, 1) and A' is deterministic, there is a path from (1, 1) to (p, q) that spells out a string x. This implies that A accepts both xw_1 and xw_2 , where xw_2 is an outfix of xw_1 — a contradiction.

3. $w_1 \in L_{\overrightarrow{q}}$ and $w_2 \in L_{\overrightarrow{p}}$.

This case is symmetric to the second case.

4. $w_1, w_2 \in L_{\overrightarrow{q}}$.

This case is symmetric to the first case.

Therefore, if L(A) is outfix-free, then $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is suffix-free.

 \Leftarrow Assume that L(A) is not outfix-free. Then, there are two strings $w_1 = xyz$ and $w_2 = xz$ accepted by A, where w_2 is an outfix of w_1 . Since w_1 and w_2 are spelled out by A, there are two accepting paths for w_1 and w_2 , respectively. Let p and q be the states that we reach after reading x from the two accepting paths. This follows that the pair (p, q) is reachable from (1, 1) in the state-pair graph of A and, thus, (p,q) is a state of its state-pair DFA A'. Furthermore, from the accepting paths for w_1 and w_2 , we know that $yz \in L_{\overrightarrow{p}}$ and $z \in L_{\overrightarrow{q}}$ in A. Thus, $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is not suffix-free — a contradiction.

Therefore, if $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is suffix-free, then L(A) is outfix-free.

Given an FA $A = (Q, \Sigma, \delta, s, f)$ and its state-pair DFA $A' = (Q', \Sigma, \delta', s', f')$, we now need to check whether or not $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ is suffix-free for all state $(p,q) \in Q'$. Since $L_{\overrightarrow{q}}$ in A is computed from its right FA $A_{\overrightarrow{q}}$, we can construct an FA $B = (Q_B, \Sigma, \delta_B, s_B, f_B)$ for $L_{\overrightarrow{p}} \cup L_{\overrightarrow{q}}$ from $A_{\overrightarrow{p}} = (Q_p, \Sigma, \delta_p, p, f)$ and $A_{\overrightarrow{q}} = (Q_q, \Sigma, \delta_q, q, f)$, where

$$Q_B = \{s_B, f_B\} \cup Q_p \cup Q_q,$$

$$\delta_B = \{(s_B, \lambda, p), (s_B, \lambda, q), (f, \lambda, f_B)\} \cup \delta_p \cup \delta_q.$$

Note that $O(|B|) = O(|A_{\overrightarrow{n}}| + |A_{\overrightarrow{a}}|) = O(|A|)$. Recently, Han et al. [11] proposed algorithms to determine prefix-freeness, suffix-freeness, bifix-freeness and infix-freeness of a given (nondeterministic) FA A in $O(|A|^2)$ time. We use the algorithm to check suffix-freeness for each B. Given an FA A = $(Q, \Sigma, \delta, s, f)$, there are at most $|Q|^2$ pair states in its state-pair DFA and, for each pair state, we can decide the suffix-freeness of B in $O(|B|^2)$ worst-case time.

Theorem 3.3. Given an FA $A = (Q, \Sigma, \delta, s, f)$, we can determine the outfix-freeness of L(A) in $O(|Q|^4 + |Q|^2|\delta|^2)$ worst-case time.

Proof:

Since there are at most $|Q|^2$ pair states in its state-pair DFA and, for each pair state, it takes $O(|B|^2)$ time for checking the suffix-freeness of L(B), the total running time is

$$|Q|^2 \times O(|B|^2) = |Q|^2 \times O(|A|^2) = |Q|^2 \times O(|Q|^2 + |\delta|^2) = O(|Q|^4 + |Q|^2 |\delta|^2).$$

Therefore, we can check the outfix-freeness of a given FA in polynomial time.

We note that if a given FA A is deterministic, then we can speed up the algorithm in Theorem 3.3 by skipping the construction of the state-pair graph. Note that we compute the state-pair graph and its statepair DFA to find a common prefix x of two strings w_1 and w_2 because the input FA is nondeterministic. However, if A is deterministic and w_1 and w_2 have a common string x, then both accepting paths must have the same path for x. Therefore, we only need to check whether or not $L_{\overrightarrow{q}}$ is suffix-free for each q in A. Since it takes $O(|Q|^2 + |\delta|^2)$ time for each state to check suffix-freeness and there are |Q| states, the total runtime for determining outfix-freeness of A is $O(|Q|^3 + |Q||\delta|^2)$. Since $O(|Q|) = O(|\delta|)$ in DFAs, we establish the following result.

