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Abstract. We consider the state complexity of basic operations on non-returning regular languages.
For a non-returning minimal DFA, the start state does not have any in-transitions. We establish
the precise state complexity of four Boolean operations (union, intersection, difference, symmetric
difference), catenation, reverse, and Kleene-star for non-returning regular languages. Our results are
usually smaller than the state complexities for general regular languages and larger than the state
complexities for suffix-free regular languages. In the caseof catenation and reversal, we define
witness languages over a ternary alphabet. Then we provide lower bounds for a binary alphabet. For
every operation, we also study the unary case.
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1. Introduction

Given a regular languageL, researchers often use the number of states in the minimal deterministic
finite-state automaton (DFA) forL to represent the complexity ofL. Based on this notion, the state
complexity of an operation for regular languages is defined as the number of states that are necessary
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and sufficient in the worst-case for the minimal DFA to acceptthe language resulting from the operation,
considered as a function of the state complexities of operands.

Maslov [1] provided, without giving proofs, the state complexity of union, catenation, and star, and
later Yu et al. [2] investigated the state complexity further. The state complexity of an operation is calcu-
lated based on the structural properties of input regular languages and a given operation. Recently, due
to large amount of memory, fast CPUs and massive data size, many applications using regular languages
require finite-state automata (FAs) of very large size. Thismakes the estimated upper bound of the state
complexity useful in practice since it helps to manage resources efficiently. Moreover, it is a challenging
quest to verify whether or not an estimated upper bound can bereached.

Yu [3] gave a comprehensive survey of the state complexity ofregular languages. Salomaa et al. [4]
studied classes of languages, for which the reverse operation reaches the exponential upper bound. As
special cases of the state complexity, researchers examined the state complexity of finite languages [5, 6],
the state complexity of unary language operations [7] and the nondeterministic descriptional complexity
of regular languages [8]. There are several other results with respect to the state complexity of different
operations [9, 10, 11, 12, 13, 14].

For regular language codes, which preserve certain structural properties in the corresponding minimal
DFAs, Han et al. [15] studied the state complexity of prefix-free regular languages. Similarly, based on
suffix-freeness, Han and Salomaa [16] looked at the state complexity of suffix-free regular languages.
Note that a prefix-free minimal DFA has a single final state andall out-transitions of the final state go
to the sink state [17]. Moreover, this property is the necessary and sufficient condition for a minimal
DFA A to be prefix-free; namely,L(A) is prefix-free. For a suffix-free minimal DFA, the start state
does not have any in-transitions [16]. A DFA with this property is called non-returning. However, this
non-returning property is only a necessary condition for a minimal DFA to be suffix-free, but it is not
sufficient. This implies that all subfamilies of suffix-freeregular languages— such as bifix-, infix-, or
outfix-free regular languages—have the non-returning property. Note that finite languages also preserve
this property. In addition, some DFAs in model checking systems are non-returning as well. These DFAs
start with a specific pre-condition in model checking; once they read the pre-condition at the start state,
they never visit the start state again in the remaining process. These observations intrigue us to investigate
DFAs with non-returning property and the state complexity of basic operations on languages accepted by
non-returning DFAs. Notice that the state complexity of operations on fundamental subfamilies of the
regular languages can provide valuable insights on connections between restrictions placed on language
definitions and descriptional complexity.

We start with an observation that a non-returning language and its complement have the same com-
plexity. We get the tight bound(m − 1)(n − 1) + 1 for four Boolean operations (union, intersection,
difference, symmetric difference). To prove tightness, weuse a binary alphabet. We also show that this
bound is tight in the unary case ifm− 1 andn − 1 are relatively prime numbers, except for symmetric
difference, where the tight bound is(m− 1)(n − 1) if m− 1 andn− 1 are relatively prime.

In the case of catenation, we get the tight bound(m − 1)2n−1 + 1, and our witnesses are defined
over a ternary alphabet. In the binary case, we are still ableto prove an exponential lower bound(m −
2)2n−1 + 2n−2 + 2. For catenation on unary non-returning languages, we get anupper boundmn, and
a lower bound(m− 1)(n − 1) + 2 if m− 1 andn− 1 are relatively prime.

We next study the reversal operation on non-returning languages. Here we get the tight bound2n

which is the same as in the general case of regular languages.However, to define worst-case examples,
we use a ternary alphabet, while in the general case, there exist binary witness languages. We conjecture
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that the bound2n cannot be met by any binary non-returning language. On the other hand, we still have
an exponential lower bound2n−2 in the binary case. The reversal operation on unary languages is trivial
since the reversal of any unary language is the same language.

We conclude our paper with the Kleene star operation. We get the tight bound2n−1 for any alphabet
with at least two symbols. Then we show that in the unary case,the tight bound is(n − 2)2 + 2. All
our results are usually less than the state complexities forgeneral regular languages and greater than the
state complexities for suffix-free regular languages.

In Section 2, we define some basic notions and prove preliminary results. Then we formally define
non-returning regular languages. We prove the tight boundson the state complexity of complementation,
Boolean operations, catenation, reversal, and Kleene starin Sections 3, 4, 5, 6, and 7, respectively.
We summarize the state complexity results and compare them with the regular language case and the
suffix-free case in Section 8.

2. Preliminaries

Let Σ denote a finite alphabet of characters, andΣ∗ denote the set of all strings overΣ. The size|Σ| of
Σ is the number of characters inΣ. A language overΣ is any subset ofΣ∗. The symbol∅ denotes the
empty language and the symbolλ denotes the null string. Let|w|a be the number ofa appearances in a
stringw. For stringsx, y andz, we say thaty is asuffixof z if z = xy. We define a languageL to be
suffix-free if for any two distinct stringsx andy in L, x is not a suffix ofy. For a stringx, let xR be the
reverse ofx and for a languageL, we denoteLR = {xR | x ∈ L}.

A DFA A is specified by a tuple(Q,Σ, δ, s, F ), whereQ is a finite set of states,Σ is an input
alphabet,δ : Q × Σ → Q is a transition function,s ∈ Q is the start state andF ⊆ Q is a set of final
states. Thestate complexityof a regular languageL, sc(L), is defined to be the number of states of the
minimal DFA recognizingL.

Given a DFAA, we assume thatA is complete; therefore,A may have a sink state. For a transi-
tion δ(p, a) = q in A, we say thatp has anout-transitionandq has anin-transition. We say thatA is
non-returningif the start state ofA does not have any in-transitions. We define a regular language to be
anon-returning regular languageif its minimal DFA is non-returning.

