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Abstract. We consider the state complexity of basic operations onreturning regular languages.
For a non-returning minimal DFA, the start state does noelaw in-transitions. We establish
the precise state complexity of four Boolean operationgfurintersection, difference, symmetric
difference), catenation, reverse, and Kleene-star forneturning regular languages. Our results are
usually smaller than the state complexities for generalleeganguages and larger than the state
complexities for suffix-free regular languages. In the cakeatenation and reversal, we define
witness languages over a ternary alphabet. Then we prawicky bounds for a binary alphabet. For
every operation, we also study the unary case.
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1. Introduction

Given a regular languagg, researchers often use the number of states in the mininetndigistic
finite-state automaton (DFA) fak to represent the complexity df. Based on this notion, the state
complexity of an operation for regular languages is defiretha number of states that are necessary
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and sulfficient in the worst-case for the minimal DFA to acdbptlanguage resulting from the operation,
considered as a function of the state complexities of opkstan

Maslov [1] provided, without giving proofs, the state coepty of union, catenation, and star, and
later Yu et al. [2] investigated the state complexity furtfghe state complexity of an operation is calcu-
lated based on the structural properties of input regulaguages and a given operation. Recently, due
to large amount of memory, fast CPUs and massive data size;, amgolications using regular languages
require finite-state automata (FAs) of very large size. Tinkes the estimated upper bound of the state
complexity useful in practice since it helps to manage resssuefficiently. Moreover, it is a challenging
guest to verify whether or not an estimated upper bound caadmhed.

Yu [3] gave a comprehensive survey of the state complexitegiilar languages. Salomaa et al. [4]
studied classes of languages, for which the reverse operegaches the exponential upper bound. As
special cases of the state complexity, researchers exdittiastate complexity of finite languages [5, 6],
the state complexity of unary language operations [7] aadhtindeterministic descriptional complexity
of regular languages [8]. There are several other resuttsrespect to the state complexity of different
operations [9, 10, 11, 12, 13, 14].

For regular language codes, which preserve certain stalgroperties in the corresponding minimal
DFAs, Han et al. [15] studied the state complexity of prefeefregular languages. Similarly, based on
suffix-freeness, Han and Salomaa [16] looked at the statlesity of suffix-free regular languages.
Note that a prefix-free minimal DFA has a single final state alhdut-transitions of the final state go
to the sink state [17]. Moreover, this property is the neagsand sufficient condition for a minimal
DFA A to be prefix-free; namelyL(A) is prefix-free. For a suffix-free minimal DFA, the start state
does not have any in-transitions [16]. A DFA with this prdges called non-returning. However, this
non-returning property is only a necessary condition foriaimmal DFA to be suffix-free, but it is not
sufficient. This implies that all subfamilies of suffix-freegular languages— such as bifix-, infix-, or
outfix-free regular languages—have the non-returning gntgpNote that finite languages also preserve
this property. In addition, some DFAs in model checking eyst are non-returning as well. These DFAs
start with a specific pre-condition in model checking; orteytread the pre-condition at the start state,
they never visit the start state again in the remaining m®c€hese observations intrigue us to investigate
DFAs with non-returning property and the state complexitgasic operations on languages accepted by
non-returning DFAs. Notice that the state complexity ofratiens on fundamental subfamilies of the
regular languages can provide valuable insights on coiumscbetween restrictions placed on language
definitions and descriptional complexity.

We start with an observation that a non-returning languagkita complement have the same com-
plexity. We get the tight boun@in — 1)(n — 1) + 1 for four Boolean operations (union, intersection,
difference, symmetric difference). To prove tightness,use a binary alphabet. We also show that this
bound is tight in the unary casert — 1 andn — 1 are relatively prime numbers, except for symmetric
difference, where the tight bound(is: — 1)(n — 1) if m — 1 andn — 1 are relatively prime.

In the case of catenation, we get the tight boynd— 1)2”—1 + 1, and our witnesses are defined
over a ternary alphabet. In the binary case, we are still @bteove an exponential lower bourtgh —
2)2n—1 4 2n=2 4 2. For catenation on unary non-returning languages, we geppar boundnn, and
alower boundm — 1)(n — 1) 4+ 2 if m — 1 andn — 1 are relatively prime.

We next study the reversal operation on non-returning laggs. Here we get the tight bou®
which is the same as in the general case of regular langublpegever, to define worst-case examples,
we use a ternary alphabet, while in the general case, thestehéxary witness languages. We conjecture
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that the boun@™ cannot be met by any binary non-returning language. On ther dtand, we still have
an exponential lower bour2l—2 in the binary case. The reversal operation on unary languiagevial
since the reversal of any unary language is the same language

We conclude our paper with the Kleene star operation. Wehgeight bound” ! for any alphabet
with at least two symbols. Then we show that in the unary dasetight bound ign — 2)? + 2. All
our results are usually less than the state complexitiegéoeral regular languages and greater than the
state complexities for suffix-free regular languages.

In Section 2, we define some basic notions and prove prelmirsults. Then we formally define
non-returning regular languages. We prove the tight boondbke state complexity of complementation,
Boolean operations, catenation, reversal, and Kleeneirstdections 3, 4, 5, 6, and 7, respectively.
We summarize the state complexity results and compare thiémthe regular language case and the
suffix-free case in Section 8.

2. Preliminaries

Let ¥ denote a finite alphabet of characters, aifddenote the set of all strings ovEr The size|X| of

Y is the number of characters i A language ovek is any subset oE*. The symbol) denotes the
empty language and the symbobenotes the null string. Létv|, be the number of appearances in a
stringw. For stringse, y and z, we say thaty is asuffixof z if z = xy. We define a languagg to be
suffix-free if for any two distinct strings andy in L, z is not a suffix ofy. For a stringz, let2? be the
reverse ofr and for a languagé, we denotel.” = {2 | 2z € L}.

