Outfix-Free Regular Languages and Prime Outfix-Free Decomposition^{*}

Yo-Sub Han and Derick Wood

Department of Computer Science, The Hong Kong University of Science and Technology {emmous, dwood}@cs.ust.hk

Abstract. A string x is an outfix of a string y if there is a string w such that $x_1wx_2 = y$, where $x = x_1x_2$ and a set X of strings is outfix-free if no string in X is an outfix of any other string in X. We examine the outfix-free regular languages. Based on the properties of outfix strings, we develop a polynomial-time algorithm that determines the outfix-freeness of regular languages. We consider two cases: A language is given as a set of strings and a language is given by an acyclic deterministic finite-state automaton. Furthermore, we investigate the prime outfix-free decomposition of outfix-free regular languages and design a linear-time prime outfix-free the uniqueness of prime outfix-free decomposition.

1 Introduction

Codes play a crucial role in many areas such as information processing, date compression, cryptography, information transmission and so on [14]. They are categorized with respect to different conditions (for example, *prefix-free, suffix-free, infix-free* or *outfix-free*) according to the applications [11,12,13,15]. Since a code is a set of strings, it is a *language*. The conditions that classify code types define proper subfamilies of given language families. For regular languages, for example, prefix-freeness defines the family of prefix-free regular language, which is a proper subfamily of regular languages.

Based on such subfamilies of regular language, researchers have investigated properties of these languages as well as their decomposition problems. A decomposition of a language L is a catenation of several languages L_1, L_2, \ldots, L_k such that $L = L_1 L_2 \cdots L_k$ and $k \ge 2$. If L cannot be further decomposed except for $L \cdot \{\lambda\}$ or $\{\lambda\} \cdot L$, where λ is the null-string, we say that L a prime language.

Czyzowicz et al. [5] studied prefix-free regular languages and the prime prefixfree decomposition problem. They showed that the prime prefix-free decomposition of a prefix-free language is unique and demonstrated the importance of prime prefix-free decomposition in practice. Prefix-free regular languages are often used in the literature: to define the determinism of generalized automata [6] and of expression automata [10], and to represent a pattern set [9].

^{*} The authors were supported under the Research Grants Council of Hong Kong Competitive Earmarked Research Grant HKUST6197/01E.

Recently, Han et al. [8] studied infix-free regular languages and developed an algorithm to determine whether or not a given regular expression defines an infix-free regular language. They also designed an algorithm for computing the prime infix-free decomposition of infix-free regular languages and showed that the prime infix-free decomposition is not unique. Infix-free regular languages give rise to faster regular-expression text matching [2]. Infix-free languages are also used to compute forbidden words [1,4].

As a continuation of our investigations of subfamilies of regular languages, it is natural to examine outfix-free regular languages and the prime outfix-free decomposition problem. Note that Ito and his co-researchers [12] showed that an outfix-free regular language is finite and Han et al. [7] demonstrated that the family of outfix-free regular languages is a proper subset of the family of simple-regular languages. On the other hand, there was no known efficient algorithm to determine whether or not a given finite set of strings is outfix-free apart from using brute force. Furthermore, the decomposition of a finite set of strings is not unique and the computation of the decomposition is believed to be NP-complete [17]. Therefore, our goal is to develop an efficient algorithm for determining outfix-freeness of a given finite language and to investigate the prime outfix-free decomposition and its uniqueness.

We define some basic notions in Section 2 and propose an efficient algorithm to determine outfix-freeness in Section 3. Then, in Section 4, we show that an outfix-free regular language has a unique prime outfix-free decomposition and the unique decomposition can be computed in linear time in the size of the given finite-state automaton. We suggest some open problems and conclude this paper in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ^* denote the set of all strings over Σ . A language over Σ is any subset of Σ^* . The character \emptyset denotes the empty language and the character λ denotes the null string. Given a string $x = x_1 \cdots x_n$, |x| is the number of characters in x and $x(i, j) = x_i x_{i+1} \cdots x_j$ is the substring of x from position i to position j, where $i \leq j$. Given two strings x and y in Σ^* , x is said to be an *outfix* of y if there is a string w such that $x_1wx_2 = y$, where $x = x_1x_2$. For example, *abe* is an outfix of *abcde*. Given a set X of strings over Σ , X is *outfix-free* if no string in X is an outfix of any other string in X. Given a string x, let x^R be the reversal of x, in which case $X^R = \{x^R \mid x \in X\}$.