A nondeterministic finite automaton (NFA) is a tupleM = (Q,Σ, δ,Q0, F ) whereQ,Σ, F are as in
a DFA,Q0 is the set of start states, andδ : Q×Σ → 2Q is the transition function. Every NFAM can be
converted to an equivalent DFAM ′ = (2Q,Σ, δ′, Q0, F

′) by the subset construction. We call the DFA
M ′ thesubset automatonof the NFAM .

For complete background knowledge in automata theory, we refer to the textbooks [18, 19, 20]. To
conclude this section let us state some preliminary resultsthat we will use later throughout the paper.

Proposition 2.1. Let N be an NFA such that for every stateq, there exists a stringwq accepted by the
NFA N from stateq and rejected from any other state. Then all states of the subset automaton ofN are
pairwise distinguishable.

Proof:
Let S andT be two distinct subsets of the subset automaton. Then, without loss of generality, there is a
stateq of N such thatq ∈ S andq /∈ T . Then the stringwq is accepted by the subset automaton fromS
and rejected fromT . ⊓⊔
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The following well-known observation allows us to avoid theproof of distinguishability in the case
of reverse. It can be easily proved using Proposition 2.1, and for the sake of completeness, we present
the proof here.

Proposition 2.2. ([21])
All states of the subset automaton of the reverse of a minimalDFA are pairwise distinguishable.

Proof:
LetA be a minimal DFA. Since every state ofA is reachable, for every stateq of the NFAAR, there exists
a stringwq that is accepted byAR from q. SinceA is deterministic, the stringwq cannot be accepted by
AR from any other state. Hence the NFAAR satisfies the condition of Proposition 2.1, and therefore all
states of the subset automaton ofAR are pairwise distinguishable. ⊓⊔

If N is a non-returning NFA with the state setQ and the initial states, then the only reachable subset
of the subset automaton ofN containing the states is {s}. If, moreover, the empty set is unreachable
in the subset automaton, then two distinct subsets of the subset automaton must differ in a state from
Q \ {s}. Hence a sufficient condition for distinguishability in such a case is as follows.

Proposition 2.3. LetN = (Q,Σ, δ, s, F ) be a non-returning NFA such that the empty set is unreachable
in the corresponding subset automaton. Assume that for every stateq in Q \ {s}, there exists a stringwq

accepted byN only from q. Then all states of the subset automaton ofN are pairwise distinguishable.

3. Complement

Let us start with the complementation operation on non-returning languages. IfL is a language over an
alphabetΣ, then the complement ofL is the languageLc = Σ∗ \ L. To get a DFA for the complement
of a given regular language, we only need to interchange the final and non-final states in a DFA for the
given language. Formally, if a regular languageL is accepted by a DFAA = (Q,Σ, δ, s, F ), then the
languageLc is accepted by the DFAAc = (Q,Σ, δ, s,Q \ F ). Moreover, ifA is minimal, thenAc is
minimal as well. It follows that the state complexity of a regular language and its complement is the
same. Next, notice that if a DFAA is non-returning, then the DFAAc is also non-returning. Hence we
have the following result.

Theorem 3.1. LetL be a non-returning regular language. Thensc(L) = sc(Lc).

4. Boolean Operations

Now we consider the following four Boolean operations: intersection, union, difference, and symmetric
difference. In the general case of all regular languages, the state complexity of all four operations is
given by the functionmn, and the worst case examples are defined over a binary alphabet [2, 22]. In
the case of non-returning languages, we obtain the precise state complexity for these operations, which
again turn out to be the same, except for symmetric difference in the case ofm = n = 2. Let us start
with intersection.
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Lemma 4.1. Let K andL be non-returning regular languages over an alphabetΣ with sc(K) = m and
sc(L) = n, wherem,n ≥ 2. Thensc(K ∩ L) ≤ (m− 1)(n − 1) + 1, and the bound is tight if|Σ| ≥ 2.

Proof:
LetK andL be accepted by a non-returningm-state andn-state DFA, respectively. Let the state sets of
the two DFAs beQA andQB , and let the start states besA andsB, respectively. Construct the product
automaton forK ∩ L with the state setQA × QB. Since both DFAs are non-returning, in the product
automaton, all the states(sA, q) and(p, sB), except for the initial state(sA, sB), are unreachable. This
gives the upper bound.

To prove tightness, let

K = {(a+ b)w | w ∈ {a, b}∗ and|w|a ≥ m− 2},

L = {(a+ b)w | w ∈ {a, b}∗ and|w|b ≥ n− 2}.

The languagesK andL are accepted by the non-returning DFAs shown in Figure 1.

0 m−11 2 m−2
a, b a a a

b b b a, b

a

0 n−11 2 n−2
a, b b b b

a a a a, b

b

Figure 1. The binary non-returning witnesses for intersection meeting the bound(m− 1)(n− 1) + 1.

In the product automaton for the languageK∩L, the unique final state is(m−1, n−1). The product
automaton in the case ofm = 4 andn = 5 is shown in Figure 2. The state(1, 1) is reached from the
initial state(0, 0) by a. Every state(i, j) with 1 ≤ i ≤ m− 1 and1 ≤ j ≤ n− 1 is reached from(1, 1)
by ai−1bj−1. This proves the reachability of(m− 1)(n − 1) + 1 states.

Now let (i, j) and(k, ℓ) be two distinct states of the product automaton. Ifi < k, then the string
am−1−kbn is accepted from(k, ℓ) and rejected from(i, j). If j < ℓ, then the stringbn−1−ℓam is accepted
from (k, ℓ) and rejected from(i, j). This proves distinguishability. ⊓⊔

Now we are going to prove the tight bounds for union and difference. We use the lemma above, the
equalitiesK ∪ L = (Kc ∩Lc)c andK \L = K ∩ Lc, and the fact that the state complexity of a regular
language is the same as the state complexity of its complement.

Lemma 4.2. Let K andL be non-returning regular languages over an alphabetΣ with sc(K) = m and
sc(L) = n, wherem,n ≥ 2. Thensc(K ∪ L), sc(K \ L) ≤ (m− 1)(n− 1) + 1, and the bound is tight
if |Σ| ≥ 2.
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Figure 2. The product automaton for intersection of languages from Figure 1;m = 4, n = 5.

Proof:
We prove the upper bound in the same way as for intersection. To prove the tightness for union, consider
the languagesKc andLc, whereK andL are the binary witness languages for intersection described in
the proof of the previous lemma. The languagesKc andLc are non-returning with state complexitiesm
andn, respectively. SinceKc∪Lc = (K∩L)c, we havesc(Kc∪Lc) = (m−1)(n−1)+1. For difference,
we take the languagesK andLc. SinceK \Lc = K∩L, we havesc(K \Lc) = (m−1)(n−1)+1. ⊓⊔

Finally, we consider symmetric difference on non-returning regular languages. Here we must be
careful with the case ofm = n = 2.