Proposition 3.1. Given a DFA $A = (Q, \Sigma, \delta, s, f)$, we can determine the outfix-freeness of L(A) in $O(|Q|^3)$ worst-case time.

450

4. Prime outfix-free regular languages and prime decomposition

Decomposition is the reverse operation of catenation. If $L = L_1 \cdot L_2$, then L is the catenation of L_1 and L_2 and $L_1 \cdot L_2$ is a decomposition of L. We call L_1 and L_2 factors of L. Note that every language L has a decomposition, $L = \{\lambda\} \cdot L$, where L is a factor of itself. We call $\{\lambda\}$ a *trivial* language. We define a language L to be *prime* if $L \neq L_1 \cdot L_2$ for any two non-trivial languages. Then, the prime decomposition of L is to decompose L into $L_1 \cdot L_2 \cdot \ldots \cdot L_k$, where L_1, L_2, \ldots, L_k are prime languages and $k \geq 1$ is a constant.

Mateescu et al. [21, 22] showed that the primality of regular languages is decidable and the prime decomposition of a regular language is not unique even for finite languages. Czyzowicz et al. [5] considered prefix-free regular languages and showed that the prime prefix-free decomposition for a prefix-free regular language L is unique and the unique decomposition for L can be computed in O(m) worst-case time, where m is the size of the minimal DFA for L. Recently, Han et al. [11] investigated the prime infix-free decomposition of infix-free regular languages and demonstrated that the prime infix-free decomposition is not unique.

We examine prime outfix-free regular languages and decomposition. Even though outfix-free regular languages are finite [16], the primality test for finite languages is believed to be NP-complete [22]. Thus, the decomposition problem for finite languages is beyond trivial. We design a linear-time algorithm to determine whether or not a given finite language is prime outfix-free. We also investigate prime outfix-free decomposition and its uniqueness.

4.1. Prime outfix-free regular languages

Definition 4.1. A regular language L is a *prime* outfix-free language if $L \neq L_1 \cdot L_2$ for any outfix-free regular languages L_1 and L_2 .

From now on, when we say prime, we mean prime outfix-free. Since we are dealing with outfix-free regular languages, there are no back-edges in FAs for such languages. We call DFAs without back-edges *acyclic DFAs* (ADFAs). Furthermore, outfix-free FAs are always non-exiting since they are prefix-free. Note that if an FA is non-exiting and has several final states, then all final states are equivalent and, therefore, can be merged into a single final state.

Definition 4.2. We define a state b in an ADFA A to be a *bridge state*¹ if the following two conditions hold:

- 1. State b is neither a start nor a final state.
- 2. For any string $w \in L(A)$, its path in A must pass through b. Therefore, we can partition A at b into two subautomata A_1 and A_2 as described below.

Given an ADFA $A = (Q, \Sigma, \delta, s, f)$ and a bridge state $b \in Q$, where L(A) is outfix-free, we can partition A into two subautomata A_1 and A_2 as follows:

• $A_1 = (Q_1, \Sigma, \delta_1, s, b),$

¹The definition of bridge states in this paper is different from the definition of bridge states in Han et al. [11] although both definitions have similar conditions.

 Q_1 is a set of states that appear on some path from s to b in A including both s and b. δ_1 is a set of transitions that appear on some path from s to b in A.

• $A_2 = (Q_2, \Sigma, \delta_2, b, f),$

 Q_2 is a set of states that appear on some path from b to f in A including both b and f. δ_2 is a set of transitions that appear on some path from b to f in A.

Fig. 8 illustrates a partitioning at a bridge state.

Figure 8. An example of partitioning of an FA at a bridge state *b*.

It is easy to verify that $L(A) = L(A_1) \cdot L(A_2)$ from the second requirement in Definition 4.2. Namely, bridge states are closely related to the decomposition of an FA.

Lemma 4.1. If a minimal DFA A has a bridge state, where L(A) is outfix-free, then L(A) is not prime.

Proof:

Since A has a bridge state b, we can partition A into A_1 and A_2 at b and $L(A) = L(A_1)L(A_2)$. Ito et al. [16] showed that if $L(A) = L(A_1)L(A_2)$ is outfix-free, then $L(A_1)$ and $L(A_2)$ are both outfix-free. Therefore, if A has a bridge state, then L(A) is not prime.