A DFA A is specified by a tuplé@, >, 0, s, F'), where( is a finite set of statesy is an input
alphabetd : @ x ¥ — @ is a transition functions € @ is the start state anf C (@ is a set of final
states. Thestate complexityf a regular languagé, sc(L), is defined to be the number of states of the
minimal DFA recognizingL.

Given a DFA A, we assume thatl is complete; therefored may have a sink state. For a transi-
tion 6(p,a) = ¢ in A, we say thap has anout-transitionandq has anin-transition We say that4 is
non-returningif the start state ofA does not have any in-transitions. We define a regular largtmbe
anon-returning regular languagi its minimal DFA is non-returning.

A nondeterministic finite automaton (NFA) is a tupglé = (Q, X, d, Qo, F') where@, X, F are as in
a DFA, Q is the set of start states, afdQ x ¥ — 29 is the transition function. Every NFAZ can be
converted to an equivalent DFN’ = (29, %, ', Qq, F') by the subset construction. We call the DFA
M’ the subset automatoaf the NFA M.

For complete background knowledge in automata theory, fee te the textbooks [18, 19, 20]. To
conclude this section let us state some preliminary rethdtswe will use later throughout the paper.

Proposition 2.1. Let V be an NFA such that for every stajethere exists a string, accepted by the
NFA N from stateg and rejected from any other state. Then all states of theesalbéomaton ofv are
pairwise distinguishable.

Proof:

Let S andT be two distinct subsets of the subset automaton. Then, wiithes of generality, there is a
stateg of N such thay € S andq ¢ T'. Then the stringy, is accepted by the subset automaton frfsm
and rejected front". O
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The following well-known observation allows us to avoid fh®of of distinguishability in the case
of reverse. It can be easily proved using Proposition 2.d,fanthe sake of completeness, we present
the proof here.

Proposition 2.2. ([21])
All states of the subset automaton of the reverse of a mindRa&l are pairwise distinguishable.

Proof:

Let A be a minimal DFA. Since every state 4fis reachable, for every stajef the NFAAZ, there exists

a stringw, that is accepted byl”* from ¢. SinceA is deterministic, the string), cannot be accepted by
AR from any other state. Hence the NEX® satisfies the condition of Proposition 2.1, and therefdre al
states of the subset automaton4df are pairwise distinguishable. O

If Vis a non-returning NFA with the state sgtand the initial state, then the only reachable subset
of the subset automaton &f containing the state is {s}. If, moreover, the empty set is unreachable
in the subset automaton, then two distinct subsets of theeswutomaton must differ in a state from
Q \ {s}. Hence a sufficient condition for distinguishability in sua case is as follows.

Proposition 2.3. Let N = (Q, X, 4, s, F') be a non-returning NFA such that the empty set is unreachable
in the corresponding subset automaton. Assume that foy stateg in @) \ {s}, there exists a string,
accepted byV only from ¢. Then all states of the subset automatoVodire pairwise distinguishable.

3. Complement

Let us start with the complementation operation on nonkngtg languages. IL is a language over an
alphabet, then the complement df is the languagd.© = ¥* \ L. To get a DFA for the complement
of a given regular language, we only need to interchange tla¢ dind non-final states in a DFA for the
given language. Formally, if a regular languabés accepted by a DFM = (Q, X%, 4, s, F'), then the
languageL® is accepted by the DFA° = (@, X, 4, s,Q \ F). Moreover, if A is minimal, thenA¢ is
minimal as well. It follows that the state complexity of a uéay language and its complement is the
same. Next, notice that if a DFA is non-returning, then the DFA*€ is also non-returning. Hence we
have the following result.

Theorem 3.1. Let L be a non-returning regular language. Thefl.) = sc(L¢).

4. Boolean Operations

Now we consider the following four Boolean operations: iigéetion, union, difference, and symmetric
difference. In the general case of all regular languages sthate complexity of all four operations is
given by the functionmn, and the worst case examples are defined over a binary alpf2ata2]. In
the case of non-returning languages, we obtain the pretzEse omplexity for these operations, which
again turn out to be the same, except for symmetric differénche case ofn = n = 2. Let us start
with intersection.
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Lemma 4.1. Let K and L be non-returning regular languages over an alphabeith sc(K) = m and
sc(L) = n, wherem,n > 2. Thensc(K N L) < (m —1)(n — 1) + 1, and the bound is tight i2| > 2.

Proof:
Let K and L be accepted by a non-returning state anch-state DFA, respectively. Let the state sets of
the two DFAs be&) 4 and@ g, and let the start states bg andspg, respectively. Construct the product
automaton forkl N L with the state sef) 4 x Q. Since both DFAs are non-returning, in the product
automaton, all the statés 4, ¢) and(p, sp), except for the initial statés 4, sp), are unreachable. This
gives the upper bound.

To prove tightness, let

K={(a+b)w|we {a,b}" and|w|, > m — 2},
L= {(a+b)w|we{a,b}" and|w|, > n —2}.

The language#® and L are accepted by the non-returning DFAs shown in Figure 1.

b b b a,b
o ) 0 )
OROROSREER S
a a a a,b

el

Figure 1. The binary non-returning witnesses for inteiseaneeting the boun@in — 1)(n — 1) + 1.

In the product automaton for the language L, the unique final state isn —1,n—1). The product
automaton in the case of = 4 andn = 5 is shown in Figure 2. The statg, 1) is reached from the
initial state(0,0) by a. Every statgi, j) with1 <i <m — 1andl < j <n — lis reached fron{1,1)
by a*~16/~!. This proves the reachability ¢fn — 1)(n — 1) + 1 states.

