
Fundamenta Informaticae 81 (2007) 441–457 441

IOS Press

Outfix-Free Regular Languages and Prime Outfix-Free
Decomposition∗

Yo-Sub Han†‡

Intelligence and Interaction Research Center, Korea Institute of Science and Technology

P.O.BOX 131, Cheongryang, Seoul, Korea

emmous@kist.re.kr

Derick Wood§

Department of Computer Science, Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong SAR

dwood@cs.ust.hk

Abstract. A string x is an outfix of a stringy if there is a stringw such thatx1wx2 = y and
x = x1x2. A setX of strings is outfix-free if no string inX is an outfix of any other string inX .
Based on the properties of outfix strings, we develop a polynomial-time algorithm that determines
outfix-freeness of regular languages. Note that outfix-freeregular languages are always finite. We
consider two cases: 1) a language is given as a finite set of strings and 2) a language is given by a
finite-state automaton. Furthermore, we investigate the prime outfix-free decomposition of outfix-
free regular languages and design a linear-time algorithm that computes prime outfix-free decom-
position for outfix-free regular languages. We also demonstrate the uniqueness of prime outfix-free
decomposition.

Keywords: regular languages, outfix-freeness, prime decomposition

∗A preliminary version of this paper appeared in theProceedings of the Second International Colloquium on Theoretical
Aspects of Computing, ICTAC’05, 2005 [13]. Part of this research research was carried out while Han was in HKUST.
†Address for correspondence: Intelligence and InteractionResearch Center, Korea Institute of Science and Technology,
P.O.BOX 131, Cheongryang, Seoul, Korea
‡Han was supported by the KIST Tangible Space Initiative Grant 2E20050.
§Wood was supported by the Research Grants Council of Hong Kong Competitive Earmarked Research Grant HKUST6197/
01E.

442 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

1. Introduction

Codes play a crucial role in many areas such as information processing, data compression, cryptography
and information transmission [18]. They are categorized with respect to different conditions (for exam-
ple,prefix-free, suffix-free, infix-freeor outfix-free) according to the applications [7, 8, 15, 16, 17, 20, 23].
Since a code is a set of strings, it is alanguage. The conditions that classify code types define proper
subfamilies of given language families. For regular languages, for example, prefix-freeness defines the
family of prefix-free regular languages, which is a proper subfamily of regular languages.

Based on such subfamilies of regular languages, researchers have investigated properties of these
languages and their decomposition problems. A decomposition of a languageL is a catenation of several
languagesL1, L2, . . . , Lk such thatL = L1L2 · · ·Lk andk ≥ 2. We callL1, L2, . . . , Lk factorsof L. If
L cannot be further decomposed except forL · {λ} or {λ} · L, we say thatL aprime language.

Czyzowicz et al. [5] studied prefix-free regular languages and the prime prefix-free decomposition
problem. They showed that the prime prefix-free decomposition of a prefix-free language is unique
and demonstrated the importance of prime prefix-free decomposition in practice. Prefix-free regular
languages are often used in the literature: to define the determinism of generalized automata [6] and of
expression automata [12], and to represent a pattern set [10].

Han et al. [11] studied infix-free regular languages and developed an algorithm to determine whether
or not a given regular expression defines an infix-free regular language. They also designed an algorithm
for computing the prime infix-free decomposition of infix-free regular languages and showed that the
prime infix-free decomposition is not unique. Note that the prime prefix-free decomposition requires
each factor language to be prefix-free whereas the prime infix-free decomposition requires each factor
language to be infix-free. Infix-free regular languages giverise to faster regular-expression text match-
ing [2]. Infix-free languages are also used to compute forbidden words [1, 4].

As a continuation of our investigations of subfamilies of regular languages, it is natural to examine
outfix-free regular languages and the prime outfix-free decomposition problem. Note that Ito and his co-
researchers [16] showed that an outfix-free regular language is finite and Han et al. [9] demonstrated that
the family of outfix-free regular languages is a proper subset of the family of simple-regular languages.
(A simple-regular language is a set of strings spelled out bysimple paths in a given finite-state automa-
ton.) On the other hand, there was no known efficient algorithm to determine whether or not a given
finite set of strings is outfix-free apart from using brute force. Furthermore, the decomposition of a finite
set of strings is not unique and the computation of the decomposition is believed to be NP-complete [22].
Therefore, our goal is to develop an efficient algorithm for determining outfix-freeness of a given finite
language and to investigate the prime outfix-free decomposition and its uniqueness.

We define some basic notions in Section 2 and propose two efficient algorithms that determine outfix-
freeness in Section 3. The first algorithm takes a set of strings as input and determines outfix-freeness of
the set by constructing tries. The second algorithm takes a (nondeterministic) finite-state automaton (FA)
as input. Note that, given an FAA, we can determine outfix-freeness ofL(A) by checking whether or
not (L(A)← Σ+)∩L(A) is empty, where← denotes the sequential insertion operation [19]. However,
this approach does not consider the structural properties of A whereas our second algorithm is based on
the structural properties ofA. Moreover, our algorithm is much easier to understand and implement. In
Section 4, we show that an outfix-free regular language has a unique prime outfix-free decomposition and
the unique decomposition can be computed in linear time in the size of the given deterministic finite-state
automaton (DFA). We suggest some open problems and concludethis paper in Section 5.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 443