Lemma 4.2. If a minimal DFA A does not have any bridge states and L(A) is outfix-free, then L(A) is prime.

Proof:

Assume that L is not prime. Then, L can be decomposed as $L_1 \cdot L_2$, where L_1 and L_2 are outfix-free. Czyzowicz et al. [5] showed that given prefix-free languages A, B and C such that $A = B \cdot C$, A is regular if and only if B and C are regular. Thus, if L is regular, then L_1 and L_2 must be regular since all outfix-free languages are prefix-free. Let A_1 and A_2 be minimal DFAs for L_1 and L_2 , respectively. Since A_1 and A_2 are non-returning and non-exiting, there are only one start state and one final state for each of them. We catenate A_1 and A_2 by merging the final state of A_1 and the start state of A_2 as a single state b. Then, the catenated automaton is the minimal DFA for $L(A_1) \cdot L(A_2) = L$ and has a bridge state b — a contradiction. We can rephrase Lemma 4.1 as follows: If L is prime, then its minimal DFA does not have any bridge states. Then, from Lemmas 4.1 and 4.2, we obtain the following result.

Theorem 4.1. An outfix-free regular language L is prime if and only if the minimal DFA for L does not have any bridge states.

Lemma 4.1 shows that if a minimal DFA A for an outfix-free regular language L has a bridge state, then we can decompose L into a catenation of two outfix-free regular languages using the bridge state. In addition, if we have a set B of bridge states in A and decompose A at a bridge state $b \in B$, then $B \setminus \{b\}$ is the set of bridge states for the resulting two automata after the decomposition.

Theorem 4.2. Let A be a minimal DFA for an outfix-free regular language that has k bridge states. Then, L(A) can be decomposed into k+1 prime outfix-free regular languages, namely, $L(A) = L_1L_2 \cdots L_{k+1}$ and $L_1, L_2, \ldots, L_{k+1}$ are prime.

Proof:

Let (b_1, b_2, \ldots, b_k) be the sequence of bridge states from s to f in A. We prove the statement by induction on k. It is sufficient to show that L(A) = L'L'' such that L' is accepted by a DFA A' with k - 1 bridge states and L'' is a prime outfix-free regular language.

We partition A into two subautomata A' and A'' at b_k . Note that L(A') and L(A'') are outfixfree languages by the proof of Lemma 4.1. Since A'' has no bridge states, L'' = L(A'') is prime by Theorem 4.1. By the definition of bridge states, all paths must pass through $(b_1, b_2, \ldots, b_{k-1})$ in A' and, therefore, A' has k-1 bridge states. Thus, if A has k bridge states, then L(A) can be decomposed into k+1 prime outfix-free regular languages.

Ito et al. [16] showed that if an outfix-free regular language L is written as $L = L_1L_2$ for two regular languages L_1 and L_2 , then both L_1 and L_2 must be outfix-free. Then, the minimal DFA for L must have a corresponding bridge state for L_1 and L_2 by Lemma 4.1. This shows that L can be decomposed if and only if its minimal DFA has a bridge state. Therefore, a set of bridge states define the unique prime decomposition of a given minimal DFA for an outfix-free regular language. From this observation and Theorem 4.2, we establish the following result.

Proposition 4.1. The prime outfix-free decomposition for an outfix-free regular language is always unique.

We now demonstrate how to compute a set of bridge states defined in Definition 4.2 from a minimal DFA A in O(m) time, where m is the size of A. Let G(V, E) be a labeled directed graph for a given minimal DFA $A = (Q, \Sigma, \delta, s, f)$, where V = Q and $E = \delta$. We say that a path in G is *simple* if it does not have a cycle.

Lemma 4.3. Let $P_{s,f}$ be arbitrary simple path from s to f in G. Then, all bridge states of A are states on $P_{s,f}$.

Proof:

Assume that a state q is a bridge state and is not on $P_{s,f}$. This assumption immediately contradicts the second requirement of bridge states.

454

Assume that we have a simple path $P_{s,f}$ from s to f in G = (V, E), which can be computed in O(|V| + |E|) worst-case time using Depth-First Search (DFS). For details on DFS, refer to the textbook [3]. All states on $P_{s,f}$ form a set of candidate bridge states; namely, $C_B = \{s, b_1, b_2, \ldots, b_k, f\}$. Our approach is to take all states in C_B as bridge state candidates and to identify all states that violate any requirements in Definition 4.2 and remove them from C_B . Consequently, the remaining states are the bridge states.