Now let (i, 7) and (k, ¢) be two distinct states of the product automaton: ¥ k, then the string
a™~1=Fp" is accepted fronfk, £) and rejected froni, 5). If j < £, then the string™ ' ~‘a™ is accepted
from (k, ¢) and rejected frongs, j). This proves distinguishability. O

Now we are going to prove the tight bounds for union and diffiee. We use the lemma above, the
equalitiesk UL = (K°N L°)“andK \ L = K N L€, and the fact that the state complexity of a regular
language is the same as the state complexity of its complkemen

Lemma 4.2. Let K and L be non-returning regular languages over an alphgheith sc(K) = m and
sc(L) = n, wherem,n > 2. Thensc(K U L),sc(K \ L) < (m —1)(n — 1) 4+ 1, and the bound is tight
if 2] > 2.
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Figure 2. The product automaton for intersection of langsdgom Figure 1im = 4,n = 5.

Proof:

We prove the upper bound in the same way as for intersectimprave the tightness for union, consider
the language#’© and L¢, whereK and L are the binary witness languages for intersection destiibe
the proof of the previous lemma. The languag&sand ¢ are non-returning with state complexities
andn, respectively. Sinc&“UL® = (KNL)¢, we havesc(K“UL®) = (m—1)(n—1)+1. For difference,
we take the languagéds andL¢. SinceK \ L¢ = KN L, we havesc(K \ L¢) = (m—1)(n—1)+1. O

Finally, we consider symmetric difference on non-retugnimegular languages. Here we must be
careful with the case oh = n = 2.

Lemma 4.3. Let K and L be non-returning regular languages over an alphabeiith sc(K) = m
andsc(L) = n, wherem,n > 2. If m = n = 2, thensc(K & L) = 1. Otherwise,sc(K @& L) <
(m—1)(n —1) + 1, and the bound is tight i&2| > 2.

Proof:

If a regular language over an alphabgis non-returning, and has state complexity 2, then it is Egua
or X¥*. The symmetric difference of two such languages is the emapityuage, so its state complexity
is 1.

Otherwise, we get the upper bound in the same way as for @uéoa. To prove tightness, we take
the same languages as for intersection. In the product atitormthe final states aifg,n» — 1) with
1<i<m-—2and(m—1,j)with1 < j <n—2. The proof of reachability is the same as in the case of
intersection. Ifi < k then the string:™~'~*b" is rejected fron(k, £) and accepted frori, j). If j < ¢,
then the string™'~“a™ is rejected from(k, ) and accepted frorfi, 5). This completes the proof. O

Now we consider the unary case. We show that the upper bund1l)(n — 1) + 1 for intersection,
union, and difference can be met wheneyet(m — 1,n — 1) = 1.
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Lemma4.4. Letm,n > 2 ando € {N,U,\}. Let K and L be unary non-returning regular languages
with sc(K) = m andsc(L) = n. Thensc(K o L) < (m — 1)(n — 1) + 1, and the bound is tight if
ged(m —1,n—1) =1.

Proof:
The upper bound follows from the fact that all the states @ fibst row and the first column of the
product automaton are unreachable, except for the intbdé s

To prove tightness, we first consider intersection. Ket= o™ 1(a™ 1)* and L = a"!(a""1)*.
Then K and L are non-returning witlc(K) = m andsc(L) = n. Sinceged(m — 1,n — 1) = 1, we
haveK N L = (M~ (q(m=D=1)* Thereforesc(K N L) = (m — 1)(n — 1) + 1.

The same result for union and difference follows from theiltefor complementation and intersec-
tion, and and the equalities U L = (K¢ N L¢)°andK \ L = K N L°. O

Finally, consider symmetric difference on unary non-neitog languages. The next lemma shows
that the upper bound on the state complexity of symmetrfemdifice on unary non-returning languages
is (m — 1)(n — 1) whenevern,n > 3. We also prove that this bound is tightsif — 1 andn — 1 are
relatively prime numbers.

Lemma4.5. Let m,n > 3. Let K and L be unary non-returning regular languages witt’X') = m
andsc(L) = n. Thensc(K @ L) < (m — 1)(n — 1), and the bound is tight gcd(m — 1,n — 1) = 1.

Proof:
Let the language#( and L be accepted by unary minimal non-returning deterministitefiautomata
A=({0,1,...,m—1},{a},04,0,F4)andB = ({0,1,...,n—1},{a}, 05,0, Fp), respectively. Since
A andB are non-returning, in the product automaton for symmeifferg@nce, all state§0, ¢) and(q, 0)
are unreachable, except for the stdigd). This gives the upper bour(@: — 1)(n — 1) + 1.

If a(m —1,a) > 2o0rdg(n—1,a) > 2, then at least one more stdte p) or (¢, 1) is unreachable
in the product automaton sinee, n > 3. Hence the upper bound (8: — 1)(n — 1) in this case.

Now assume thais(m — 1,a) = 1 anddg(n — 1,a) = 1. SinceA and B are minimal, the states
0 andm — 1 of A, as well as the statésandn — 1 of B, do not have the same finality [12, Lemma 1].
It follows that the stateg0,0) and(m — 1,n — 1) of the product automaton fdk @ L have the same
finality, and therefore can be merged. Thus, also in this, saseet the upper boun@n — 1)(n — 1).

To prove tightness, lgtcd(m — 1,n — 1) = 1. Then by the Chinese Remainder Theorem, for every
integersi, j, there is a solutior: (i, 7) to the following simultaneous congruences:

z(i,7) =i (mod m — 1), (1)
x(i,7) = j (mod n — 1). 2

Let K = a™ 1(a™ H*andL = a" !(a"!')*. ThenK and L are accepted by the unary non-
returning minimal automatd and B shown in Figure 3.

Construct the product automaton for the language L. The initial state of the product automaton is
(sa,sp). The final states of the product automaton(@re-2, j) and(i, n—2), except form—2,n—2).
Let us show that all the statés j), where0 <i < m—2and0 < j < n—2, are reachable and pairwise
distinguishable in the product automaton for the langusge L.
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a

Figure 3. The unary non-returning witnesses for symmetffer@nce meeting the bourich —1)(n—1); m,n >
3andged(m —1,n—1) = 1.

Since we have .
(s4,8) % (0,00 55 (0, 5),

each statéi, j) is reachable; recall that(s, j) is the solution of (1) and (2).