2. Preliminaries

Let Σ denote a finite alphabet of characters andΣ∗ denote the set of all strings overΣ. A language over
Σ is any subset ofΣ∗. The symbol∅ denotes the empty language and the symbolλ denotes the null
string. Given a stringx = x1 · · · xn, |x| is the number of characters inx andx(i, j) = xixi+1 · · · xj is
the substring ofx from positioni to positionj, wherei ≤ j. Given two stringsx andy in Σ∗, x is said
to be anoutfixof y if there is a stringw such thatx1wx2 = y, wherex = x1x2. For example,abe is an
outfix of abcde. Given a setX of strings,X is outfix-freeif no string inX is an outfix of any other string
in X. Given a stringx in a setX, let xR be the reversal ofx, in which caseXR = {xR | x ∈ X}.

An FA A is specified by a tuple(Q,Σ, δ, s, F), whereQ is a finite set of states,Σ is an input alphabet,
δ : Q × Σ → 2Q is a transition function,s ∈ Q is the start state andF ⊆ Q is a set of final states. If
F consists of a single statef , we usef instead of{f} for simplicity. Let |Q| be the number of states
in Q and|δ| be the number of transitions inδ. Then, the size|A| of A is |Q| + |δ|. Given a transition
δ(p, a) = q, wherep, q ∈ Q anda ∈ Σ, we say thatp has anout-transitionandq has anin-transition.
Furthermore,p is asource stateof q andq is a target stateof p. We defineA to benon-returningif the
start state ofA does not have any in-transitions andA to benon-exitingif all final states ofA do not have
any out-transitions. We assume thatA has onlyusefulstates; that is, each state appears on some path
from the start state to some final state and, therefore, thereis no sink state andA may not be complete
in general. A stringx overΣ is accepted byA if there is a labeled path froms to a final state inF that
spells outx. The languageL(A) of an FAA is the set of all strings spelled out by paths froms to a final
state inF .

Given an FAA = (Q,Σ, δ, s, F) and a stateq ∈ Q, we define theright FA A−→q to be(Q,Σ, δ, q, F);
namely, we makeq to be the start state. Then, theright languageL−→q of q is the set of strings accepted
by A−→q .

For complete background knowledge in automata theory, the reader may refer to textbooks [14, 25].

3. Outfix-free regular languages

We first define outfix-free regular expressions and languages, and then present an algorithm to determine
whether or not a given regular language is outfix-free. Sinceprefix-free, suffix-free, infix-free and outfix-
free languages are related to each other, we define all of themand show their relationships.

u

sp

i

o

b

Figure 1. The diagram shows inclusions of families of languages, wherep,s,b,i ando denote prefix-free, suffix-
free, bifix-free, infix-free, and outfix-free families, respectively, andu denotes the set of all languages overΣ. Note
that the outfix-free family is a proper subset of the prefix-free and suffix-free families.

444 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

Definition 3.1. A languageL is

• prefix-freeif, for all distinct stringsx, y ∈ Σ∗, x ∈ L andy ∈ L imply thatx andy are not prefixes
of each other.

• suffix-freeif, for all distinct stringsx, y ∈ Σ∗, x ∈ L andy ∈ L imply thatx andy are not suffixes
of each other.

• bifix-freeif L is prefix-free and suffix-free.

• infix-free if, for all distinct stringsx, y ∈ Σ∗, x ∈ L and y ∈ L imply that x and y are not
substrings of each other.

• outfix-freeif, for all distinct stringsx, y, z ∈ Σ∗, xz ∈ L andxyz ∈ L imply y = λ.

For further details and definitions, refer to Ito et al. [16] or Shyr [24].
We say that a regular expressionE is outfix-free ifL(E) is outfix-free. The language defined by an

outfix-free regular expression is called anoutfix-free regular language. In a similar way, we can define
prefix-free, suffix-free and infix-free regular expressionsand languages.

LetA = (Q,Σ, δ, s, F) be a DFA for a regular languageL. Han and Wood [12] showed thatA is non-
exiting if and only ifL is prefix-free. Moreover, Han et al. [11] proposed an algorithm that determines
whether or not a given regular expressionE is infix-free inO(|E|2) worst-case time. This algorithm can
also solve the prefix-free and suffix-free cases as well. Therefore, it is natural to design an algorithm to
determine whether or not a given regular language is outfix-free. Since an outfix-free regular languageL

is finite [16, 18], the problem is decidable by first checking thatL is finite and, then, comparing all pairs
of strings inL, although it is certainly undesirable to do so.

3.1. Prefix-freeness

Since the family of outfix-free regular languages is a propersubfamily of prefix-free regular languages
as shown in Fig. 1, we consider prefix-freeness of a finite language first.

Given a finite set of stringsW = {w1, w2, . . . , wn}, wheren is the number of strings inW , we
construct a trieT for W . A trie is an ordered tree data structure that is used to storea set of strings and
each edge in the tree has a single character label. If a nodeq in T has an end-marker, then it means that
the corresponding string from the root toq is in W . Fig. 2 gives an example. For details on tries, refer to
data structure textbooks [3, 26].

