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Abstract: We present a cellular automaton model that efficiently tracks a target in distributed mobile wireless sen-
sor network. We focus on simulating the mobile wireless sensor networks for tracking a moving target considering
energy-efficiency. Using the mobility of sensors, we first disperse sensors as far as possible for the better coverage while
preserving connectivity. Furthermore, we introduce a tri-level alert system for activating sensors selectively. We conduct
experiments for evaluating the performance of the proposed model. The performance of our model is measured in terms
of lifetime, coverage and tracking quality, and compared with other models.
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1. INTRODUCTION

Wireless sensor networks (WSNs) play important
roles in a wide range of applications such as industrial
control and monitoring [14], security [15], military sens-
ing [9]. A wireless sensor usually consists of a processor,
memory unit and power supply, and is therefore limited
in its processing power, memory and transmission range.
A sensor can sense, measure and gather information from
the environment. It can also communicate with other sen-
sors, but only within its limited range. A WSN has a
limited lifespan since sensor batteries offer finite energy
reserves. Many researchers focus on the maximization
of WSN lifespan and coverage [3], [8]. The coverage
problem arises from the finite nature of batteries. Es-
pecially, we consider the WSNs that consist of mobile
sensors. We call such WSNs mobile wireless sensor net-
works (MWSNs). The key difference is the mobile nodes
can reposition themselves and organize the topology of
the network. Due to the mobility of sensors, MWSN is
more capable than WSN, and needs more considerations
to design an efficient protocol.

We simulate MWSNs for tracking a mobile target us-
ing cellular automata (CAs). A CA consists of a regular
grid of cells, each of which is in one of a finite num-
ber of states. Each cell has a state and a set of neigh-
boring cells called neighbors around itself. The state of
each cell changes depending on the states of neighboring
cells. Many researchers have focused on applications of
cellular automata to address phenomena caused by local
interactions.

We propose a CA model that simulates MWSNs for
target tracking problem. We consider several measure-
ments for evaluating the proposed model: lifetime, cov-
erage and tracking quality. In Section 2., we outline the
basic concepts of cellular automata and describe the ex-
isting cellular automaton models simulating WSNs and
MWSNs. In Section 3., we introduce the target track-

ing problem and the related works for the problem. We
present our model in Section 4.. We provide simulation
results in Section 5..

2. CA MODELS FOR WSNS

A CA is formally specified by a quadruple (L, S,N, f),
where L is a regular grid composed of cells, S is a fi-
nite set of states, N is a finite set of neighborhood in-
dices, such that ∀c ∈ N and ∀r ∈ L : r + c ∈ L and
f : Sn → S is a transition function [16]. A configu-
ration Ct : L → S is a function that associates a state
with a cell of the grid L. The configuration of the next
time step is defined as Ct+1(r) = f(Ct(i)|i ∈ N(r))),
where N(r) is a set of all neighbors of the cell r. In
other words, every cell updates its state based on the cur-
rent states of neighboring cells. Cellular automata can
be applied to the simulations of WSNs, as we can find
similarity between a CA and a WSN. Every sensor in a
WSN can communicate with sensors located within the
communication range of the sensors. In particular, we
consider the homogeneous WSN where every sensor in
the network is identical. Also, we assume that the sen-
sors are mobile and work in a fully distributed manner.
Each sensor moves and changes its state according to the
states and positions of the neighboring sensors. Since the
sensors are unaware of the states of sensors that are not
in neighboring cells, they should transfer the important
events such as the target detection to their neighbors.

WSNs are employed in various applications [9], [14],
[15]. Before we establish a WSN for a practical purpose,
we first design a protocol for the new WSN and evalu-
ate the proposed protocol. Since it is very expensive to
establish a WSN and run a field test for evaluative pur-
poses, WSNs are typically evaluated by simulation tools
such as NS [1] or SensorSim [12]. Based on the simula-
tion results, we can estimate an expected performance of
the proposed protocol and modify the protocol if neces-
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sary.
Researchers have already used CAs for WSN simu-

lations [6], [7], [11]. Especially, two-dimensional CAs
have interesting properties that are suitable for simulat-
ing homogeneous WSNs. Cunha et al. [7] developed a
WSN simulator based on CAs called CASim. They im-
plemented a topology control algorithm in CASim to per-
form node scheduling. Choudhury et al. [6] extended the
CA algorithms in CASim by designing improved node
scheduling algorithms. They also proposed CA algo-
rithms for optimizing MWSNs [4], [5]. For randomly
deployed sensors, they aimed to disperse sensors as far as
possible for maximizing the MWSN coverage [4]. Later,
they studied the same problem while maintaining the con-
nectivity between mobile sensors [5].