Now, we prove distinguishability.

First, consider two final states in the last row of the subs&iraaton, that is, two statés: — 2, j)
and(m — 2,¢), where0 < j < ¢ <n — 3. Then we have

q®(0,n—2—¢)
(m—2,0) ——— (m —2,n — 2),

q*(0,n—2-10) .
(m—2,7) =2 =2, —2— (£ — ).

Hence the string®(©"—2-9) is rejected from(m — 2, £), but accepted fromim — 2, j). The case of two
final states in the last column of the product automaton issgtric: two stategi, n —2) and(k,n —2),
where0 < i < k < m — 3, are distinguished by*("—2-%.0),
Now, consider a final staten — 2, j) in the last row and a final state, n — 2) in the last column of
the product automaton. jf < n — 4, then we have
 q=(0,1) .
(m - 27.7) E— (m - 27.7 + 1)7

a=(0,1)

(i,n —2) —— (4,0).

Hence the string®(®:1) is accepted frontm — 2, j), but rejected fronfi,n — 2). If j = n — 3, then the
stringa®(®:?) distinguishes the two states since we have
a®(0,2)
(m—2,n—3) —— (m —2,0),
a®(0:2)
(i,n —2) <27 (1),
We have shown that final states of the product automaton ameipa distinguishable.

Finally, consider two distinct non-final statés j) and (k, £). By the stringa®(™~2-%7=3-J)  the
state (i, j) goes to the accepting state: — 2,n — 3). On the other hand, the stafé, ¢) goes by
a*(m=2-in=3-7) ejther to a rejecting state, or to an accepting state difeirem (m — 2,n — 3). It
follows that(z, j) and(k, ¢) are distinguishable. 0
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The next theorem summarizes our results on Boolean opesatio

Theorem 4.6. (Boolean Operations) et m,n > 2 ando € {N,U,\,®}. Let f.(m,n) be the state
complexity of theo operation on non-returning regular languages ovérletter alphabet defined as
fi(m,n) = max{sc(K o L) | K,L C¥*, |X| = k,sc(K) =m,sc(L) =n, andK, L non-returning.
Then

(i) if k> 2ando € {N,U,\}, thenfz(m,n) = (m —1)(n—1) + 1.

L S L if m=n=2;
() ik = 2, thenfy (m,n) = {(m —1)(n—1)+1, otherwise.
(i) if o € {N,U,\}, then
ffim,n) < (m-1)(n—1)+1,
ff(m,n)=(m—-1)(n—1)+1if ged(m —1,n — 1) = 1.

(v) £5(2.2) =1,
1@(2,71) = n, wheren > 3,
©(m,2) = m, wherem > 3,
P(m,n) < (m—1)(n — 1), wherem,n > 3,
P(m,n) = (m —1)(n — 1), wherem,n > 3 andged(m — 1,n — 1) = 1.
Proof:

(i) The tight bounds for intersection, union, and differenoe dlphabets of at least two symbols are
given by Lemmas 4.1 and 4.4i)(The tight bound for symmetric difference for alphabetstdéast two
symbols is given by Lemma 4.3iii{ The tightness follows from Lemma 4.4ivY If m = n = 2, then

the languages are eith€k} or aa*, and their symmetric difference is the empty language: K 2 and

n > 3, then the upper bound is (n — 1) + 1, and it is met by the symmetric difference of the languages
aa* anda™1(a""?)*. The case ofn > 3 andn = 2 is symmetric. The upper bound in the case of
m,n > 3, as well as its tightness, whenewexl(m — 1,n — 1) = 1, is given by Lemma 4.5. O

5. Catenation

The state complexity of catenation on regular languagewéndy the function

m, if m>1andn = 1;
f(m’n) = n n—1 H
m2" — 2"+ ifm >1andn > 2.

and the worst case examples can be defined over a binary etgial, 23, 24]. In this section we give
the tight bound for catenation on non-returning languages.
We start with the case when the state complexity of the selzomgliage is two.

Lemmab.1. Letm > 2. Let K and L be non-returning regular languages over an alphabetith
sc(K) =mandsc(L) = 2. Thensc(K'L) < m + 1, and the bound is tight i®2| > 1.
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Proof:
If L is a non-returning language over an alphabetith sc(L) = 2, thenL = {\} or L = ¥¥*.

If L ={\},thenKL = K, sosc(KL) =m.

If L =YY" thenKL = KXY*. Let A be a DFA forK. To get a DFA forKx¥* from the DFAA,
we add a new final statéwhich goes to itself on every symbol ¥a Next, we remove all out-transitions
of all final states in4, and we add the transitions from every final statelito statef on each symbol in
Y. This gives the upper bound + 1.

For tightness, we consider the unary non-returning redalaguagesk = {a’ | i > m — 1}
and L = aa* with sc(K) = m andsc(L) = 2. ThenKL = Kaa* = {a’ | i > m}, so we have
sc(KL) =m+ 1. 0

The following lemma provides an upper bound on the state texitp of catenation on non-returning
regular languages in all the remaining cases.

Lemma5.2. Letm > 2 andn > 3. Let K and L be non-returning languages over an alphabetith
sc(K) =m andsc(L) = n. Thensc(KL) < (m —1)2"1 + 1.

Proof:
Let A= (Qa,%,04,54,F4)andB = (@Qp, X, B, s, Fp) be minimal non-returning DFAs fak” and
L with m andn states, respectively.

Construct an NFAV for the languagdy L from the DFAsA and B by adding a transition on every
symbola in X from every final state of to the state(sp, a), and by omitting the states. The initial
state of N is s4 and the set of final states 1S3. Moreover, the NFAV is non-returning.

Apply the subset construction to the NBA Since the automatoA is deterministic, every reachable
state of the subset automaton contains exactly one stabe @FA A and, possibly, some states of the
DFA B, except for the statez. Moreover, the only subset containing the statds {s4}. It follows that
the subset automaton has at moat— 1)2"~! + 1 reachable states, which proves the upper bourmd.