Assume thatwi is a prefix ofwj, wherei 6= j; it implies that|wi| < |wj |. Then,wi andwj must
have the common path inT from the root to theith nodeq that spells outwi. Therefore, if we reachq
while constructing the path forwj in T , we recognize thatwi is a prefix ofwj . Let us consider the case
when we construct a path forwj first and, then, construct a path forwi in T . The path forwi ends at the
|wi|th nodeq that already has a child node for the path forwj . Therefore, we know thatwi is a prefix of
some other string. Note that we can construct a trie forW in O(|w1| + |w2| + · · · |wn|) time, which is
linear in the size ofW .

Lemma 3.1. Given a finite setW of strings, we can determine whether or notW is prefix-free in linear
time in the size ofW by constructing a trie forW . We can also determine suffix-freeness ofW in the
same runtime by constructing a trie forW R.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 445

a

a a

a

a

a

b

b

b

bb

#

#

#

#

#

Figure 2. The trie forW = {aa, ba, baaa, baab, bba, bbb, bbbb}, where # denotes the end-marker for the corre-
sponding string.

Proof:
We construct a trieT for W in linear time and check if any internal node has an end-marker while
traversingT in liner time. If we identify any internal node with an end-marker, thenW is not prefix-free.
Otherwise,W is prefix-free. ut

3.2. Outfix-freeness

We now consider outfix-freeness. Assume that we have two distinct stringsw1 andw2 andw2 is an outfix
of w1. This implies thatw1 = xyz for some stringsx, y andz such thatw2 = xz andy 6= λ. Moreover,
w1 andw2 have the common prefixx and the common suffixz. Fig. 3 illustrates suchw1 andw2.

a b c a a b b b a a

a b c b a a

Figure 3. A graphical illustration of an outfix string;abcbaa is an outfix ofabcaabbbaa.

Based on the observations, we determine whether or not one string w1 is an outfix of another
string w2, where |w1| ≥ |w2|, as follows: We compare two characters, one fromw1 and the other
from w2, from left to right (from 1 to|w2|) until two compared characters are different; say theith char-
acters are different. If we completely readw2, then we recognize thatw2 is a prefix ofw1 and, therefore,
w2 is an outfix ofw1. We repeat these character-by-character comparisons fromright to left (from |w2|
to 1) until we have two different characters. Assume that thejth characters are different. Ifi > j, then
w2 is an outfix ofw1. Otherwise,w2 is not an outfix ofw1. For example,i = 4 andj = 3 in Fig. 3.

Lemma 3.2. Given two stringsw1 andw2, where|w1| ≥ |w2|, w2 is an outfix ofw1 if and only if there
is a positioni such thatw2(1, i) is a prefix ofw1 andw2(i+1, |w2|) is a suffix ofw1.

446 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

Proof:
The proof is straightforward from the definition of outfix. ut

x

y

z

z

q

Figure 4. An example of a trie for stringsw1 = xyz andw2 = xz. Note that both paths end with the same
subpath sequence in the trie sincew1 andw2 have the common suffixz.

Let us consider the trieT for w1 andw2. Sincew1 andw2 have the common prefix, both strings
share the common path from the root to a nodeq of heighti that spells outw2(1, i). Moreover, the path
for w2(i + 1, |w2|) in T is a suffix-path forw1(i + 1, |w1|) in T . For example, in Fig. 4, the path forx

is the common prefix-path and the path forz is the common suffix-path. Thus, if a given finite setW

of strings is not outfix-free, then there is such a pair of strings. Since a nodeq ∈ T gives the common
prefix for all strings that pass throughq, we only need to check whether some path fromq to a leaf is a
suffix-path for some other path fromq to another leaf.

Let T (q) be the subtree ofT rooted atq ∈ T . Then, we can determine whether or not a path fromq

is a suffix-path for another path fromq in T (q) by determining the suffix-freeness of all paths fromq to
a leaf inT (q) based on the same algorithm for Lemma 3.1. The running time islinear in the the size of
T (q).

3.3. Complexity of outfix-freeness

The subfunction isprefix-free(T) in Fig. 5 determines whether or not the set of strings represented by a
given trieT is prefix-free. Note that isprefix-free(T) runs inO(|T |) time, where|T | is the number of
nodes inT .

Given a finite setW = {w1, w2, . . . , wn} of strings, we can construct a trieT in O(
∑n

i=1
|wi|)

time and space, which is linear in the size ofW , wheren ≥ 1. Prefix-freeness and suffix-freeness
can be verified in linear time by Lemma 3.1. Thus, the total running time for the algorithm Outfix-
freeness (OFF) in Fig. 5 is

O(|T |) +
∑

q∈T

|T (q)|,

whereq is a node that has more than one child. In the worst-case, we have to examine all nodes inT ; for
example,T is a complete tree, where each internal node has the same number of children. To compute
the size of

∑
|T (q)|, let us consider a stringwi ∈ W that makes a pathP from the root to a leaf in

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 447

Outfix-freeness(W = {w1, w2, . . . , wn})

Construct a trieT for W

if (is prefix-free(T) = no)

then returnno

if (is suffix-free(T) = no)

then returnno

for eachq ∈ T that has more than one child

if (is suffix-free(T (q)) = no)

then returnno

returnyes

Figure 5. An outfix-freeness checking algorithm for a given finite set of strings.