Lemma 4.3. Let K andL be non-returning regular languages over an alphabetΣ with sc(K) = m
and sc(L) = n, wherem,n ≥ 2. If m = n = 2, thensc(K ⊕ L) = 1. Otherwise,sc(K ⊕ L) ≤
(m− 1)(n − 1) + 1, and the bound is tight if|Σ| ≥ 2.

Proof:
If a regular language over an alphabetΣ is non-returning, and has state complexity 2, then it is equal to λ
or ΣΣ∗. The symmetric difference of two such languages is the emptylanguage, so its state complexity
is 1.

Otherwise, we get the upper bound in the same way as for intersection. To prove tightness, we take
the same languages as for intersection. In the product automaton, the final states are(i, n − 1) with
1 ≤ i ≤ m−2 and(m−1, j) with 1 ≤ j ≤ n−2. The proof of reachability is the same as in the case of
intersection. Ifi < k then the stringam−1−kbn is rejected from(k, ℓ) and accepted from(i, j). If j < ℓ,
then the stringbn−1−ℓam is rejected from(k, ℓ) and accepted from(i, j). This completes the proof. ⊓⊔

Now we consider the unary case. We show that the upper bound(m− 1)(n− 1)+1 for intersection,
union, and difference can be met whenevergcd(m− 1, n − 1) = 1.
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Lemma 4.4. Let m,n ≥ 2 and◦ ∈ {∩,∪, \}. Let K andL be unary non-returning regular languages
with sc(K) = m andsc(L) = n. Thensc(K ◦ L) ≤ (m − 1)(n − 1) + 1, and the bound is tight if
gcd(m− 1, n − 1) = 1.

Proof:
The upper bound follows from the fact that all the states in the first row and the first column of the
product automaton are unreachable, except for the initial state.

To prove tightness, we first consider intersection. LetK = am−1(am−1)∗ andL = an−1(an−1)∗.
ThenK andL are non-returning withsc(K) = m andsc(L) = n. Sincegcd(m − 1, n − 1) = 1, we
haveK ∩ L = a(m−1)(n−1)(a(m−1)(n−1))∗. Thereforesc(K ∩ L) = (m− 1)(n − 1) + 1.

The same result for union and difference follows from the results for complementation and intersec-
tion, and and the equalitiesK ∪ L = (Kc ∩ Lc)c andK \ L = K ∩ Lc. ⊓⊔

Finally, consider symmetric difference on unary non-returning languages. The next lemma shows
that the upper bound on the state complexity of symmetric difference on unary non-returning languages
is (m − 1)(n − 1) wheneverm,n ≥ 3. We also prove that this bound is tight ifm − 1 andn − 1 are
relatively prime numbers.

Lemma 4.5. Let m,n ≥ 3. Let K andL be unary non-returning regular languages withsc(K) = m
andsc(L) = n. Thensc(K ⊕ L) ≤ (m− 1)(n − 1), and the bound is tight ifgcd(m− 1, n − 1) = 1.

Proof:
Let the languagesK andL be accepted by unary minimal non-returning deterministic finite automata
A = ({0, 1, . . . ,m−1}, {a}, δA, 0, FA) andB = ({0, 1, . . . , n−1}, {a}, δB , 0, FB), respectively. Since
A andB are non-returning, in the product automaton for symmetric difference, all states(0, q) and(q, 0)
are unreachable, except for the state(0, 0). This gives the upper bound(m− 1)(n − 1) + 1.

If δA(m− 1, a) ≥ 2 or δB(n− 1, a) ≥ 2, then at least one more state(1, p) or (q, 1) is unreachable
in the product automaton sincem,n ≥ 3. Hence the upper bound is(m− 1)(n − 1) in this case.

Now assume thatδA(m − 1, a) = 1 andδB(n − 1, a) = 1. SinceA andB are minimal, the states
0 andm− 1 of A, as well as the states0 andn − 1 of B, do not have the same finality [12, Lemma 1].
It follows that the states(0, 0) and(m − 1, n − 1) of the product automaton forK ⊕ L have the same
finality, and therefore can be merged. Thus, also in this case, we get the upper bound(m− 1)(n − 1).

To prove tightness, letgcd(m− 1, n− 1) = 1. Then by the Chinese Remainder Theorem, for every
integersi, j, there is a solutionx(i, j) to the following simultaneous congruences:

x(i, j) ≡ i (mod m− 1), (1)

x(i, j) ≡ j (mod n− 1). (2)

Let K = am−1(am−1)∗ andL = an−1(an−1)∗. ThenK andL are accepted by the unary non-
returning minimal automataA andB shown in Figure 3.

Construct the product automaton for the languageK⊕L. The initial state of the product automaton is
(sA, sB). The final states of the product automaton are(m−2, j) and(i, n−2), except for(m−2, n−2).
Let us show that all the states(i, j), where0 ≤ i ≤ m−2 and0 ≤ j ≤ n−2, are reachable and pairwise
distinguishable in the product automaton for the languageK ⊕ L.
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n−20 1 n−3sB a a a a a

m−20 1 m−3sA a a a a a

a

a

Figure 3. The unary non-returning witnesses for symmetric difference meeting the bound(m−1)(n−1);m,n ≥
3 andgcd(m− 1, n− 1) = 1.

Since we have

(sA, sB)
a
−→ (0, 0)

ax(i,j)
−−−−→ (i, j),

each state(i, j) is reachable; recall thatx(i, j) is the solution of (1) and (2).
Now, we prove distinguishability.
First, consider two final states in the last row of the subset automaton, that is, two states(m − 2, j)

and(m− 2, ℓ), where0 ≤ j < ℓ ≤ n− 3. Then we have

(m− 2, ℓ)
ax(0,n−2−ℓ)

−−−−−−−→ (m− 2, n− 2),

(m− 2, j)
ax(0,n−2−ℓ)

−−−−−−−→ (m− 2, n − 2− (ℓ− j)).

Hence the stringax(0,n−2−ℓ) is rejected from(m− 2, ℓ), but accepted from(m− 2, j). The case of two
final states in the last column of the product automaton is symmetric: two states(i, n−2) and(k, n−2),
where0 ≤ i < k ≤ m− 3, are distinguished byax(m−2−k,0).

Now, consider a final state(m− 2, j) in the last row and a final state(i, n− 2) in the last column of
the product automaton. Ifj ≤ n− 4, then we have

(m− 2, j)
ax(0,1)
−−−−→ (m− 2, j + 1),

(i, n − 2)
ax(0,1)
−−−−→ (i, 0).