Now we prove that the upper bound given by Lemma 5.2 is tighitst,fwe consider the case of
m = 2 andn > 3, and prove the tightness of the boui-! + 1. Notice that we need a growing
alphabet in this case.

Lemma 5.3. Letn > 3. There exist non-returning regular languadésnd . over an alphabeX with
|X| = n — 1 such thasc(K) = 2, sc(L) = n, andsc(K L) = 2"~ + 1. The bound"~! + 1 cannot be
met for smaller alphabets.

Proof:
Letn > 3andX = {ag, a1, ...,a,—2}. Let K = ¥¥*. Then the languag& is accepted by the minimal
two-state non-returning DFA = ({s4,qo0}, 2, 54,04,{q0}), INnWhichd4(sa,a) = da(qo,a) = g for
eacha in 3.

Next, we consider the regular languafeccepted by the minimail-state non-returning DFB =
({spB,0,1,...,n—2},3,0,sp,{n — 2}), in which

53(83,&@) = ’i,

0p(i,ap) = (1 +1) mod (n — 1) and
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5B(i, aj) = ’i,
fori =0,1,...,n—2andj = 1,2,...,n — 2, that is, the initial state g goes to staté on symbola;,
there is a cyclg0, 1, ... ,n — 2) on symbolag, and each stategoes to itself on symbal; with j > 1.
The DFAsA and B are shown in Figure 4.

b Y\ {a} ¥\ {a} Y\ {a} ¥\ {a}

Figure 4. The non-returning witnesses for catenation mgetie boun®”~! +1; m = 2, n > 3, andX =
{G/O; ag, ... aan—Q}-

Construct an NFAV for the languages L from DFAs A and B by adding the transitions on each
symbola; from stateqg to statei, and by omitting the stateg. The initial state ofV is s 4, and the final
state isn — 2. Let us show that the subset automaton of the NNFAas2”~! 4 1 reachable and pairwise
distinguishable states.

The initial state of the subset automaton{iss }, and it goes to stat¢qy} by ag. Next, notice
that each sef{qo} U {0,42,...,ix}, wherel < iy < -+ < 4 < n — 2, is reached from the set
{@} U{ia — 1,...,ix — 1} by ag, and each sefqo} U {i1,72,...,ir}, wherel < i3 < is < -+ <
i < n—2,isreached from the s€tjo} U {io, ..., it} by a;,. This proves the reachability of all the sets
{go} U SwithS C {0,1,...,n— 2} by induction.

Now we prove distinguishability. The initial stafe 4 } and a statd ¢y} U S can be distinguished by
af~! which is accepted by from go but rejected froms 4. Two distinct stateggo} U S and{qo} U T
differ in a statej with 0 < j < n — 2, and the string;; >~/ distinguishes the two states.

Finally, let us show that the bourd#~! + 1 cannot be met for smaller alphabets. Notice that each
reachable statg) U S, whereS is a non-empty subset ¢, 1,...,n — 2}, must contain at least one of
the state9(sp, a) with a in X. If [X| < n — 2, then the se{0,1,...,n — 2} \ {dB(sp,a) | a € £}
is non-empty, and no subset of this set is reachable in threesalotomaton of the NFA/. Our proof is
complete. O

Our next result shows that the upper bound given by Lemmas&ight for alphabets with at least
three symbols in the case of,n > 3.

Lemma 5.4. Letm,n > 3. There exist ternary non-returning regular langualjesnd L with sc(K) =
m andsc(L) = n, and such thatc(KL) = (m — 1)2" ! + 1.

Proof:
Letm,n > 3. Let K and L be the ternary non-returning languages accepted by the DFAsd B
shown in Figure 5.
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Figure 5. The ternary non-returning witnesses for catenatieeting the boun@n — 1)2" =1 + 1; m,n > 3.

Construct an NFAV for K L from the DFAsA and B by adding transitions oa, b, ¢ from the state
gm—o 10 state 0, and by omitting statg;. The initial state ofN is s4, and the unique final state is
n — 2. Let us show that the subset automaton of the N\NFAas(m — 1)2"~! + 1 reachable and pairwise
distinguishable states.

We prove by induction that every sgi;, j1, j2, .- ., jx}, Where0 < i < m —2and0 < j; < ja <
-+ < Jr <n—2,is reachable from the initial sta{e 4 }.

The basisk = 0, holds since{q;} is reached fron{s4} by a**!. Let1 < k < n — 2, and assume
that the claim holds fok — 1. LetS = {4, j1,J2, - - -, Jx }- Consider the following three cases:

(i) i=0andj; = 0. LetS" = {¢mn—2,J2,---,jk}- ThenS’ is reachable by the induction hypothesis.
SinceS’ goes toS by a, the setS is reachable;

(i) i =0andj; > 1. LetS" = {q0,0,52 — j1,---,Jx — j1}- ThenS’ is reachable as shown in case
(i), and goes t& by b/1;

(i) ¢ > 1. LetS” = {qo, j1,J2,---,Jx}.- ThenS’ is reachable as shown in cas@safnd (i), and goes
to S by a’.

To prove distinguishability, lel < j < n —2and0 < i < m — 3. The stringt” 2~/ is accepted by
the NFAN only from the statg, the stringc™b-b"~2 is accepted only from,,_», and the string™ 2.
c"b - "2 is accepted only from;. Moreover, the empty set is unreachable in the subset atbomBy
Proposition 2.3, all the reachable states of the subsetrattm of N are pairwise distinguishable. O

We did some computations, and it seems that the upper boumtbiche met in the binary case.
The next theorem provides a lower bound on the state contplekcatenation on binary non-returning
languages. However, our computations show that this lowentd can be exceeded.