T . If a nodeq ∈ T of height j in pathP has more than one child, then the suffixwi(j+1, |wi|) of
wi that starts fromq is used in issuffix-free(T (q)) in OFF. In the worst-case, all suffixes ofwi can be
used by issuffix-free(T (q)). Therefore,wi contributesO(|wi|

2) to the total running time of OFF. Fig. 6
illustrates a worst-case example.

Figure 6. All suffixes of a stringw in T are used to determine the outfix-freeness by OFF. The size of the sum of
all suffixes ofw is O(|w|2).

Therefore, the total time complexity isO(|w1|
2 + |w2|

2 + · · ·+ |wn|
2) in the worse-case. If the size

of wi is O(k), for somek, then the running time isO(k2n). On the other hand, the all-pairs comparison
approach givesO(kn2) worst-case running time. Note that the size of each string inW is usually much
smaller than the number of strings inW ; namely,k � n.

Theorem 3.1. Given a finite setW = {w1, w2, . . . , wn} of strings, we can determine whether or notW

is outfix-free inO(
∑n

i |wi|
2) time usingO(

∑n
i |wi|) space in the worse-case.

448 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

Now we characterize the family of outfix-free (regular) languages in terms of closure properties.

Theorem 3.2. The family of outfix-free (regular) languages is closed under catenation and intersection
but not under union, complement or star.

Proof:
We only prove the catenation case. The other cases can be proved straightforwardly.

x y z

s1 s2

t1 t2

s

t x z

Figure 7. The figure illustrates the first case in the proof of Theorem 3.2, wheresi andti ∈ Li for i = 1, 2. Since
s1 is a prefix oft1, L1 is not outfix-free.

Assume thatL = L1 · L2 is not outfix-free whereasL1 andL2 are outfix-free. Then, there are two
distinct stringss andt ∈ L, wheret is an outfix ofs. Namely,s = xyz, t = xz andy 6= λ. Sinces and
t are a catenation of two strings fromL1 andL2, s andt can be partitioned into two parts;s = s1s2 and
t = t1t2, wheresi, ti ∈ Li for i = 1, 2. From the assumption thatt is an outfix ofs, s andt have the
common prefix and the common suffix as shown in Fig. 7. If we decomposes andt into s1s2 andt1t2,
then we have one of the following four cases:

1. s1 is a prefix oft1.

2. t1 is a prefix ofs1.

3. s2 is a suffix oft2.

4. t2 is a suffix ofs2.

For cases 1 and 2,L1 is not prefix-free and, therefore, not outfix-free — a contradiction. For cases 3
and 4,L2 is not suffix-free and, therefore, not outfix-free — a contradiction. Thus, the family of outfix-
free languages is closed under catenation. Ito et al. [16] gave a different proof. ut

3.4. Outfix-freeness of finite-state automata

We design an algorithm that determines the outfix-freeness of a given FAA using the structural proper-
ties. Assume that two stringsw1 = xyz andw2 = xz are accepted byA, wherey 6= λ andw2 is an
outfix of w1. Let p andq be the states that we reach after readingx from w1 andw2, respectively inA (p
andq may be the same state). Sincew1 andw2 are inL(A), yz ∈ L−→p andz ∈ L−→q in A. This follows
thatL−→p ∪ L−→q is not suffix-free. We usestate-pair graphsto check the existence of suchw1 andw2 in
L(A).

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 449

Definition 3.2. Given an FAA = (Q,Σ, δ, s, F), we define the state-pair graphGA = (VG, EG), where
VG is a set of nodes andEG is a set of edges, as follows:

VG = {(i, j) | i andj ∈ Q} and

EG = {((i, j), a, (x, y)) | δ(i, a) = x andδ(j, a) = y anda ∈ Σ}.

The crucial property of state-pair graphs is that if there isa stringw spelled out by two distinct paths
in A, for example, one path is fromi to x and the other path is fromj to y, then, there is a path from
(i, j) to (x, y) in GA that spells out the same stringw. Note that state-pair graphs do not require given
FAs to be deterministic. The state-pair graphGA = (VG, EG) of an FAA = (Q,Σ, δ, s, F) has at most
|Q|2 nodes and|δ|2 edges.

Note that an outfix-free FA is always non-exiting. If an FA is non-exiting and has several final states,
then all final states can be merged into a single final state since they are all equivalent. Therefore, we
assume that a given FA is non-exiting and has a single final state. Given an FAA = (Q,Σ, δ, s, f), we
demonstrate how to determine the outfix-freeness ofL(A) using its state-pair graph. We first computer
its state-pair graphGA, wherem = |Q|. Next, we define a new DFAA′ from GA by making(1, 1) to be
the start state and(m,m) to be the final state and removing all non-reachable states from (1, 1) in GA.
Note that, by construction,A′ is deterministic. We callA′ thestate-pair DFAof A.

Lemma 3.3. Given an FAA = (Q,Σ, δ, s, f), L(A) is outfix-free if and only ifL−→p ∪L−→q is suffix-free
for all pair states(p, q) ∈ Q′ of its state-pair DFAA′ = (Q′,Σ, δ′, s′, f ′), whereL−→q is the right language
of stateq in A.

Proof:
=⇒ Assume thatL−→p ∪L−→q is not suffix-free. Then, there are two stringsw1 andw2 in L−→p ∪L−→q , where

w2 is a suffix ofw1. There are four cases to consider:

1. w1, w2 ∈ L−→p .