We use DFS to explore G from s. We visit all states in C_B first. While exploring G, we maintain the following two values, for each state $q \in Q$,

anc: The index *i* of a state $b_i \in C_B$ such that there is a path from b_i to *q* and there is no path from $b_j \in C_B$ to *q* for j > i. The **anc** of b_i is *i*.

max: The index *i* of a state $b_i \in C_B$ such that there is a path from *q* to b_i and there is no path from *q* to b_j for i < j without visiting any state in C_B .

The **max** value of a state q means that there is a path from q to b_{max} . If b_i has a **max** value and $max \neq i+1$, then it means that there is another simple path from b_i to b_{max} without passing through b_{i+1} .

When a state $q \in Q \setminus C_B$ is visited during DFS, q inherits **anc** of its preceding state. A state q has two types of child state: One type is a subset T_1 of states in C_B and the other is a subset T_2 of $Q \setminus C_B$; namely, all states in T_1 are candidate bridge states and all states in T_2 are not candidate bridge states. Once we have explored all children of q, we update **max** of q as follows:

$$\mathbf{max} = \max(\max_{q \in T_1}(q.\mathbf{anc}), \max_{q \in T_2}(q.\mathbf{max})),$$

where q.anc denotes the **anc** value of q and q.max denotes the **max** value of q. Fig. 9 provides an example of DFS after updating (**anc**, **max**) for all states in G.

Figure 9. An example of DFS that computes (anc, max), for each state in G, for a given $C_B = \{s, b_1, b_2, b_3, b_4, b_5, b_6, f\}$.

If a state $b_i \in C_B$ does not have any out-transitions except for a transition to $b_{i+1} \in C_B$ (for example, b_6 in Fig. 9), then b_i has (i, i+1) when DFS is completed. Once we have completed DFS and computed (**anc, max**) for all states in G, we remove states from C_B that violate the requirements to be bridge states. Assume $b_i \in C_B$ has (i, j), where i+1 < j. We remove $b_{i+1}, b_{i+2}, \ldots, b_{j-1}$ from C_B since that there is a path from b_i to b_j ; that is, there is another simple path from b_i to f without visiting $b_{i+1}, b_{i+2}, \ldots, b_{j-1}$. Then, we remove s and f from C_B . For example, we have $\{b_1, b_2\}$ after removing states that violate the requirements from C_B in Fig. 9. This algorithm gives the following result.

Theorem 4.3. Given a minimal DFA A for an outfix-free regular language:

- 1. We can determine the primality of L(A) in O(m) time,
- 2. We can compute the unique outfix-free decomposition of L(A) in O(m) time if L(A) is not prime,

where m is the size of A.

Proof:

Since we use DFS twice to compute C_B and (**anc**, **max**) for all states in A, the runtime is O(m). Once we have computed (**anc**, **max**) for all states, then we remove states that violate the requirements from C_B . It takes linear time in the size of C_B , which is at most m. Therefore, the total runtime for computing bridge states of A is O(m). Then, by Theorems 4.1 and 4.2, the two results are true.

5. Conclusions

We have investigated the outfix-free regular languages. First, we suggested an efficient algorithm to verify whether or not a given set $W = \{w_1, w_2, \ldots, w_n\}$ of strings is outfix-free. We then established that the verification takes $O(\sum_{i=1}^{n} |w_i|^2)$ worst-case time, where *n* is the number of strings in *W*. We also considered the case when a language *L* is given by an FA.

Second, we have demonstrated that an outfix-free regular language L has a unique outfix-free decomposition and the unique decomposition can be computed in O(m) time, where m is the size of the minimal DFA for L.

As we have observed, outfix-free regular languages are finite sets. However, this observation does not hold for the context-free languages. For example, the non-regular language, $\{w \mid w = a^i c b^i, i \ge 1\}$ is context-free, outfix-free and infinite. Moreover, there are non-context-free languages that are outfix-free; for example, $\{w \mid w = a^i b^i c^i, i \ge 1\}$. Thus, it is reasonable to investigate the properties and the structure of the family of outfix-free languages.