Lemma 5.5. Letm,n > 3. There exist binary non-returning regular languageand L with sc(K) =
m andsc(L) = n such thakc(K L) > (m —2)2n~t 42772 4 2,
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Proof:
Letm,n > 3. Consider the languagds and L accepted by binary minimal non-returning DFAs=
(Qa,{a,b},04,54,{qm—2}) andB = (@p,{a,b},dp, sp,{n — 2}) shown in Figure 6, in which
QA — {SA} U {qu q1y .- - an72}’
Qp={sp}uU{0,1,...,n—2},
and the transition functionss anddg are defined as follows:

6A(SA)Q) = 5A(8A) b) = {40,
6A(qia CL) = 4(i+1) mod (m—1)s

64(¢i,b) = ¢,

0p(sp,a) =9dp(sp,b) =0,
0(j;a) = (j +1) mod (n — 1),
0p(0,b) =0,

op(7,0) =7+ 1,if1<j<n-3,
53(77, — 2, b) =0

Figure 6. The DFAs of binary non-returning languagésand L with sc(K L) > (m — 2)2"~1 + 272 4 2,

Construct an NFAV for the languagés L from the two DFAsA and B by adding the transitions
ona andb from the statey,,, - to the statd), and by omitting the stateg. The initial state oflV is s4
and the unique final state is the state- 2. Let us show that the subset automaton of the N¥Aas
(m — 2)27~! 4+ 2"=2 4 2 reachable and pairwise distinguishable states.

We prove, by induction on the size of reachable sets, {that, {qo}, and all setfq;} U T, where
0<i<m-—2andT C {0,1,...,n— 2}, and such that if = 0 then0 € T, are reachable in the subset
automaton. Each singleton gef} is reached from the initial statgs 4} by a**1.

Let1 < k < n — 2, and assume that the claim holds forLet S = {¢;, j1, jo, ..., jr} be a set of
sizek +1with 0 < j; < jo < -+ < ji <n — 2. Consider the following six cases:
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(i) « = 0andj; = 0. ThenS is reached from{¢,,—2,72 — 1,...,Jx — 1} by a, and the latter set is
reachable by the induction hypothesis;

(i) i = 1,51 = 0 and|S| = 2; namely,S = {q1,0}. ThenS is reached fron{qq, 0} by ab”~2 and the
latter set is reachable bi)

(i) ¢ = 1,741 =0, jo = 1. ThenS is reached from o, 0,53 — 1,...,jr — 1,n — 2} by a, and the
latter set is reachable bi)

(iv) i=175 =0, andj, > 2. ThenS is reached from{¢q1,0,1, js —jo + 1,...,jx — jo + 1} by
b2~1 and the latter set is reachable fii)(

(v) i = 1 andj; > 1. ThenS is reached fron{qo, 0, j2 — 71, -, jkx — j1} by ab’*~1, and the latter
set is reachable by)(

(vi) @ > 2. ThenS is reached fror{q1, (j1 —¢+1) mod (n —1),...,(jx —i+1) mod (n—1)} by
a'~1, and the latter set is reachable liy-(v).

This proves the reachability @f+ 22 + (m — 2)2"~! subsets.

To prove distinguishability, let us show that we can assigtriagw, to each state of V, except for
the initial state, such that the string, is accepted byv only from the state. Notice that the following
strings are accepted by only from the corresponding states:

(i) the stringa™ 277, where0 < j < n — 2, is accepted by the NFA’ only from the statg,
(ii) the stringb™a - a™~2 is accepted only frorg,,_», and
(iii) the stringa™2=% . b"a - a2, whered < i < m — 3, is accepted only from the stajg

The empty set is unreachable in the subset automaton of tAeNNFBy Proposition 2.3, all reachable
subsets of the subset automaton are pairwise distinguishab O

Now we consider the unary case. The upper bound on the staiplexity of catenation on unary
regular languages isn, and it can be met ifcd(m,n) = 1 [2, Theorem 5.4]. We show that for non-
returning languages, the boufw — 1)(n — 1) + 2 can be met ifn — 1 andn — 1 are relatively prime
numbers.

Lemma5.6. Letm,n > 2 andged(m — 1,n — 1) = 1. There exist unary non-returning languagdeés
and L with sc(K) = m andsc(L) = n such thatc(KL) = (m — 1)(n — 1) + 2.

Proof:

Consider unary non-returning languagés= a™ !(a™ 1)* andL = a"~(a""1)*. The language#
andL are accepted by unary minimal non-returning DFAsodndn states, respectively. The catenation
of K andL is the language

KL= {d"|i=k(m—1)+£(n—1)andk,¢ > 0}.

The largest integer that cannot be expressddas— 1) + ¢(n — 1) with &, £ > 0is (m —1)(n — 1) [2,
Lemma 5.1]. It follows thatc(KL) = (m — 1)(n — 1) + 2. 0
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The following theorem summarizes the results of this sactio

Theorem 5.7. (Catenation)Let m,n > 2. Let fir(m,n) be the state complexity of the catenation
operation on non-returning languages ovérlatter alphabet defined as
fr(m,n) = max{sc(KL) | K,L C¥* |X| = k,sc(K) = m,sc(L) = n, andK, L non-returning.
Then
m+ 1, if m>2,n=2andk > 1;
(i) fe(m,n) =271 41, if m=2,n>3andk >n—1;
(m—1)2""t+1, if m,n, k>3,

(i) fr(2,n) <2t +1ifn>3andk <n—1,
(i) (m—2)2nt 427242 < fo(m,n) < (m—1)2" "1 +1if m,n > 3,
(iv) fi(m,n) <mn,andfi(m,n) > (m—1)(n—1)+2if gedilm —1,n —1) = 1.

Proof:

The tight bounds ini} are given by Lemmas 5.1-5.4. The resultii) {s proved in Lemma 5.3. The
lower bound in i) is given by Lemma 5.5, and the upper bound follows from thee thaat fo(m, n) <
f3(m,n). The upper bound iny{) is the same as in the general case of regular languageshatwher
bound is given by Lemma 5.6. O

As for the binary case, our computations show that the uppendd(m — 1)27~! + 1 cannot be met,
while our lower boundm — 2)2"~1 4 2"~2 4 2 can be exceeded.