Sincep is reachable froms in A, there is a path froms to p and the path spells out a stringx. This
implies thatA accepts bothxw1 andxw2, wherexw2 is an outfix ofxw1 — a contradiction. Note
that(p, p) is also a state ofA′.

2. w1 ∈ L−→p andw2 ∈ L−→q .

Since all states ofA′ are reachable from(1, 1) andA′ is deterministic, there is a path from(1, 1)
to (p, q) that spells out a stringx. This implies thatA accepts bothxw1 andxw2, wherexw2 is an
outfix of xw1 — a contradiction.

3. w1 ∈ L−→q andw2 ∈ L−→p .

This case is symmetric to the second case.

4. w1, w2 ∈ L−→q .

This case is symmetric to the first case.

Therefore, ifL(A) is outfix-free, thenL−→p ∪ L−→q is suffix-free.

450 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

⇐= Assume thatL(A) is not outfix-free. Then, there are two stringsw1 = xyz andw2 = xz accepted
by A, wherew2 is an outfix ofw1. Sincew1 andw2 are spelled out byA, there are two accepting
paths forw1 andw2, respectively. Letp andq be the states that we reach after readingx from the two
accepting paths. This follows that the pair(p, q) is reachable from(1, 1) in the state-pair graph ofA and,
thus,(p, q) is a state of its state-pair DFAA′. Furthermore, from the accepting paths forw1 andw2, we
know thatyz ∈ L−→p andz ∈ L−→q in A. Thus,L−→p ∪ L−→q is not suffix-free — a contradiction.

Therefore, ifL−→p ∪ L−→q is suffix-free, thenL(A) is outfix-free. ut

Given an FAA = (Q,Σ, δ, s, f) and its state-pair DFAA′ = (Q′,Σ, δ′, s′, f ′), we now need to check
whether or notL−→p ∪L−→q is suffix-free for all state(p, q) ∈ Q′. SinceL−→q in A is computed from its right
FA A−→q , we can construct an FAB = (QB ,Σ, δB , sB , fB) for L−→p ∪ L−→q from A−→p = (Qp,Σ, δp, p, f)
andA−→q = (Qq,Σ, δq, q, f), where

QB = {sB , fB} ∪Qp ∪Qq,

δB = {(sB , λ, p), (sB , λ, q), (f, λ, fB)} ∪ δp ∪ δq.

Note thatO(|B|) = O(|A−→p | + |A−→q |) = O(|A|). Recently, Han et al. [11] proposed algorithms to
determine prefix-freeness, suffix-freeness, bifix-freeness and infix-freeness of a given (nondeterministic)
FA A in O(|A|2) time. We use the algorithm to check suffix-freeness for eachB. Given an FAA =
(Q,Σ, δ, s, f), there are at most|Q|2 pair states in its state-pair DFA and, for each pair state, wecan
decide the suffix-freeness ofB in O(|B|2) worst-case time.

Theorem 3.3. Given an FAA = (Q,Σ, δ, s, f), we can determine the outfix-freeness ofL(A) in
O(|Q|4 + |Q|2|δ|2) worst-case time.

Proof:
Since there are at most|Q|2 pair states in its state-pair DFA and, for each pair state, ittakesO(|B|2) time
for checking the suffix-freeness ofL(B), the total running time is

|Q|2 ×O(|B|2) = |Q|2 ×O(|A|2) = |Q|2 ×O(|Q|2 + |δ|2) = O(|Q|4 + |Q|2|δ|2).

Therefore, we can check the outfix-freeness of a given FA in polynomial time. ut

We note that if a given FAA is deterministic, then we can speed up the algorithm in Theorem 3.3 by
skipping the construction of the state-pair graph. Note that we compute the state-pair graph and its state-
pair DFA to find a common prefixx of two stringsw1 andw2 because the input FA is nondeterministic.
However, ifA is deterministic andw1 andw2 have a common stringx, then both accepting paths must
have the same path forx. Therefore, we only need to check whether or notL−→q is suffix-free for eachq
in A. Since it takesO(|Q|2 + |δ|2) time for each state to check suffix-freeness and there are|Q| states,
the total runtime for determining outfix-freeness ofA is O(|Q|3 + |Q||δ|2). SinceO(|Q|) = O(|δ|) in
DFAs, we establish the following result.

Proposition 3.1. Given a DFAA = (Q,Σ, δ, s, f), we can determine the outfix-freeness ofL(A) in
O(|Q|3) worst-case time.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 451

4. Prime outfix-free regular languages and prime decomposition

Decomposition is the reverse operation of catenation. IfL = L1 · L2, thenL is the catenation ofL1 and
L2 andL1 ·L2 is a decomposition ofL. We callL1 andL2 factorsof L. Note that every languageL has
a decomposition,L = {λ} · L, whereL is a factor of itself. We call{λ} a trivial language. We define a
languageL to beprime if L 6= L1 ·L2 for any two non-trivial languages. Then, the prime decomposition
of L is to decomposeL into L1 · L2 · . . . · Lk, whereL1, L2, . . . , Lk are prime languages andk ≥ 1 is a
constant.