Now we formally define our CA model. We have a CA
A = (L, S,N, f) for simulating MWSNs. Each cell ci ∈
L has a composite state si ∈ S for indicating the state
of a sensor. We define S to be a set of composite states,
where the composite states are defined as combinations
of sub-states described in Table 1.
Table 1: Descriptions of the cell states in our CA model

State Notation Description
Existence bi ∈ B If there is a sensor in ci, bi

is 1, otherwise, 0.
Activity ai ∈ A If bi = 0, ai = 0. If

bi = 1, ai is one of the fol-
lowing three states: active
(ai = 1), stand-by (ai =
2), and dead (ai = 3)

Alerting state pi ∈ P If bi = 0, pi = 0. If b1 =
1, pi is one of following
five states: normal (pi =
1), detected (pi = 2), 1-
level alerted (pi = 3), 2-
level alerted (pi = 4), fi-
nal alerted (pi = 5), and
miss alerted (pi = 6).

Energy ei ∈ E The remaining energy of a
sensor ci. The unit of en-
ergy is the Joule.

As shown in Table 1, the composite state si of a cell
ci represents the current state of a sensor that is possibly
in the cell in the time step. Formally, we define the set of
states as S = B × A × P × E. The state of a cell ci is
represented by a 4-tuple si = (bi, ai, pi, ei). Now we ex-
plain the meaning of each sub-state. Since the grid of the
CA is assumed as a certain area, we can assume that each
cell means a sub-area. We represent whether or not there
exists a sensor in the sub-area of ci by the sub-state bi.
If there is a sensor in ci, we denote the sensor by s(ci).
There are two types of sensors in the grid. Active sensors
are sensing their environment within the sensing radius
Rs while stand-by sensors are inactive and not sensing.
Both types of sensors communicate with other sensors

within the communication radius Rc. Sensors move into
a dead state when they run out of energy. Once a sensor
moves into a dead state, the sensor does not sense and
communicate anymore. These states are represented by
the sub-state ai. The sensors in our algorithm has another
state called the alerting state. According to the level of
the alert message arriving the sensor in ci, the alerting
state of the sensor changes. The remaining energy means
the amount of the energy that remains in the battery of
the sensor.

3. TARGET TRACKING PROBLEM
Many researchers studied the target tracking problem

in WSNs [2], [10], [13]. The problem is to detect an
object in the network area and track the moving path of
the object. We call the detected object target. Pattem et
al. [13] studied the energy-quality trade-offs of the sev-
eral strategies for sensor activation. They compared the
performance of the following activation strategies:

• Naive activation (NA),
• Randomized activation (RA),
• Selective activation based on prediction (SA),
• Duty-cycled activation (DA).

In NA, all sensors are active all the time. This implies
that sensors can always detect or track the object within
Rs. In RA, each sensor is active with a probability p.
SA forces only a small subset of sensors to be active by
prediction at any given point of time. DA periodically
forces sensors to be active and stand-by with a regular
duty cycle. They showed that SA is dominating among
all strategies. Furthermore, in conjunction with DA, SA
saves more energy with the small decrease in quality.

Our problem is to design CA algorithms for MWSNs
that are specially designed for target tracking problem.
Here we assume that mobile sensors in the network are
equipped with binary detectors. Note that binary detec-
tors can provide only one bit of data indicating the pres-
ence or absence of a target in the sensing radius. Our
algorithms aim to detect and track a single object (target)
in the network.

We consider the scenario that all mobile sensors are
deployed from the central base station. They disperse
from the base station as far as possible to detect the
object while preserving the connectivity with other sen-
sors. Note that preserving connectivity is a very impor-
tant issue in the target tracking problem since the sensors
should handover the tracking results to the base station.

4. CA MODEL FOR THE TARGET
TRACKING PROBLEM

We have a two-dimensional (2D) CA A =
(L, S,N, f) for simulating MWSNs for the target track-
ing problem. We design a movement rule of a sensor
based on the radius 1 Moore neighborhood. Assume that
there is a sensor s(c) on the central cell c. Then, s(c)
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can move any of nine cells within radius 1. If s(c) moves
out of the cell c and no other sensor comes in, then bi
becomes 0.