Table 1. Tight bounds computations for catenation on binary-returning languages.

Case (m—2)2n"t 427242 | sc¢(KL) | (m—-1)2" 141
m=3n=3 8 9 9
m=3,n=4 14 14 17
m=4,n=4 22 22 25
m=4,n=>5 42 46 49
m=>5mn=>5 58 62 65
6. Reversal

The tight bound on the state complexity of the reversal djmran regular languages 28 with worst-
case examples defined over a binary alphabet [2, 25, 26, Bg]laim of this section is to show that for
non-returning languages, the tight bound is the same. Hemv&vprove tightness, we need a three-letter
alphabet.

Lemma 6.1. Let L be a non-returning language over an alphabetith sc(L) = n, wheren > 3. Then
sc(LT) < 27, and the bound is tight i2| > 3.
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Proof:

The upper bound” is the same as in the general case of regular languages. V@thtness, consider
the ternary non-returning language accepted by the BFghown in Figure 7, in which the transitions
are defined as follows. Each stateith 2 < i < n — 1 goes to staté — 1 on symbolsz, b, andc. State

1 goes to stat® on symbols: andc, and it goes to state — 2 on symbolb. The staté) goes to itself on
symbolsa andb, and it does to state — 2 on symbolc.

N

Figure 7. The ternary non-returning witness for reversatting the boun@”.

Construct the reversé’® of the DFA A by making staté initial and state: —1 final, and by reversing
all the transitions. The NFAL is shown in Figure 8. Let us show that the subset automatdmedfiFA
AR has2" reachable states.

The initial state ig0}, and each singleton st} with 1 < i < n — 2 is reached fron{0} by . The
set{n — 1} is reached from{n — 2} by a, and the empty set is reached frgm — 1} by a.

a,b

Figure 8. The reverse of the DFA from Figure 7.

Let2 < k < n, and assume that every subse{of1,...,n — 1} of sizek — 1 is reachable. Let
S = {i1,42,...,i} be a set of sizé& with 0 < iy < iy < --- < i, < n — 1. Consider the following
four cases:

() ix <n —2. Then the sef0,i3 — is,...,1r — iz} is reachable by the induction hypothesis. Since
we have{0, is — o, ..., ip —is} % {0,1,d5 — iz + 1,0 . ip —in +1) 22
{0,9 — i1,45 — i1, ... ip — i1} > {i1, 42, ..., i} = S, the setS is reachable.

(il) i = n—1andi; = 0. ThenS is reached fron{is — 1,...,ix—1 — 1,n — 2} by ¢, and the latter
set is reachable by the induction hypothesis.

(iii) ix = n—1andi; = 1. ThenS is reached fron{iy — 1,...,ix_1 — 1,n — 2} by b, and the latter
set is reachable by the induction hypothesis.

(iv) i = n—1landi; > 2. ThenSisreached fron{i; — 1,...,i;_1 — 1,n — 2} by a, and the latter
set is reachable by)(

By Proposition 2.2, all states of the subset automaton areviga distinguishable. O
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The next result provides a lower bound in the binary case.

Lemma6.2. Let n > 3. There exists a binary non-returning languageuch thatsc(L) = n and
sc(Lf) = 2n2,

Proof:
Let L be the binary language accepted by the minimal non-retyritomaton shown in Figure 9. Then
LT = (a + b)*a(a + b)"~3, and it is well-known that the state complexity bf is 22, O

a,b a,b

e e OOl

b

Figure 9. The DFA of a binary non-returning langudgwith sc(L%) = 272,

Taking into account that the reverse of every unary langistee same language, and thag * =
{\} and (¥¥*)® = ¥¥*, we can summarize our results on the reversal operation nsretarning
languages in the following theorem.

Theorem 6.3. (Reversalletn > 3. Let f;.(n) be the state complexity of the reversal operation on non-
returning regular languages ovekdetter alphabet defined g&(n) = max{sc(L?) | L C ¥*,|%| =
k,sc(L) = n, andL is non-returning. Then

2, ifn=2;

(i) if k> 3 thenfy(n) = {2n M

(i) 2772 < fo(n) <27,

(i) fi(n) = n.

As for the binary case, our computations again show that piperubound™ cannot be met, while
our lower bound”~2 can be exceeded.

7. Kleene Star

The state complexity of Kleene star on regular language®is + 272 for an alphabet of at least two
symbols, and it i§n — 1)? + 1 in the unary case [2]. Here we show that in the case of nomiet
languages over an alphabet of at least two symbols, theltigimd is2"~!. In the unary case, we get
the tight boundn — 2)2 + 2.

Lemma 7.1. Let L be a non-returning regular language over an alphabetith sc(L) = n, where
n > 2. Thensc(L*) < 27—, and the bound is tight i > 2.
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Table 2. Tight bounds computations for reversal on binarnyreiurning languages.

Case || 272 | sc(L®) | 2»
n=23 2 7 8

n=4 4 13 16
n=2>7 8 25 32
n==~6 16 47 64
n="17 32 89 128

Proof:
Let A = (Q,%,4,s, F) be a minimal non-returning automaton fér Construct an NFAV for the

languageL* from the DFA A by making the initial state final, and by adding a transition on every
symbola from every final state to the statés,a). The NFA N is non-returning, and therefore the
subset automaton @¥ has at mos2™~! + 1 reachable states. Singeis a complete DFA, the empty set
is unreachable in the subset automaton. This gives the inoped2” .

To prove tightness, consider the binary language acceptddlebDFA A shown in Figure 10, in
which the initial states goes to statd by botha and b, state0 goes to itself byb, there is a cycle
(0,1,...,n —2) on symbola, and a cycl€1,2,...,n — 1) on symbol. If n = 2, then the final staté
goes to itself by botla andb, so the automaton accepts the languggp

Construct an NFAV for the languagd.* from the DFA A by making the initial state final, and by
adding the transition obfrom staten — 2 to state0.