Hence the stringax(0,1) is accepted from(m− 2, j), but rejected from(i, n− 2). If j = n− 3, then the
stringax(0,2) distinguishes the two states since we have

(m− 2, n− 3)
ax(0,2)
−−−−→ (m− 2, 0),

(i, n− 2)
ax(0,2)
−−−−→ (i, 1).

We have shown that final states of the product automaton are pairwise distinguishable.
Finally, consider two distinct non-final states(i, j) and(k, ℓ). By the stringax(m−2−i,n−3−j), the

state(i, j) goes to the accepting state(m − 2, n − 3). On the other hand, the state(k, ℓ) goes by
ax(m−2−i,n−3−j) either to a rejecting state, or to an accepting state different from (m − 2, n − 3). It
follows that(i, j) and(k, ℓ) are distinguishable. ⊓⊔
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The next theorem summarizes our results on Boolean operations.

Theorem 4.6. (Boolean Operations)Let m,n ≥ 2 and◦ ∈ {∩,∪, \,⊕}. Let f◦

k (m,n) be the state
complexity of the◦ operation on non-returning regular languages over ak-letter alphabet defined as
f◦

k (m,n) = max{sc(K ◦ L) | K,L ⊆ Σ∗, |Σ| = k, sc(K) = m, sc(L) = n, andK,L non-returning}.
Then

(i) if k ≥ 2 and◦ ∈ {∩,∪, \}, thenf◦

k (m,n) = (m− 1)(n − 1) + 1.

(ii ) if k ≥ 2, thenf⊕

k (m,n) =

{

1, if m = n = 2;

(m− 1)(n − 1) + 1, otherwise.

(iii ) if ◦ ∈ {∩,∪, \}, then
f◦
1 (m,n) ≤ (m− 1)(n − 1) + 1,
f◦
1 (m,n) = (m− 1)(n − 1) + 1 if gcd(m− 1, n − 1) = 1.

(iv) f⊕

1 (2, 2) = 1,
f⊕

1 (2, n) = n, wheren ≥ 3,
f⊕

1 (m, 2) = m, wherem ≥ 3,
f⊕

1 (m,n) ≤ (m− 1)(n − 1), wherem,n ≥ 3,
f⊕

1 (m,n) = (m− 1)(n − 1), wherem,n ≥ 3 andgcd(m− 1, n − 1) = 1.

Proof:
(i) The tight bounds for intersection, union, and difference for alphabets of at least two symbols are
given by Lemmas 4.1 and 4.2. (ii ) The tight bound for symmetric difference for alphabets of at least two
symbols is given by Lemma 4.3. (iii ) The tightness follows from Lemma 4.4. (iv) If m = n = 2, then
the languages are either{λ} or aa∗, and their symmetric difference is the empty language. Ifm = 2 and
n ≥ 3, then the upper bound is1 · (n− 1)+1, and it is met by the symmetric difference of the languages
aa∗ andan−1(an−2)∗. The case ofm ≥ 3 andn = 2 is symmetric. The upper bound in the case of
m,n ≥ 3, as well as its tightness, whenevergcd(m− 1, n − 1) = 1, is given by Lemma 4.5. ⊓⊔

5. Catenation

The state complexity of catenation on regular languages is given by the function

f(m,n) =

{

m, if m ≥ 1 andn = 1;

m2n − 2n−1, if m ≥ 1 andn ≥ 2.

and the worst case examples can be defined over a binary alphabet [1, 2, 23, 24]. In this section we give
the tight bound for catenation on non-returning languages.

We start with the case when the state complexity of the secondlanguage is two.

Lemma 5.1. Let m ≥ 2. Let K andL be non-returning regular languages over an alphabetΣ with
sc(K) = m andsc(L) = 2. Thensc(KL) ≤ m+ 1, and the bound is tight if|Σ| ≥ 1.
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Proof:
If L is a non-returning language over an alphabetΣ with sc(L) = 2, thenL = {λ} or L = ΣΣ∗.

If L = {λ}, thenKL = K, sosc(KL) = m.
If L = ΣΣ∗, thenKL = KΣΣ∗. LetA be a DFA forK. To get a DFA forKΣΣ∗ from the DFAA,

we add a new final statef which goes to itself on every symbol inΣ. Next, we remove all out-transitions
of all final states inA, and we add the transitions from every final state inA to statef on each symbol in
Σ. This gives the upper boundm+ 1.

For tightness, we consider the unary non-returning regularlanguagesK = {ai | i ≥ m − 1}
andL = aa∗ with sc(K) = m and sc(L) = 2. ThenKL = Kaa∗ = {ai | i ≥ m}, so we have
sc(KL) = m+ 1. ⊓⊔

The following lemma provides an upper bound on the state complexity of catenation on non-returning
regular languages in all the remaining cases.

Lemma 5.2. Let m ≥ 2 andn ≥ 3. LetK andL be non-returning languages over an alphabetΣ with
sc(K) = m andsc(L) = n. Thensc(KL) ≤ (m− 1)2n−1 + 1.

Proof:
LetA = (QA,Σ, δA, sA, FA) andB = (QB ,Σ, δB , sB, FB) be minimal non-returning DFAs forK and
L with m andn states, respectively.

Construct an NFAN for the languageKL from the DFAsA andB by adding a transition on every
symbola in Σ from every final state ofA to the stateδ(sB , a), and by omitting the statesB. The initial
state ofN is sA and the set of final states isFB . Moreover, the NFAN is non-returning.

Apply the subset construction to the NFAN . Since the automatonA is deterministic, every reachable
state of the subset automaton contains exactly one state of the DFAA and, possibly, some states of the
DFA B, except for the statesB. Moreover, the only subset containing the statesA is {sA}. It follows that
the subset automaton has at most(m− 1)2n−1 + 1 reachable states, which proves the upper bound.⊓⊔

Now we prove that the upper bound given by Lemma 5.2 is tight. First, we consider the case of
m = 2 andn ≥ 3, and prove the tightness of the bound2n−1 + 1. Notice that we need a growing
alphabet in this case.

Lemma 5.3. Let n ≥ 3. There exist non-returning regular languagesK andL over an alphabetΣ with
|Σ| = n− 1 such thatsc(K) = 2, sc(L) = n, andsc(KL) = 2n−1 + 1. The bound2n−1 + 1 cannot be
met for smaller alphabets.

Proof:
Letn ≥ 3 andΣ = {a0, a1, . . . , an−2}. LetK = ΣΣ∗. Then the languageK is accepted by the minimal
two-state non-returning DFAA = ({sA, q0},Σ, sA, δA, {q0}), in whichδA(sA, a) = δA(q0, a) = q0 for
eacha in Σ.