A finite-state automaton A is specified by a tuple $(Q, \Sigma, \delta, s, F)$, where Q is a finite set of states, Σ is an input alphabet, $\delta \subseteq Q \times \Sigma \times Q$ is a (finite) set of transitions, $s \in Q$ is the start state and $F \subseteq Q$ is a set of final states. Let |Q|be the number of states in Q and $|\delta|$ be the number of transitions in δ . Then, the size |A| of A is $|Q| + |\delta|$. Given a transition (p, a, q) in δ , where $p, q \in Q$ and $a \in \Sigma$, we say p has an *out-transition* and q has an *in-transition*. Furthermore, p is a *source state* of q and q is a *target state* of p. A string x over Σ is accepted by A if there is a labeled path from s to a final state in F that spells out x. Thus, the language L(A) of a finite-state automaton A is the set of all strings spelled out by paths from s to a final state in F. We define A to be *non-returning* if the start state of A does not have any in-transitions and A to be *non-exiting* if a final state of A does not have any out-transitions. We assume that A has only *useful* states; that is, each state appears on some path from the start state to some final state.

3 Outfix-Free Regular Languages

We first define outfix-free regular expressions and languages, and then present an algorithm to determine whether or not a given language is outfix-free. Since prefix-free, suffix-free, infix-free and outfix-free languages are related to each other, we define all of them and show their relationships.

Definition 1. A language L is

- prefix-free if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not prefixes of each other.
- suffix-free if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not suffixes of each other.
- bifix-free if L is prefix-free and suffix-free.
- infix-free if, for all distinct strings $x, y \in \Sigma^*$, $x \in L$ and $y \in L$ imply that x and y are not substrings of each other.
- outfix-free if, for all distinct strings $x, y, z \in \Sigma^*$, $xz \in L$ and $xyz \in L$ imply $y = \lambda$.
- hyper if L is infix-free and outfix-free.

For further details and definitions, refer to Ito et al. [12] or Shyr [18].

We say that a regular expression E is outfix-free if L(E) is outfix-free. The language defined by such an outfix-free regular expression is called an *outfix-free regular language*. In a similar way, we can define prefix-free, suffix-free and infix-free regular expressions and languages.

Fig. 1. A diagram to show inclusions of families of languages, where p,s,i,o and h denote prefix-free, suffix-free, infix-free , outfix-free and hyper families, respectively, and u denotes Σ^* . Note that the outfix-free family is a proper subset of the prefix-free and suffix-free families and the hyper family is the common intersection between the infix-free family and the outfix-free family.

Let $A = (Q, \Sigma, \delta, s, F)$ denote a deterministic finite-state automaton (DFA) for L. Han and Wood [10] showed that if A is non-exiting, then L is prefix-free. Han et al. [8] proposed an algorithm to determine whether or not a given regular expression E is infix-free in $O(|E|^2)$ worst-case time. This algorithm can also solve the prefix-free and suffix-free cases as well. Therefore, it is natural to design an algorithm to determine whether or not a given regular language is outfix-free. Since an outfix-free regular language L is finite [12,14], the problem is decidable by comparing all pairs of strings in L, although it is certainly undesirable to do so.

3.1 Prefix-Freeness

Since the family of outfix-free regular languages is a proper subfamily of prefixfree regular languages as shown in Fig. 1, we consider prefix-freeness of a finite language first.

Given a finite set of strings $W = \{w_1, w_2, \ldots, w_n\}$, where *n* is the number of strings in *W*, we construct a trie *T* for *W*. A trie is an ordered tree data structure that is used to store a set of strings and each edge in the tree has a single character label. For details on tries, refer to data structure textbooks [3,19]. Assume that w_i is a prefix of w_j , where $i \neq j$; it implies that $|w_i| < |w_j|$. Then, w_i and w_j must have the common path in *T* from the root to the *i*th node *q* that spells out w_i . Therefore, if we reach *q* while constructing the path for w_j in *T*, we recognize that w_i is a prefix of w_j . Let us consider the case when we construct a path for w_j first and, then, construct a path for w_i in *T*. The path for w_i ends at the $|w_i|$ th node *q* that already has a child node for the path for w_j . Therefore, we know that w_i is a prefix of some other string. Note that we can construct a trie for *W* in $O(|w_1| + |w_2| + \cdots + |w_n|)$ time, which is linear in the size of *W*.