Mateescu et al. [21, 22] showed that the primality of regularlanguages is decidable and the prime de-
composition of a regular language is not unique even for finite languages. Czyzowicz et al. [5] considered
prefix-free regular languages and showed that the prime prefix-free decomposition for a prefix-free regu-
lar languageL is unique and the unique decomposition forL can be computed inO(m) worst-case time,
wherem is the size of the minimal DFA forL. Recently, Han et al. [11] investigated the prime infix-free
decomposition of infix-free regular languages and demonstrated that the prime infix-free decomposition
is not unique.

We examine prime outfix-free regular languages and decomposition. Even though outfix-free regular
languages are finite [16], the primality test for finite languages is believed to be NP-complete [22]. Thus,
the decomposition problem for finite languages is beyond trivial. We design a linear-time algorithm to
determine whether or not a given finite language is prime outfix-free. We also investigate prime outfix-
free decomposition and its uniqueness.

4.1. Prime outfix-free regular languages

Definition 4.1. A regular languageL is aprimeoutfix-free language ifL 6= L1 · L2 for any outfix-free
regular languagesL1 andL2.

From now on, when we say prime, we mean prime outfix-free. Since we are dealing with outfix-free
regular languages, there are no back-edges in FAs for such languages. We call DFAs without back-edges
acyclic DFAs(ADFAs). Furthermore, outfix-free FAs are always non-exiting since they are prefix-free.
Note that if an FA is non-exiting and has several final states,then all final states are equivalent and,
therefore, can be merged into a single final state.

Definition 4.2. We define a stateb in an ADFA A to be abridge state1 if the following two conditions
hold:

1. Stateb is neither a start nor a final state.

2. For any stringw ∈ L(A), its path inA must pass throughb. Therefore, we can partitionA at b
into two subautomataA1 andA2 as described below.

Given an ADFAA = (Q,Σ, δ, s, f) and a bridge stateb ∈ Q, whereL(A) is outfix-free, we can
partitionA into two subautomataA1 andA2 as follows:

• A1 = (Q1,Σ, δ1, s, b),

1The definition of bridge states in this paper is different from the definition of bridge states in Han et al. [11] although both
definitions have similar conditions.

452 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

Q1 is a set of states that appear on some path froms to b in A including boths andb.

δ1 is a set of transitions that appear on some path froms to b in A.

• A2 = (Q2,Σ, δ2, b, f),

Q2 is a set of states that appear on some path fromb to f in A including bothb andf .

δ2 is a set of transitions that appear on some path fromb to f in A.

Fig. 8 illustrates a partitioning at a bridge state.

b

1 2

3 4 6 7

8 9

1 2

3 4 bb 6 7

8 9

Figure 8. An example of partitioning of an FA at a bridge stateb.

It is easy to verify thatL(A) = L(A1) · L(A2) from the second requirement in Definition 4.2.
Namely, bridge states are closely related to the decomposition of an FA.

Lemma 4.1. If a minimal DFAA has a bridge state, whereL(A) is outfix-free, thenL(A) is not prime.

Proof:
SinceA has a bridge stateb, we can partitionA into A1 andA2 at b andL(A) = L(A1)L(A2). Ito et
al. [16] showed that ifL(A) = L(A1)L(A2) is outfix-free, thenL(A1) andL(A2) are both outfix-free.
Therefore, ifA has a bridge state, thenL(A) is not prime. ut

Lemma 4.2. If a minimal DFAA does not have any bridge states andL(A) is outfix-free, thenL(A) is
prime.

Proof:
Assume thatL is not prime. Then,L can be decomposed asL1 · L2, whereL1 andL2 are outfix-free.
Czyzowicz et al. [5] showed that given prefix-free languagesA,B andC such thatA = B · C, A is
regular if and only ifB andC are regular. Thus, ifL is regular, thenL1 andL2 must be regular since
all outfix-free languages are prefix-free. LetA1 andA2 be minimal DFAs forL1 andL2, respectively.
SinceA1 andA2 are non-returning and non-exiting, there are only one startstate and one final state for
each of them. We catenateA1 andA2 by merging the final state ofA1 and the start state ofA2 as a single
stateb. Then, the catenated automaton is the minimal DFA forL(A1) · L(A2) = L and has a bridge
stateb — a contradiction. ut

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 453

We can rephrase Lemma 4.1 as follows: IfL is prime, then its minimal DFA does not have any bridge
states. Then, from Lemmas 4.1 and 4.2, we obtain the following result.

Theorem 4.1. An outfix-free regular languageL is prime if and only if the minimal DFA forL does not
have any bridge states.

Lemma 4.1 shows that if a minimal DFAA for an outfix-free regular languageL has a bridge state,
then we can decomposeL into a catenation of two outfix-free regular languages usingthe bridge state. In
addition, if we have a setB of bridge states inA and decomposeA at a bridge stateb ∈ B, thenB \ {b}
is the set of bridge states for the resulting two automata after the decomposition.

Theorem 4.2. LetA be a minimal DFA for an outfix-free regular language that hask bridge states. Then,
L(A) can be decomposed intok+1 prime outfix-free regular languages, namely,L(A) = L1L2 · · ·Lk+1

andL1, L2, . . . , Lk+1 are prime.

Proof:
Let (b1, b2, . . . , bk) be the sequence of bridge states froms tof in A. We prove the statement by induction
onk. It is sufficient to show thatL(A) = L′L′′ such thatL′ is accepted by a DFAA′ with k − 1 bridge
states andL′′ is a prime outfix-free regular language.