Next, we consider the regular languageL accepted by the minimaln-state non-returning DFAB =
({sB , 0, 1, . . . , n − 2},Σ, δ, sB , {n − 2}), in which

δB(sB , ai) = i,
δB(i, a0) = (i+ 1) mod (n− 1) and
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δB(i, aj) = i,
for i = 0, 1, . . . , n − 2 andj = 1, 2, . . . , n − 2, that is, the initial statesB goes to statei on symbolai,
there is a cycle(0, 1, . . . , n − 2) on symbola0, and each statei goes to itself on symbolaj with j ≥ 1.
The DFAsA andB are shown in Figure 4.

sB n−20 1 n−3
a0 a0

Σ \ {a0} Σ \ {a0} Σ \ {a0}

a0 a0 a0

a0
a1

an−3

an−2

Σ

Σ

sA q0

Σ \ {a0}

Figure 4. The non-returning witnesses for catenation meeting the bound2n−1 + 1; m = 2, n ≥ 3, andΣ =
{a0, a1, . . . , an−2}.

Construct an NFAN for the languageKL from DFAsA andB by adding the transitions on each
symbolai from stateq0 to statei, and by omitting the statesB. The initial state ofN is sA, and the final
state isn− 2. Let us show that the subset automaton of the NFAN has2n−1 +1 reachable and pairwise
distinguishable states.

The initial state of the subset automaton is{sA}, and it goes to state{q0} by a0. Next, notice
that each set{q0} ∪ {0, i2, . . . , ik}, where1 ≤ i2 < · · · < ik ≤ n − 2, is reached from the set
{q0} ∪ {i2 − 1, . . . , ik − 1} by a0, and each set{q0} ∪ {i1, i2, . . . , ik}, where1 ≤ i1 < i2 < · · · <
ik ≤ n− 2, is reached from the set{q0}∪ {i2, . . . , ik} by ai1. This proves the reachability of all the sets
{q0} ∪ S with S ⊆ {0, 1, . . . , n− 2} by induction.

Now we prove distinguishability. The initial state{sA} and a state{q0} ∪ S can be distinguished by
an−1
0 which is accepted byN from q0 but rejected fromsA. Two distinct states{q0} ∪ S and{q0} ∪ T

differ in a statej with 0 ≤ j ≤ n− 2, and the stringan−2−j
0 distinguishes the two states.

Finally, let us show that the bound2n−1 + 1 cannot be met for smaller alphabets. Notice that each
reachable stateq0 ∪ S, whereS is a non-empty subset of{0, 1, . . . , n − 2}, must contain at least one of
the statesδB(sB, a) with a in Σ. If |Σ| < n − 2, then the set{0, 1, . . . , n − 2} \ {δB(sB , a) | a ∈ Σ}
is non-empty, and no subset of this set is reachable in the subset automaton of the NFAN . Our proof is
complete. ⊓⊔

Our next result shows that the upper bound given by Lemma 5.2 is tight for alphabets with at least
three symbols in the case ofm,n ≥ 3 .

Lemma 5.4. Letm,n ≥ 3. There exist ternary non-returning regular languagesK andL with sc(K) =
m andsc(L) = n, and such thatsc(KL) = (m− 1)2n−1 + 1.

Proof:
Let m,n ≥ 3. Let K andL be the ternary non-returning languages accepted by the DFAsA andB
shown in Figure 5.
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sA qm−2q0 q1 qm−3

a, b, c a a a

a

b, c b, c b, c b, c

a

sB n−20 1 n−3
a, b, c b b, c b, c

b, c

a, c a a a

b, c

Figure 5. The ternary non-returning witnesses for catenation meeting the bound(m− 1)2n−1 + 1; m,n ≥ 3.

Construct an NFAN for KL from the DFAsA andB by adding transitions ona, b, c from the state
qm−2 to state 0, and by omitting statesB. The initial state ofN is sA, and the unique final state is
n−2. Let us show that the subset automaton of the NFAN has(m−1)2n−1+1 reachable and pairwise
distinguishable states.

We prove by induction that every set{qi, j1, j2, . . . , jk}, where0 ≤ i ≤ m − 2 and0 ≤ j1 < j2 <
· · · < jk ≤ n− 2, is reachable from the initial state{sA}.

The basis,k = 0, holds since{qi} is reached from{sA} by ai+1. Let 1 ≤ k ≤ n − 2, and assume
that the claim holds fork − 1. LetS = {qi, j1, j2, . . . , jk}. Consider the following three cases:

(i) i = 0 andj1 = 0. LetS′ = {qm−2, j2, . . . , jk}. ThenS′ is reachable by the induction hypothesis.
SinceS′ goes toS by a, the setS is reachable;

(ii ) i = 0 andj1 ≥ 1. Let S′ = {q0, 0, j2 − j1, . . . , jk − j1}. ThenS′ is reachable as shown in case
(i), and goes toS by bj1;

(iii ) i ≥ 1. Let S′ = {q0, j1, j2, . . . , jk}. ThenS′ is reachable as shown in cases (i) and (ii ), and goes
to S by ai.

To prove distinguishability, let0 ≤ j ≤ n− 2 and0 ≤ i ≤ m− 3. The stringbn−2−j is accepted by
the NFAN only from the statej, the stringcnb·bn−2 is accepted only fromqm−2, and the stringam−2−i ·
cnb · bn−2 is accepted only fromqi. Moreover, the empty set is unreachable in the subset automaton. By
Proposition 2.3, all the reachable states of the subset automaton ofN are pairwise distinguishable. ⊓⊔

We did some computations, and it seems that the upper bound cannot be met in the binary case.
The next theorem provides a lower bound on the state complexity of catenation on binary non-returning
languages. However, our computations show that this lower bound can be exceeded.

Lemma 5.5. Let m,n ≥ 3. There exist binary non-returning regular languagesK andL with sc(K) =
m andsc(L) = n such thatsc(KL) ≥ (m− 2)2n−1 + 2n−2 + 2.