4.1 Movement Rules
Basically, our rules for sensor movement are based on

the movement rule of Choudhury et al. [4]. The major
concern of their rules is to disperse sensors for maximiz-
ing the coverage of MWSN while maintaining connec-
tivity. According to our scenario, sensors start from the
base station located at the center. We also should disperse
the sensors for the better coverage since the coverage is
a very important measurement for tracking quality. How-
ever, we should more carefully consider the possibility of
connectivity breaks, because we may lose the target due
to the connectivity breaks.

We consider the states of (2·Rc+1)2−1 cells around a
sensor to determine the movement of the sensor. Because
some of cells are empty, we consider at most (2 · Rc +
1)2 − 1 sensors around the sensor. First, we determine
the movement of a sensor in the x-direction. The weights
are assigned to the sensors within Rc. For the sensors at
distance d in the x-direction, we assign Rc − d. Next we
calculate the sum of weights of sensors in the positive and
negative x-direction, separately. Suppose w+ and w− are
the values. Then, the movement of the sensor in the x-
direction is determined as follows:

• No move: if −k < w− − w+ < k,
• Left move: if w− − w+ < −k, and
• Right move: if w− − w+ > k,

where k is a threshold. We can determine the movement
in the y-direction analogously. This rule just disperses
sensors from each other and breaks the connectivity be-
tween sensors at last. For this reason, we designed an
additional rule called the neighbor count rule. Given two
thresholds k1, k2 where k1 < k2, a sensor does not move
if k1 ≤ n ≤ k2, where n is the number of sensors located
within Rc from the cell. This prevents the sensors on the
boundary of a MWSN from further movements. Fig. 1
shows the results when we employ the neighbor count
rule with k1 = 3 and k2 = 5. Although the coverage of
the network is smaller than the case without the rule, the
sensors still maintain a high connectivity after the disper-
sion. The important thing to note is the boundary of the
MWSN. In Fig. 1(a), all sensors even at the boundary are
connected to at least two other sensors. This is very im-
portant when the target goes out of the boundary and the
MWSN loses the target. We explain the reason when we
discuss the problem of handling lost targets in Section 4.4.

4.2 Rules for Energy-Efficiency
As mentioned in Section 3., energy-efficiency is one

of the significant issues in a MWSN for target tracking.
Therefore, we need to control the states of the sensors in
a MWSN to decrease energy consumption. The sensor
activation strategy is used for this problem and Pattem et

(a) (b)

Fig. 1: Comparison of two configurations after 500 time
steps: a) with the neighbor count rule and b) without the
rule.

al. [13] studied several generic activation strategies and
compared the performance. Clearly, it seems that selec-
tive activation with prediction is the best strategy for sen-
sor activation problem when there is a target in a MWSN.
However, the strategy does not consider the case when
there is no object in the MWSN or the MWSN loses the
target during the tracking. This implies that sensors in
the MWSN should be active to detect the region where
the object can appear.

The MWSN should sense the area as much as possi-
ble before the target appears. That means we need to
consider the problem of maximizing the coverage of the
MWSN while saving energy consumption. Many previ-
ous researches on this problem use the information from
neighboring sensors [6], [7], [11]. If there are enough
number of active sensors around the active sensor, turn
the sensor into the stand-by state. Similarly, if there are
not enough number of active sensors around the stand-by
sensor, turn the sensor into the active state. We adopt a
similar approach for this problem. Our sensor activation
strategy is as follows:

• If a sensor in the active state has more than n1 active
neighbors, then it should move into the stand-by state;
• If a sensor in the stand-by state has less than n2 active
neighbors, then it should move into the active state.

This sensor activation rule is more energy-efficient than
naive activation rule since some of sensors are in the
stand-by state by the rule. Furthermore, the MWSN fol-
lowing our activation rule still covers enough area. We
save the extra energy consumption wasted from the over-
laps of sensing area between sensors. Our rule randomly
applies to all sensors whose alerting states are “normal”.