We partitionA into two subautomataA′ and A′′ at bk. Note thatL(A′) and L(A′′) are outfix-
free languages by the proof of Lemma 4.1. SinceA′′ has no bridge states,L′′ = L(A′′) is prime by
Theorem 4.1. By the definition of bridge states, all paths must pass through(b1, b2, . . . , bk−1) in A′ and,
therefore,A′ hask−1 bridge states. Thus, ifA hask bridge states, thenL(A) can be decomposed into
k+1 prime outfix-free regular languages. ut

Ito et al. [16] showed that if an outfix-free regular languageL is written asL = L1L2 for two regular
languagesL1 andL2, then bothL1 andL2 must be outfix-free. Then, the minimal DFA forL must have
a corresponding bridge state forL1 andL2 by Lemma 4.1. This shows thatL can be decomposed if
and only if its minimal DFA has a bridge state. Therefore, a set of bridge states define the unique prime
decomposition of a given minimal DFA for an outfix-free regular language. From this observation and
Theorem 4.2, we establish the following result.

Proposition 4.1. The prime outfix-free decomposition for an outfix-free regular language is always
unique.

We now demonstrate how to compute a set of bridge states defined in Definition 4.2 from a minimal
DFA A in O(m) time, wherem is the size ofA. Let G(V,E) be a labeled directed graph for a given
minimal DFAA = (Q,Σ, δ, s, f), whereV = Q andE = δ. We say that a path inG is simpleif it does
not have a cycle.

Lemma 4.3. Let Ps,f be arbitrary simple path froms to f in G. Then, all bridge states ofA are states
onPs,f .

Proof:
Assume that a stateq is a bridge state and is not onPs,f . This assumption immediately contradicts the
second requirement of bridge states. ut

454 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

Assume that we have a simple pathPs,f from s to f in G = (V,E), which can be computed in
O(|V | + |E|) worst-case time using Depth-First Search (DFS). For details on DFS, refer to the text-
book [3]. All states onPs,f form a set of candidate bridge states; namely,CB = {s, b1, b2, . . . , bk, f}.
Our approach is to take all states inCB as bridge state candidates and to identify all states that violate
any requirements in Definition 4.2 and remove them fromCB . Consequently, the remaining states are
the bridge states.

We use DFS to exploreG from s. We visit all states inCB first. While exploringG, we maintain the
following two values, for each stateq ∈ Q,

anc: The indexi of a statebi ∈ CB such that there is a path frombi to q and there is no path from
bj ∈ CB to q for j > i. Theancof bi is i.

max: The indexi of a statebi ∈ CB such that there is a path fromq to bi and there is no path from
q to bj for i < j without visiting any state inCB.

The max value of a stateq means that there is a path fromq to bmax. If bi has amax value and
max 6= i+1, then it means that there is another simple path frombi to bmax without passing through
bi+1.

When a stateq ∈ Q \ CB is visited during DFS,q inheritsanc of its preceding state. A stateq has
two types of child state: One type is a subsetT1 of states inCB and the other is a subsetT2 of Q \ CB;
namely, all states inT1 are candidate bridge states and all states inT2 are not candidate bridge states.
Once we have explored all children ofq, we updatemax of q as follows:

max = max(max
q∈T1

(q.anc),max
q∈T2

(q.max)),

whereq.anc denotes theancvalue ofq andq.max denotes themax value ofq.
Fig. 9 provides an example of DFS after updating (anc, max) for all states inG.

s b1 b2 b3 b4 b5 b6 f
(1,2) (2,6) (3,4) (4,5) (5,7) (6,7)

(5,6)

(2,6)

(2,4)(2,6)

Figure 9. An example of DFS that computes (anc, max), for each state inG, for a givenCB = {s, b1,
b2, b3, b4, b5, b6, f}.

If a statebi ∈ CB does not have any out-transitions except for a transition tobi+1 ∈ CB (for example,
b6 in Fig. 9), thenbi has(i, i+1) when DFS is completed. Once we have completed DFS and computed
(anc, max) for all states inG, we remove states fromCB that violate the requirements to be bridge states.
Assumebi ∈ CB has(i, j), wherei+1 < j. We removebi+1, bi+2, . . . , bj−1 from CB since that there is a
path frombi to bj ; that is, there is another simple path frombi to f without visitingbi+1, bi+2, . . . , bj−1.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 455

Then, we removes andf from CB. For example, we have{b1, b2} after removing states that violate the
requirements fromCB in Fig. 9. This algorithm gives the following result.

Theorem 4.3. Given a minimal DFAA for an outfix-free regular language:

1. We can determine the primality ofL(A) in O(m) time,

2. We can compute the unique outfix-free decomposition ofL(A) in O(m) time if L(A) is not prime,

wherem is the size ofA.

Proof:
Since we use DFS twice to computeCB and (anc, max) for all states inA, the runtime isO(m). Once
we have computed (anc, max) for all states, then we remove states that violate the requirements from
CB. It takes linear time in the size ofCB , which is at mostm. Therefore, the total runtime for computing
bridge states ofA is O(m). Then, by Theorems 4.1 and 4.2, the two results are true. ut

5. Conclusions

We have investigated the outfix-free regular languages. First, we suggested an efficient algorithm to
verify whether or not a given setW = {w1, w2, . . . , wn} of strings is outfix-free. We then established
that the verification takesO(

∑n
i=1
|wi|

2) worst-case time, wheren is the number of strings inW . We
also considered the case when a languageL is given by an FA.