Acknowledgements

We wish to thank the referee for the careful reading and many valuable suggestions. Especially, the referee's comments help to improve the algorithm for Theorem 3.3.

References

- Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing forbidden words of regular languages., *Fundamenta Informaticae*, 56(1-2), 2003, 121–135.
- [2] Clarke, C. L. A., Cormack, G. V.: On the use of regular expressions for searching text, ACM Transactions on Programming Languages and Systems, 19(3), 1997, 413–426.

- [3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: *Introduction to Algorithms*, McGraw-Hill Higher Education, 2001.
- [4] Crochemore, M., Mignosi, F., Restivo, A.: Automata and Forbidden Words., *Information Processing Letters*, 67(3), 1998, 111–117.
- [5] Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-Time Prime Decomposition Of Regular Prefix Codes, International Journal of Foundations of Computer Science, 14, 2003, 1019–1032.
- [6] Giammarresi, D., Montalbano, R.: Deterministic Generalized Automata, *Theoretical Computer Science*, 215, 1999, 191–208.
- [7] Golomb, S., Gordon, B., Welch, L.: Comma-Free Codes, *The Canadian Journal of Mathematics*, 10, 1958, 202–209.
- [8] Han, Y.-S., Salomaa, K., Wood, D.: Intercode Regular Languages, *Fundamenta Informaticae*, 76(1-2), 2007, 113–128.
- [9] Han, Y.-S., Trippen, G., Wood, D.: Simple-regular expressions and languages, *Proceedings of DCFS'05*, 2005, 146–157.
- [10] Han, Y.-S., Wang, Y., Wood, D.: Prefix-Free Regular-Expression Matching, *Proceedings of CPM'05*, Lecture Notes in Computer Science 3537, 2005, 298–309.
- [11] Han, Y.-S., Wang, Y., Wood, D.: Infix-free Regular Expressions and Languages, International Journal of Foundations of Computer Science, 17(2), 2006, 379–393.
- [12] Han, Y.-S., Wood, D.: The Generalization of Generalized Automata: Expression Automata, *International Journal of Foundations of Computer Science*, **16**(3), 2005, 499–510.
- [13] Han, Y.-S., Wood, D.: Outfix-free Regular Languages and Prime Outfix-free Decomposition, *Proceedings of ICTAC'05*, Lecture Notes in Computer Science 3722, 2005, 96–109.
- [14] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 2 edition, Addison-Wesley, Reading, MA, 1979.
- [15] Ito, M., Jürgensen, H., Shyr, H.-J., Thierrin, G.: N-prefix-suffix languages, International Journal of Computer Mathematics, 30, 1989, 37–56.
- [16] Ito, M., Jürgensen, H., Shyr, H.-J., Thierrin, G.: Outfix and Infix Codes and Related Classes of Languages, *Journal of Computer and System Sciences*, 43, 1991, 484–508.
- [17] Jürgensen, H.: Infix codes, Proceedings of Hungarian Computer Science Conference, 1984, 25–29.
- [18] Jürgensen, H., Konstantinidis, S.: Codes, in: Word, Language, Grammar (G. Rozenberg, A. Salomaa, Eds.), vol. 1 of Handbook of Formal Languages, Springer-Verlag, 1997, 511–607.
- [19] Kari, L.: On Language Equations with Invertible Operations., *Theoretical Computer Science*, **132**(2), 1994, 129–150.
- [20] Long, D. Y., Ma, J., Zhou, D.: Structure of 3-infix-outfix maximal codes, *Theoretical Computer Science*, 188(1-2), 1997, 231–240.
- [21] Mateescu, A., Salomaa, A., Yu, S.: *On the Decomposition of Finite Languages*, Technical Report 222, TUCS, 1998.
- [22] Mateescu, A., Salomaa, A., Yu, S.: Factorizations of Languages and Commutativity Conditions, Acta Cybernetica, 15(3), 2002, 339–351.
- [23] Shyr, H., Yu, S.: Intercodes and some related properties., Soochow J. Math., 16(1), 1990, 95–107.

- [24] Shyr, H.-J.: Lecture Notes: Free Monoids and Languages, Hon Min Book Company, Taichung, Taiwan R.O.C, 1991.
- [25] Wood, D.: Theory of Computation, John Wiley & Sons, Inc., New York, NY, 1987.
- [26] Wood, D.: Data structures, algorithms, and performance, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.