4.3 Tri-Level Alerting System
The tri-level alerting system is the main idea of our

model. When a target is detected by some sensors in the
MWSN, the sensors deliver the information to all other
sensors by this system. If the MWSN has a central base
station broadcasting the information, the problem may be
simpler because we can efficiently control the sensors by
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the base station. However, the problem is more compli-
cated since we study a fully distributed MWSN that has
no base station. The CA rules for the tri-level alerting
system are as follows:

• Initially, the alerting states of all sensors begin with
“normal” states;
• If a sensor detects a target by sensing environment,
then the alerting state of the sensor turns into “detected”;
• If a sensor has any sensor whose alerting state is “de-
tected”, then the alerting state of the sensor changes into
“1-level alerted”;
• If a sensor has any sensor whose alerting state is “1-
level alerted”, then the alerting state of the sensor changes
into “2-level alerted”;
• If a sensor has any sensor whose alerting state is “2-
level alerted”, then the alerting state of the sensor changes
into “final alerted”.

These rules are to notify that the target is detected by
some sensors. The alerting states are used to activate or
inactivate the sensors to save energy consumption. We
change the activity of sensors according to the alerting
states. We set the states of sensors to active for sensors
whose alerting states are “detected”, “1-level alerted”, or
“2-level alerted”. On the other hand, we set the states of
sensors to stand-by for sensors whose alerting states are
“final alerted”. Intuitively, we force the sensors who de-
tected the target and the sensors around them to be active
and otherwise, force the sensors to be stand-by. Then,
the MWSN can track the moving target in an energy-
efficient way since only a small subset of active sensors
track the target while other stand-by sensors save their
energy. See Fig. 2 for example.

Fig. 2: The gray region means the area being sensed
by sensors activated by the tri-level alerting system. The
other sensors are “final alerted”, and thus in the stand-by
state.

4.4 Rules for Handling Lost Target
The proposed model should be able to manage the sit-

uation when a MWSN lose the target. Note that the tri-

level alerting system only activates a subset of sensors
around the detected target for the energy-efficiency of the
MWSN. Therefore, when the target is lost during the tar-
get tracking phase, all sensors are forced to be in stand-by
states as they are “final alerted” by other sensors. Then,
the MWSN does not sense the environment, and thus can-
not detect the target anymore. This is the reason why we
need additional rules for handling lost target.

Now we introduce rules for handling this situation.
When a MWSN lose a target, the sensors who are alerted
most recently should broadcast the loss of the target to all
of sensors in the MWSN to activates them. This is im-
plemented as the “miss alerted” state in our CA rule. The
rules are as follows:

• The rules only apply to the sensors whose current alert-
ing state is “detected” and changes into other states in the
next time step,
• If there is no neighboring sensors whose alerting state
is “detected”, the alerting state of the sensor changes into
“miss alerted” in the next time step.

Note that once any sensor changes into the “miss alerted”
state, the alerting state does not change by the other
sensors. We assume that each sensor contains an own
counter and begins counting the time steps after it be-
comes “miss alerted”. After a certain amount of time
steps, these sensors turn into the “normal” state.

4.5 Rule Hierarchy
Now we review the proposed rules and introduce an

integrated verification rule for a sensor to determine the
next state in the CA. The proposed rules have hierarchy
to be applied to the sensors. We introduce the rules in
order of the hierarchy of rules.

1. If an activate sensor detects the target, then the alerting
state turns into “detected”.
2. A sensor in “miss alerted” state only changes the alert-
ing state by the own counter of the sensor.
3. If any neighboring sensor is in the “detected” state,
then the alerting state turns into “1-level alerted”.
4. If any neighboring sensor is in the “1-level alerted”
state, then the alerting state turns into “2-level alerted”.
5. If any neighboring sensor is in the “miss alerted” state
and the alerting state is not “normal”, then the alerting
state turns into “miss alerted”.
6. If any neighboring sensor is in the “2-level alerted”
state, then the alerting state turns into “final alerted”.

The important thing to note is the hierarchy between the
rules for the tri-level alerting system and the rules for han-
dling lost target. When the target is lost, the sensors de-
liver the information with the “miss alerted” state prior to
the rules for the tri-level alerting system. Once all sensors
in the MWSN turns into “miss alerted” states, the alert-
ing states of them do not change by the other sensors and
turns into the “normal” state by individual counters.
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5. SIMULATION RESULTS
We present the simulation results of our model com-

pared to the other basic strategies. The strategies used for
comparisons are the naive activation and the randomized
activation strategies. We also compared with the strategy
only using the energy-efficient activation rule and called
the strategy Count.