Eom et al. / State Complexity of Basic Operations on Non-Returning Regular Languages 173

Proof:
Let m,n ≥ 3. Consider the languagesK andL accepted by binary minimal non-returning DFAsA =
(QA, {a, b}, δA, sA, {qm−2}) andB = (QB , {a, b}, δB , sB , {n− 2}) shown in Figure 6, in which

QA = {sA} ∪ {q0, q1, . . . , qm−2},
QB = {sB} ∪ {0, 1, . . . , n− 2},

and the transition functionsδA andδB are defined as follows:

δA(sA, a) = δA(sA, b) = q0,
δA(qi, a) = q(i+1) mod (m−1),
δA(qi, b) = qi,

δB(sB, a) = δB(sB, b) = 0,
δB(j, a) = (j + 1) mod (n − 1),
δB(0, b) = 0,
δB(j, b) = j + 1, if 1 ≤ j ≤ n− 3,
δB(n− 2, b) = 0.

sA qm−2q0 q1 qm−3

a, b a a a

a

b b b b

a

sB n−20 1 n−3
a, b a a, b a, b

a, b

b

a, b

Figure 6. The DFAs of binary non-returning languagesK andL with sc(KL) ≥ (m− 2)2n−1 + 2n−2 + 2.

Construct an NFAN for the languageKL from the two DFAsA andB by adding the transitions
on a andb from the stateqm−2 to the state0, and by omitting the statesB. The initial state ofN is sA
and the unique final state is the staten − 2. Let us show that the subset automaton of the NFAN has
(m− 2)2n−1 + 2n−2 + 2 reachable and pairwise distinguishable states.

We prove, by induction on the size of reachable sets, that{sA}, {q0}, and all sets{qi} ∪ T , where
0 ≤ i ≤ m− 2 andT ⊆ {0, 1, . . . , n− 2}, and such that ifi = 0 then0 ∈ T , are reachable in the subset
automaton. Each singleton set{qi} is reached from the initial state{sA} by ai+1.

Let 1 ≤ k ≤ n − 2, and assume that the claim holds fork. Let S = {qi, j1, j2, . . . , jk} be a set of
sizek + 1 with 0 ≤ j1 < j2 < · · · < jk ≤ n− 2. Consider the following six cases:
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(i) i = 0 andj1 = 0. ThenS is reached from{qm−2, j2 − 1, . . . , jk − 1} by a, and the latter set is
reachable by the induction hypothesis;

(ii ) i = 1, j1 = 0 and|S| = 2; namely,S = {q1, 0}. ThenS is reached from{q0, 0} by abn−2 and the
latter set is reachable by (i);

(iii ) i = 1, j1 = 0, j2 = 1. ThenS is reached from{q0, 0, j3 − 1, . . . , jk − 1, n − 2} by a, and the
latter set is reachable by (i);

(iv) i = 1, j1 = 0, andj2 ≥ 2. ThenS is reached from{q1, 0, 1, j3 − j2 + 1, . . . , jk − j2 + 1} by
bj2−1, and the latter set is reachable by (iii );

(v) i = 1 andj1 ≥ 1. ThenS is reached from{q0, 0, j2 − j1, . . . , jk − j1} by abj1−1, and the latter
set is reachable by (i);

(vi) i ≥ 2. ThenS is reached from{q1, (j1 − i+1) mod (n − 1), . . . , (jk − i+1) mod (n− 1)} by
ai−1, and the latter set is reachable by (ii )-(v).

This proves the reachability of2 + 2n−2 + (m− 2)2n−1 subsets.
To prove distinguishability, let us show that we can assign astringwq to each stateq of N , except for

the initial state, such that the stringwq is accepted byN only from the stateq. Notice that the following
strings are accepted byN only from the corresponding states:

(i) the stringan−2−j, where0 ≤ j ≤ n− 2, is accepted by the NFAN only from the statej,

(ii ) the stringbna · an−2 is accepted only fromqm−2, and

(iii ) the stringam−2−i · bna · an−2, where0 ≤ i ≤ m− 3, is accepted only from the stateqi.

The empty set is unreachable in the subset automaton of the NFA N . By Proposition 2.3, all reachable
subsets of the subset automaton are pairwise distinguishable. ⊓⊔

Now we consider the unary case. The upper bound on the state complexity of catenation on unary
regular languages ismn, and it can be met ifgcd(m,n) = 1 [2, Theorem 5.4]. We show that for non-
returning languages, the bound(m− 1)(n − 1) + 2 can be met ifm− 1 andn− 1 are relatively prime
numbers.

Lemma 5.6. Let m,n ≥ 2 andgcd(m − 1, n − 1) = 1. There exist unary non-returning languagesK
andL with sc(K) = m andsc(L) = n such thatsc(KL) = (m− 1)(n − 1) + 2.

Proof:
Consider unary non-returning languagesK = am−1(am−1)∗ andL = an−1(an−1)∗. The languagesK
andL are accepted by unary minimal non-returning DFAs ofm andn states, respectively. The catenation
of K andL is the language

KL = {ai | i = k(m− 1) + ℓ(n− 1) andk, ℓ > 0}.

The largest integer that cannot be expressed ask(m− 1) + ℓ(n− 1) with k, ℓ > 0 is (m− 1)(n− 1) [2,
Lemma 5.1]. It follows thatsc(KL) = (m− 1)(n − 1) + 2. ⊓⊔
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The following theorem summarizes the results of this section.

Theorem 5.7. (Catenation)Let m,n ≥ 2. Let fk(m,n) be the state complexity of the catenation
operation on non-returning languages over ak-letter alphabet defined as

fk(m,n) = max{sc(KL) | K,L ⊆ Σ∗, |Σ| = k, sc(K) = m, sc(L) = n, andK,L non-returning}.
Then

(i) fk(m,n) =











m+ 1, if m ≥ 2, n = 2, andk ≥ 1;

2n−1 + 1, if m = 2, n ≥ 3, andk ≥ n− 1;

(m− 1)2n−1 + 1, if m,n, k ≥ 3,

(ii ) fk(2, n) < 2n−1 + 1 if n ≥ 3 andk < n− 1,

(iii ) (m− 2)2n−1 + 2n−2 + 2 ≤ f2(m,n) ≤ (m− 1)2n−1 + 1 if m,n ≥ 3,

(iv) f1(m,n) ≤ mn, andf1(m,n) ≥ (m− 1)(n − 1) + 2 if gcd(m− 1, n − 1) = 1.

Proof:
The tight bounds in (i) are given by Lemmas 5.1-5.4. The result in (ii ) is proved in Lemma 5.3. The
lower bound in (iii ) is given by Lemma 5.5, and the upper bound follows from the fact thatf2(m,n) ≤
f3(m,n). The upper bound in (iv) is the same as in the general case of regular languages, and the lower
bound is given by Lemma 5.6. ⊓⊔

As for the binary case, our computations show that the upper bound(m− 1)2n−1 +1 cannot be met,
while our lower bound(m− 2)2n−1 + 2n−2 + 2 can be exceeded.

Table 1. Tight bounds computations for catenation on binarynon-returning languages.