Lemma 1. Given a finite set W of strings, we can determine whether or not W is prefix-free in linear time in the size of W by constructing a trie for W. We can also determine suffix-freeness of W in the same runtime by constructing a trie for W^R .

3.2 Outfix-Freeness

We now consider outfix-freeness. Assume that we have two distinct strings w_1 and w_2 and w_2 is an outfix of w_1 . It implies that $w_1 = xyz$ for some strings x, y and z such that $w_2 = xz$ and $y \neq \lambda$. Moreover, w_1 and w_2 have the common prefix x and the common suffix z. Fig. 2 illustrates it.

Based on these observations, we determine whether or not one string w_1 is an outfix of another string w_2 for two given strings w_1 and w_2 , where $|w_1| \ge |w_2|$. We compare two characters, one from w_1 and the other from w_2 , from left to right (from 1 to $|w_2|$) until two compared characters are different; say the *i*th characters are different. If we completely read w_2 , then we recognize that w_2 is a prefix of w_1 and, therefore, w_2 is an outfix of w_1 . We repeat these character-by-character comparisons from right to left (from $|w_2|$ to 1) until we have two

Fig. 2. A graphical illustration of an outfix string; *abcbaa* is an outfix of *abcaabbbaa*

different characters. Assume that the *j*th characters are different. If i > j, then w_2 is an outfix of w_1 . Otherwise, w_2 is not an outfix of w_1 . For example, i = 4 and j = 3 in Fig. 2.

Lemma 2. Given two strings w_1 and w_2 , where $|w_1| \ge |w_2|$, w_2 is an outfix of w_1 if and only if there is a position i such that $w_2(1,i)$ is a prefix of w_1 and $w_2(i+1,|w_2|)$ is a suffix of w_1 .

Let us consider the trie T for w_1 and w_2 . Since w_1 and w_2 have the common prefix, both strings share the common path from the root to a node q of height ithat spells out $w_2(1, i)$. Moreover, the path for $w_2(i+1, |w_2|)$ in T is a suffix-path for $w_1(i+1, |w_1|)$ in T. For example, in Fig. 3, the path for x is the common prefix-path and the path for z is the common suffix-path. Thus, if a given finite set W of strings is not outfix-free, then there is such a pair of strings. Since a node $q \in T$ gives the common prefix for all strings that pass through q, we only need to check whether some path from q to a leaf is a suffix-path for some other path from q to another leaf.

Let T(q) be the subtree of T rooted at $q \in T$. Then, we can determine whether or not a path from q is a suffix-path for another path from q in T(q) by determining the suffix-freeness of all paths from q to a leaf in T(q) based on the same algorithm for Lemma 1. The running time is linear in the the size of T(q).

Fig. 3. An example of a trie for strings $w_1 = xyz$ and $w_2 = xz$. Note that both paths end with the same subpath sequence in the trie since w_1 and w_2 have the common suffix z.

3.3 Complexity of Outfix-Freeness

The subfunction is_prefix-free(T) in Fig. 4 determines whether or not the set of strings represented by a given trie T is prefix-free. Note that is_prefix-free(T) runs in O(|T|) time, where |T| is the number of nodes in T.

Given a finite set $W = \{w_1, w_2, \ldots, w_n\}$ of strings, we can construct a trie T in $O(\sum_{i=1}^n |w_i|)$ time and space, which is linear in the size of W, where $n \ge 1$. Prefix-freeness and suffix-freeness can be verified in linear time. Thus, the total running time for the algorithm Outfix-freeness (OFF) in Fig. 4 is

$$O(|T|) + \sum_{q \in T} |T(q)|,$$

where q is a node that has more than one child. In the worst-case, we have to examine all nodes in T; for example, T is a complete tree, where each internal node has the same number of children. To compute the size of $\sum |T(q)|$, let us consider a string $w_i \in W$ that makes a path P from the root to a leaf in T. If a node $q \in T$ of height j in path P has more than one child, then the suffix $w_i(j + 1, |w_i|)$ of w_i that starts from q is used in is_suffix-free(T(q)) in OFF. In the worst-case, all suffixes of w_i can be used by is_suffix-free(T(q)). Therefore, w_i contributes $O(|w_i|^2)$ to the total running time of OFF. Fig. 5 illustrates a worst-case example.