We provide the experimental set-up of our simulations.
We deploy 400 sensors on the center of the grid. Each
sensor can sense the area where the distance is up to 3
and communicate with the sensors at the distance up to
6. Simply, Rc = 6 and Rs = 3. The sensor initially
has a battery of 5J and consumes 0.165J when active and
0.0006J when stand-by. We set two parameters k1 and k2
for the neighbor count rule to 3 and 5, respectively.

Fig. 3 shows the average coverage of the given four
strategies including our model. Because we randomly
activates the sensors with 50%, the results of the naive
and randomized strategies are reasonable. The coverage
of the Count strategy remains much longer than the naive
and randomized strategy as we expected. The coverage of
our strategy is irregular due to the moving target. We re-
mind that in our strategy, if the MWSN lose the target, all
sensors turn into the “miss alerted” state and reactivated
following the energy-efficient rule.

0 

2000 

4000 

6000 

8000 

10000 

12000 

1
 

9
9

 

1
9

7
 

2
9

5
 

3
9

3
 

4
9

1
 

5
8

9
 

6
8

7
 

7
8

5
 

8
8

3
 

9
8

1
 

1
0

7
9

 

1
1

7
7

 

1
2

7
5

 

1
3

7
3

 

1
4

7
1

 

1
5

6
9

 

1
6

6
7

 

1
7

6
5

 

1
8

6
3

 

1
9

6
1

 

2
0

5
9

 

2
1

5
7

 

2
2

5
5

 

2
3

5
3

 

C
o

ve
ra

ge
 

Timestep 

Naive Proposed Randomized Count 

Fig. 3: The graph shows the average coverage of strate-
gies. The positive x-direction means the flow of the dis-
crete time step.

Fig. 4 shows the total residual energy of the MWSN.
That means the sum of residual energy in all sensors. This
figure indicates that our strategy remarkably saves much
more energy than other strategies.

Table 2 compares the simulation results of four strate-
gies in terms of lifetime, tracking quality, and tracking
success rate. Our strategy shows the longest lifetime than
other strategies. The Count strategy shows longer life-
time than the randomized strategy. The naive strategy is
the worst strategy when it comes to the lifetime. Track-
ing error rate is defined as the average difference between
the estimated location by the sensors and the actual loca-
tion of the target. Tracking success rate is measured with
the first 300 time steps of MWSNs since the average life-
time of the naive strategy is slightly over 300. Since we

0 

500 

1000 

1500 

2000 

2500 

1
 

9
9

 

1
9

7
 

2
9

5
 

3
9

3
 

4
9

1
 

5
8

9
 

6
8

7
 

7
8

5
 

8
8

3
 

9
8

1
 

1
0

7
9

 

1
1

7
7

 

1
2

7
5

 

1
3

7
3

 

1
4

7
1

 

1
5

6
9

 

1
6

6
7

 

1
7

6
5

 

1
8

6
3

 

1
9

6
1

 

2
0

5
9

 

2
1

5
7

 

2
2

5
5

 

2
3

5
3

 

To
ta

l R
e

si
d

u
al

 E
n

e
rg

y 

Timestep 

Naive Proposed Randomized Count 

Fig. 4: The graph shows the average residual energy of
strategies. The positive x-direction means the flow of the
discrete time step.

only compares the first 300 time steps, the naive strategy
shows the best result among four strategies. Even though
our model is slightly worse than the naive one, the life-
time is almost seven times longer than the naive strategy.
The randomized and the Count strategies show the trade-
off between the lifetime and the tracking quality of the
MWSN.

Table 2: The table shows the comparisons of four strate-
gies including the proposed model. We compared the
strategies in terms of lifetime, tracking error (TE), and
tracking success rate (TSR).

Strategy Naive Random Count Proposed
Lifetime 302.54 704.52 1523.54 2512.67
TE 1.09 1.78 2.14 1.11
TSR (%) 100 76.85 39.60 99.66

6. CONCLUSIONS

We have introduced a cellular automaton model for
the distributed MWSN. Especially, we have considered
the specialized MWSN for the target tracking problem.
We have proposed the tri-level alerting system and addi-
tional rules for handling lost target. Our model exhibits
relatively longer lifetime than other basic strategies while
maintaining high tracking quality.

In future, we take into consideration the energy con-
sumption from the movements of sensors. By designing
the movements of sensors more efficiently, we can pro-
vide a better CA model for MWSNs.
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