Case (m− 2)2n−1 + 2n−2 + 2 sc(KL) (m− 1)2n−1 + 1

m = 3, n = 3 8 9 9

m = 3, n = 4 14 14 17

m = 4, n = 4 22 22 25

m = 4, n = 5 42 46 49

m = 5, n = 5 58 62 65

6. Reversal

The tight bound on the state complexity of the reversal operation on regular languages is2n with worst-
case examples defined over a binary alphabet [2, 25, 26, 27]. The aim of this section is to show that for
non-returning languages, the tight bound is the same. However, to prove tightness, we need a three-letter
alphabet.

Lemma 6.1. LetL be a non-returning language over an alphabetΣ with sc(L) = n, wheren ≥ 3. Then
sc(LR) ≤ 2n, and the bound is tight if|Σ| ≥ 3.
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Proof:
The upper bound2n is the same as in the general case of regular languages. To prove tightness, consider
the ternary non-returning language accepted by the DFAA shown in Figure 7, in which the transitions
are defined as follows. Each statei with 2 ≤ i ≤ n− 1 goes to statei− 1 on symbolsa, b, andc. State
1 goes to state0 on symbolsa andc, and it goes to staten− 2 on symbolb. The state0 goes to itself on
symbolsa andb, and it does to staten− 2 on symbolc.

n− 1 0n− 2 n− 3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Figure 7. The ternary non-returning witness for reversal meeting the bound2n.

Construct the reverseAR of the DFAA by making state0 initial and staten−1 final, and by reversing
all the transitions. The NFAAR is shown in Figure 8. Let us show that the subset automaton of the NFA
AR has2n reachable states.

The initial state is{0}, and each singleton set{i} with 1 ≤ i ≤ n− 2 is reached from{0} by ci. The
set{n− 1} is reached from{n− 2} by a, and the empty set is reached from{n − 1} by a.

n−1 0n−2 n−3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Figure 8. The reverse of the DFA from Figure 7.

Let 2 ≤ k ≤ n, and assume that every subset of{0, 1, . . . , n − 1} of sizek − 1 is reachable. Let
S = {i1, i2, . . . , ik} be a set of sizek with 0 ≤ i1 < i2 < · · · < ik ≤ n − 1. Consider the following
four cases:

(i) ik ≤ n− 2. Then the set{0, i3 − i2, . . . , ik − i2} is reachable by the induction hypothesis. Since

we have{0, i3 − i2, . . . , ik − i2}
a
−→ {0, 1, i3 − i2 + 1, . . . , ik − i2 + 1}

bi2−i1−1

−−−−−→

{0, i2 − i1, i3 − i1, . . . , ik − i1}
ci1
−−→ {i1, i2, . . . , ik} = S, the setS is reachable.

(ii ) ik = n− 1 andi1 = 0. ThenS is reached from{i2 − 1, . . . , ik−1 − 1, n− 2} by c, and the latter
set is reachable by the induction hypothesis.

(iii ) ik = n− 1 andi1 = 1. ThenS is reached from{i2 − 1, . . . , ik−1 − 1, n− 2} by b, and the latter
set is reachable by the induction hypothesis.

(iv) ik = n− 1 andi1 ≥ 2. ThenS is reached from{i1 − 1, . . . , ik−1− 1, n− 2} by a, and the latter
set is reachable by (i).

By Proposition 2.2, all states of the subset automaton are pairwise distinguishable. ⊓⊔
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The next result provides a lower bound in the binary case.

Lemma 6.2. Let n ≥ 3. There exists a binary non-returning languageL such thatsc(L) = n and
sc(LR) = 2n−2.

Proof:
LetL be the binary language accepted by the minimal non-returning automaton shown in Figure 9. Then
LR = (a+ b)∗a(a+ b)n−3, and it is well-known that the state complexity ofLR is 2n−2. ⊓⊔

n− 2 0n− 3 n− 4 1
a, b a, b a, b aa, b

a, b a, b

n− 1

b

Figure 9. The DFA of a binary non-returning languageL with sc(LR) = 2n−2.

Taking into account that the reverse of every unary languageis the same language, and that{λ}R =
{λ} and (ΣΣ∗)R = ΣΣ∗, we can summarize our results on the reversal operation on non-returning
languages in the following theorem.

Theorem 6.3. (Reversal)Letn ≥ 3. Letfk(n) be the state complexity of the reversal operation on non-
returning regular languages over ak-letter alphabet defined asfk(n) = max{sc(LR) | L ⊆ Σ∗, |Σ| =
k, sc(L) = n, andL is non-returning}. Then

(i) if k ≥ 3 thenfk(n) =

{

2, if n = 2;

2n, if n ≥ 3,

(ii ) 2n−2 ≤ f2(n) ≤ 2n,

(iii ) f1(n) = n.

As for the binary case, our computations again show that the upper bound2n cannot be met, while
our lower bound2n−2 can be exceeded.

7. Kleene Star

The state complexity of Kleene star on regular languages is2n−1 + 2n−2 for an alphabet of at least two
symbols, and it is(n − 1)2 + 1 in the unary case [2]. Here we show that in the case of non-returning
languages over an alphabet of at least two symbols, the tightbound is2n−1. In the unary case, we get
the tight bound(n− 2)2 + 2.

Lemma 7.1. Let L be a non-returning regular language over an alphabetΣ with sc(L) = n, where
n ≥ 2. Thensc(L∗) ≤ 2n−1, and the bound is tight if|Σ| ≥ 2.



178 Eom et al. / State Complexity of Basic Operations on Non-Returning Regular Languages

Table 2. Tight bounds computations for reversal on binary non-returning languages.

Case 2n−2 sc(LR) 2n

n = 3 2 7 8

n = 4 4 13 16

n = 5 8 25 32

n = 6 16 47 64

n = 7 32 89 128

Proof:
Let A = (Q,Σ, δ, s, F ) be a minimal non-returning automaton forL. Construct an NFAN for the
languageL∗ from the DFAA by making the initial states final, and by adding a transition on every
symbol a from every final state to the stateδ(s, a). The NFAN is non-returning, and therefore the
subset automaton ofN has at most2n−1 +1 reachable states. SinceA is a complete DFA, the empty set
is unreachable in the subset automaton. This gives the upperbound2n−1.

To prove tightness, consider the binary language accepted by the DFAA shown in Figure 10, in
which the initial states goes to state0 by both a and b, state0 goes to itself byb, there is a cycle
(0, 1, . . . , n− 2) on symbola, and a cycle(1, 2, . . . , n− 1) on symbolb. If n = 2, then the final state0
goes to itself by botha andb, so the automaton accepts the language{λ}.