Figure 10. The binary non-returning witness for Kleene staeting the boung™—!.

Let us prove by induction on the size of subsets that everyemopty subset of0,1,...,n — 2}
is reachable in the subset automaton of the NYYAEvery singleton sef:} is reached from the initial
state{s} by a’*!. Let2 < k < n — 1, and assume that every subset of size 1 is reachable. Let
S = {i1,42,...,i} be a set of sizé& with 0 < iy < is < --- < i, < n — 2. Consider the following
three cases:

(i) 21 = 0andiy = 1. ThenS is reached from the séi; — 1,... i, — 1,n — 2} by b, and the latter
set is reachable by the induction hypothesis;

(i) i1 = 0 andis > 2. ThenS is reached from{0, 1,43 — iy + 1,... i — iz + 1} by b2~ !, and the
latter set is reachable bi){
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(iii) i1 > 1. ThenS is reached fron{0, iy — i1, ...,i; — i1} by a’t, and the latter set is reachable by
@) and §i).

To prove distinguishability, notice that for eatkith 0 < i < n — 2, the NFAN accepts the string
a2~ only from the stateé. Moreover, the empty set is unreachable. By Propositiondl3tates of
the subset automaton are pairwise distinguishable. O

Now we consider the unary case. The state complexity of Klestar on unary regular languages is
(n—1)2+1[2]. Our aim is to show that the tight bound on the state corifyl®f Kleene star on unary
non-returning regular languages(is — 2)2 + 2.

Lemma 7.2. Let L be a unary non-returning regular language withZ) = n, wheren > 2. Then
sc(L*) < (n — 2)? + 2, and the bound is tight.

Proof:
It has been shown b§evorova [28, Theorems 7 and 8] thatit> 6, then in the range frorpn — 2)% + 2
to (n —1)2 + 1, only the valuegn — 2)? +2, n> — 3n + 2, n? — 3n + 3, and(n — 1)? + 1 are attainable
by the state complexity of the star of a unarstate DFA language. She also proved that among these
values, only(n — 2)? + 2 is met by a non-returning language. The DFA of such a langisagleown in
Figure 11.

If 2 < n < 5, then the direct computations show that the upper bour(@ is 2)2 + 2. This
upper bound is met by the unary non-returning language &ddyy the DFA shown in Figure 11 if
n € {3,4,5}, and by the languagf\} if n = 2 [29]. O

N
OROBOECEE

Figure 11. The unary non-returning witness for Kleene stegting the boun¢n — 2)? + 2.

The next theorem summarizes our results on the Kleene staatiym.

Theorem 7.3. (Kleene Star)Letn > 2. Let fx(n) be the state complexity of the star operation on non-
returning regular languages ovekdetter alphabet defined g%(n) = max{sc(L*) | L C ¥* |X| =
k,sc(L) = n, andLL is non-returning. Then

(i) fe(n)=2""Lif k> 2,

(i) fi(n)=(n—2)*+2.

8. Conclusions

The state complexity of subfamilies of regular languageshsas finite languages, unary languages,
prefix-free or suffix-free regular languages, is often semahan the state complexity of regular lan-
guages [5, 6, 7, 15, 16, 30]. We have considered anothermilpfaf regular languages, non-returning
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regular languages. Note that when a minimal DEAs non-returning, then we say that the language
L(A) is non-returning.

The non-returning property is a necessary condition for & BFaccept a suffix-free regular lan-
guage, but it is not sufficient [16]. We notice that a suffigefrDFA always has a sink state whereas a
non-returning DFA may not have any sink state. Based on thleservations, we have examined non-
returning DFAs and established the state complexitiesmisoasic operations for non-returning regular
languages.

Table 3. Comparison table between the state complexity sith@perations on suffix-free [16, 30, 31], non-
returning, and general regular languages [1, 2, 22, 23, 26].

operation ‘ suffix-free |2 ‘ non-returning |2] ‘ general |2] ‘
L n 1 n 1 n 1
KuUlL mn—(m+n—2) 2 mn— (m+n—2) 2 mn 2
KnL mn —2(m+n — 3) 2 mn— (m+n—2) 2 mn 2
K\L mn — (m+2n —4) 2 mn — (m+n — 2) 2 mn 2
KaL mn — (m+n—2) 2 mn— (m+n—2) 2 mn 2
L 22 41 2 2n—1 2 3/4-2" 2
LR 2241 3 2" 3 2" 2
K- L (m—1)2n"2 41 3 (m—1)2""1+1 3 | @2m—1)2nt 2

Our results are usually smaller than the state complexitiegeneral regular languages and larger
than the state complexities for suffix-free regular lang@sags summarized in Table 3, where we give
also the size of an alphabet used for defining worst-case @ram

Table 4. The state complexity of basic operations on binadyumary non-returning regular languages.

operation ‘ binary non-returning ‘ unary non-returning ‘

Le n n

KUL mn— (m+n—2) mn—(m+n—2)if gedlm—1,n—-1)=1

KnL mn — (m+n—2) mn—(m+n—2)if gedim —1,n—1) =

K\L mn — (m +n — 2) mn—(m+n-—2)if gedim —1,n—1)=1

KoL mn — (m+n —2) mn—(m+n—1)if gedim —1,n—-1)=1

L* 2n—1 (n—2)2+2

Le > on—2 n

K- L > (2m —3)2" 2 + 2 <mn
>mn—(m+n-23)ifgedim—1,n—-1)=1

Notice that our witnesses for reversal and catenation diaedeover a three-letter alphabet. We
conjecture that the upper boun@® and (m — 1)2"~! + 1 for reversal and catenation, respectively,
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cannon be met by any binary non-returning languages. Hawaseshown in Table 4, we are still able
to get exponential lower bounds in the binary case. To gét tigunds for reversal and catenation on
binary non-returning languages seems to be a very hardgmoblable 4 also summarizes our results in
the unary case.
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