Second, we have demonstrated that an outfix-free regular languageL has a unique outfix-free de-
composition and the unique decomposition can be computed inO(m) time, wherem is the size of the
minimal DFA forL.

As we have observed, outfix-free regular languages are finitesets. However, this observation does
not hold for the context-free languages. For example, the non-regular language,{w | w = aicbi, i ≥ 1}
is context-free, outfix-free and infinite. Moreover, there are non-context-free languages that are outfix-
free; for example,{w | w = aibici, i ≥ 1}. Thus, it is reasonable to investigate the properties and the
structure of the family of outfix-free languages.

Acknowledgements

We wish to thank the referee for the careful reading and many valuable suggestions. Especially, the
referee’s comments help to improve the algorithm for Theorem 3.3.

References

[1] Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, A.,Sciortino, M.: Computing forbidden words of regular
languages.,Fundamenta Informaticae, 56(1-2), 2003, 121–135.

[2] Clarke, C. L. A., Cormack, G. V.: On the use of regular expressions for searching text,ACM Transactions
on Programming Languages and Systems, 19(3), 1997, 413–426.

456 Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.:Introduction to Algorithms, McGraw-Hill Higher
Education, 2001.

[4] Crochemore, M., Mignosi, F., Restivo, A.: Automata and Forbidden Words.,Information Processing Letters,
67(3), 1998, 111–117.

[5] Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-Time Prime Decomposition Of Regular Prefix Codes,
International Journal of Foundations of Computer Science, 14, 2003, 1019–1032.

[6] Giammarresi, D., Montalbano, R.: Deterministic Generalized Automata,Theoretical Computer Science, 215,
1999, 191–208.

[7] Golomb, S., Gordon, B., Welch, L.: Comma-Free Codes,The Canadian Journal of Mathematics, 10, 1958,
202–209.

[8] Han, Y.-S., Salomaa, K., Wood, D.: Intercode Regular Languages,Fundamenta Informaticae, 76(1-2), 2007,
113–128.

[9] Han, Y.-S., Trippen, G., Wood, D.: Simple-regular expressions and languages,Proceedings of DCFS’05,
2005, 146–157.

[10] Han, Y.-S., Wang, Y., Wood, D.: Prefix-Free Regular-Expression Matching,Proceedings of CPM’05, Lecture
Notes in Computer Science 3537, 2005, 298–309.

[11] Han, Y.-S., Wang, Y., Wood, D.: Infix-free Regular Expressions and Languages,International Journal of
Foundations of Computer Science, 17(2), 2006, 379–393.

[12] Han, Y.-S., Wood, D.: The Generalization of Generalized Automata: Expression Automata,International
Journal of Foundations of Computer Science, 16(3), 2005, 499–510.

[13] Han, Y.-S., Wood, D.: Outfix-free Regular Languages andPrime Outfix-free Decomposition,Proceedings of
ICTAC’05, Lecture Notes in Computer Science 3722, 2005, 96–109.

[14] Hopcroft, J., Ullman, J.:Introduction to Automata Theory, Languages, and Computation, 2 edition, Addison-
Wesley, Reading, MA, 1979.

[15] Ito, M., Jürgensen, H., Shyr, H.-J., Thierrin, G.: N-prefix-suffix languages,International Journal of Com-
puter Mathematics, 30, 1989, 37–56.

[16] Ito, M., Jürgensen, H., Shyr, H.-J., Thierrin, G.: Outfix and Infix Codes and Related Classes of Languages,
Journal of Computer and System Sciences, 43, 1991, 484–508.

[17] Jürgensen, H.: Infix codes,Proceedings of Hungarian Computer Science Conference, 1984, 25–29.

[18] Jürgensen, H., Konstantinidis, S.: Codes, in:Word, Language, Grammar(G. Rozenberg, A. Salomaa, Eds.),
vol. 1 of Handbook of Formal Languages, Springer-Verlag, 1997, 511–607.

[19] Kari, L.: On Language Equations with Invertible Operations., Theoretical Computer Science, 132(2), 1994,
129–150.

[20] Long, D. Y., Ma, J., Zhou, D.: Structure of 3-infix-outfixmaximal codes,Theoretical Computer Science,
188(1-2), 1997, 231–240.

[21] Mateescu, A., Salomaa, A., Yu, S.:On the Decomposition of Finite Languages, Technical Report 222, TUCS,
1998.

[22] Mateescu, A., Salomaa, A., Yu, S.: Factorizations of Languages and Commutativity Conditions,Acta Cyber-
netica, 15(3), 2002, 339–351.

[23] Shyr, H., Yu, S.: Intercodes and some related properties., Soochow J. Math., 16(1), 1990, 95–107.

Y.-S. Han and D. Wood / Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 457

[24] Shyr, H.-J.: Lecture Notes: Free Monoids and Languages, Hon Min Book Company, Taichung, Taiwan
R.O.C, 1991.

[25] Wood, D.:Theory of Computation, John Wiley & Sons, Inc., New York, NY, 1987.

[26] Wood, D.: Data structures, algorithms, and performance, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993.