Construct an NFAN for the languageL∗ from the DFAA by making the initial states final, and by
adding the transition onb from staten− 2 to state0.

s n−21 2 n−3a, b a, b a, b a, ba, b0 a

b

a

b

Figure 10. The binary non-returning witness for Kleene starmeeting the bound2n−1.

Let us prove by induction on the size of subsets that every non-empty subset of{0, 1, . . . , n − 2}
is reachable in the subset automaton of the NFAN . Every singleton set{i} is reached from the initial
state{s} by ai+1. Let 2 ≤ k ≤ n − 1, and assume that every subset of sizek − 1 is reachable. Let
S = {i1, i2, . . . , ik} be a set of sizek with 0 ≤ i1 < i2 < · · · < ik ≤ n − 2. Consider the following
three cases:

(i) i1 = 0 andi2 = 1. ThenS is reached from the set{i3 − 1, . . . , ik − 1, n − 2} by b, and the latter
set is reachable by the induction hypothesis;

(ii ) i1 = 0 andi2 ≥ 2. ThenS is reached from{0, 1, i3 − i2 + 1, . . . , ik − i2 + 1} by bi2−1, and the
latter set is reachable by (i);
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(iii ) i1 ≥ 1. ThenS is reached from{0, i2 − i1, . . . , ik − i1} by ai1, and the latter set is reachable by
(i) and (ii ).

To prove distinguishability, notice that for eachi with 0 ≤ i ≤ n− 2, the NFAN accepts the string
an−2−i only from the statei. Moreover, the empty set is unreachable. By Proposition 2.3, all states of
the subset automaton are pairwise distinguishable. ⊓⊔

Now we consider the unary case. The state complexity of Kleene star on unary regular languages is
(n− 1)2 +1 [2]. Our aim is to show that the tight bound on the state complexity of Kleene star on unary
non-returning regular languages is(n− 2)2 + 2.

Lemma 7.2. Let L be a unary non-returning regular language withsc(L) = n, wheren ≥ 2. Then
sc(L∗) ≤ (n− 2)2 + 2, and the bound is tight.

Proof:
It has been shown by̌Cevorová [28, Theorems 7 and 8] that ifn ≥ 6, then in the range from(n−2)2+2
to (n− 1)2 +1, only the values(n− 2)2 +2, n2 − 3n+2, n2 − 3n+3, and(n− 1)2 +1 are attainable
by the state complexity of the star of a unaryn-state DFA language. She also proved that among these
values, only(n − 2)2 + 2 is met by a non-returning language. The DFA of such a languageis shown in
Figure 11.

If 2 ≤ n ≤ 5, then the direct computations show that the upper bound is(n − 2)2 + 2. This
upper bound is met by the unary non-returning language accepted by the DFA shown in Figure 11 if
n ∈ {3, 4, 5}, and by the language{λ} if n = 2 [29]. ⊓⊔

n−11 2 n−20
a a a a a

a

Figure 11. The unary non-returning witness for Kleene star meeting the bound(n− 2)2 + 2.

The next theorem summarizes our results on the Kleene star operation.

Theorem 7.3. (Kleene Star)Letn ≥ 2. Letfk(n) be the state complexity of the star operation on non-
returning regular languages over ak-letter alphabet defined asfk(n) = max{sc(L∗) | L ⊆ Σ∗, |Σ| =
k, sc(L) = n, andL is non-returning}. Then

(i) fk(n) = 2n−1 if k ≥ 2,

(ii) f1(n) = (n− 2)2 + 2.

8. Conclusions

The state complexity of subfamilies of regular languages, such as finite languages, unary languages,
prefix-free or suffix-free regular languages, is often smaller than the state complexity of regular lan-
guages [5, 6, 7, 15, 16, 30]. We have considered another subfamily of regular languages, non-returning
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regular languages. Note that when a minimal DFAA is non-returning, then we say that the language
L(A) is non-returning.

The non-returning property is a necessary condition for a DFA to accept a suffix-free regular lan-
guage, but it is not sufficient [16]. We notice that a suffix-free DFA always has a sink state whereas a
non-returning DFA may not have any sink state. Based on theseobservations, we have examined non-
returning DFAs and established the state complexities of some basic operations for non-returning regular
languages.

Table 3. Comparison table between the state complexity of basic operations on suffix-free [16, 30, 31], non-
returning, and general regular languages [1, 2, 22, 23, 26].

operation suffix-free |Σ| non-returning |Σ| general |Σ|

Lc n 1 n 1 n 1

K ∪ L mn− (m+ n− 2) 2 mn− (m+ n− 2) 2 mn 2

K ∩ L mn− 2(m+ n− 3) 2 mn− (m+ n− 2) 2 mn 2

K \ L mn− (m+ 2n− 4) 2 mn− (m+ n− 2) 2 mn 2

K ⊕ L mn− (m+ n− 2) 2 mn− (m+ n− 2) 2 mn 2

L∗ 2n−2 + 1 2 2n−1 2 3/4 · 2n 2

LR 2n−2 + 1 3 2n 3 2n 2

K · L (m− 1)2n−2 + 1 3 (m− 1)2n−1 + 1 3 (2m− 1)2n−1 2

Our results are usually smaller than the state complexitiesfor general regular languages and larger
than the state complexities for suffix-free regular languages as summarized in Table 3, where we give
also the size of an alphabet used for defining worst-case examples.

Table 4. The state complexity of basic operations on binary and unary non-returning regular languages.

operation binary non-returning unary non-returning

Lc n n

K ∪ L mn− (m+ n− 2) mn− (m+ n− 2) if gcd(m− 1, n − 1) = 1

K ∩ L mn− (m+ n− 2) mn− (m+ n− 2) if gcd(m− 1, n − 1) = 1

K \ L mn− (m+ n− 2) mn− (m+ n− 2) if gcd(m− 1, n − 1) = 1

K ⊕ L mn− (m+ n− 2) mn− (m+ n− 1) if gcd(m− 1, n − 1) = 1

L∗ 2n−1 (n− 2)2 + 2

LR ≥ 2n−2 n

K · L ≥ (2m− 3)2n−2 + 2 ≤ mn

≥ mn− (m+ n− 3) if gcd(m− 1, n − 1) = 1

Notice that our witnesses for reversal and catenation are defined over a three-letter alphabet. We
conjecture that the upper bounds2n and (m − 1)2n−1 + 1 for reversal and catenation, respectively,
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cannon be met by any binary non-returning languages. However, as shown in Table 4, we are still able
to get exponential lower bounds in the binary case. To get tight bounds for reversal and catenation on
binary non-returning languages seems to be a very hard problem. Table 4 also summarizes our results in
the unary case.
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