Therefore, the total time complexity is $O(|w_1|^2 + |w_2|^2 + \dots + |w_n|^2)$ in the worse case. If the size of w_i is O(k), for some k, then the running time is $O(k^2n)$. On the other hand, the all-pairs comparison approach gives $O(kn^2)$ worst-case running time. Note that the size of each string in W is usually much smaller than the number of strings in W; namely, $k \ll n$.

Theorem 1. Given a finite set $W = \{w_1, w_2, \ldots, w_n\}$ of strings, we can determine whether or not W is outfix-free in $O(\sum_{i=1}^{n} |w_i|^2)$ time using $O(\sum_{i=1}^{n} |w_i|)$ space in the worse-case.

Outfix-freeness($W = \{w_1, w_2, \dots, w_n\}$) Construct a trie T for Wif (is_prefix-free(T) = no) then return no if (is_suffix-free(T) = no) then return no for each $q \in T$ that has more than one child if (is_suffix-free(T(q)) = no) then return no return yes

Fig. 4. An outfix-freeness checking algorithm for a given finite set of strings

Fig. 5. All suffixes of a string w in T are used to determine the outfix-freeness by OFF. The size of the sum of all suffixes is $O(|w|^2)$.

Now we characterize the family of outfix-free (regular) languages in terms of closure properties.

Theorem 2. The family of outfix-free (regular) languages is closed under catenation and intersection but not under union, complement or star.

Proof. We only prove the catenation case. The other cases can be proved straightforwardly.

Assume that $L = L_1 \cdot L_2$ is not outfix-free whereas L_1 and L_2 are outfix-free. Then, there are two distinct strings s and $t \in L$, where t is an outfix of s. Namely, s = xyz, t = xz and $y \neq \lambda$. Since s and t are catenation of two strings from L_1 and L_2 , s and t can be partitioned into two parts; $s = s_1s_2$ and $t = t_1t_2$, where $s_i, t_i \in L_i$ for i = 1, 2. From the assumption that t is an outfix of s, s and t have the common prefix and the common suffix as shown in Fig. 6. If we decompose s and t into s_1s_2 and t_1t_2 , then we have one of the following four cases:

- 1. s_1 is a prefix of t_1 .
- 2. t_1 is a prefix of s_1 .
- 3. s_2 is a suffix of t_2 .
- 4. t_2 is a suffix of s_2 .

Let us consider the first case as illustrated in Fig. 6. Since s_1 is a prefix of t_1 and $s_1, t_1 \in L_1, L_1$ is not outfix-free — a contradiction. We can use a similar argument for the other three cases.

Fig. 6. The figure illustrates the first case in the proof of Theorem 2, where s_i and $t_i \in L_i$ for i = 1, 2. Since s_1 is a prefix of t_1, L_1 is not outfix-free.

3.4 Outfix-Freeness of Acyclic Deterministic Finite-State Automata

Acyclic deterministic finite-state automata (ADFAs) are a proper subfamily of DFAs that define finite languages. For example, a trie is an ADFA. Since ADFAs represent finite languages, they are often used to store a finite number of strings. Moreover, ADFAs require less space than tries. For instance, we use $O(|\Sigma|^5)$ space to store all strings of length 5 over Σ in a trie. On the other hand, we use 6 states with $5 \times |\Sigma|$ transitions in an ADFA. We consider outfix-freeness of a language given by an ADFA $A = (Q, \Sigma, \delta, s, f)$. Given A and a state $q \in Q$, we define the *right language* $L_{\overrightarrow{q}}$ to be the set of strings spelled out by paths from q to f.

Assume that two strings $w_1 = xyz$ and $w_2 = xz$ are accepted by A, where w_2 is an outfix of w_1 . Note that w_1 and w_2 have the common prefix x and the common suffix z and there is a unique path from s to a state q that spells out x in A since A is deterministic. Then, yz and z are accepted by $A_{\overrightarrow{q}}$. It means that $L_{\overrightarrow{q}}$ is not suffix-free.

Lemma 3. Given an ADFA $A = (Q, \Sigma, \delta, s, f)$, L(A) is outfix-free if and only if $L_{\overrightarrow{q}}$ is suffix-free for any state $q \in Q$.

Proof.

 \implies Assume that $L_{\overrightarrow{q}}$ is not suffix-free. Then, there are two strings w_1 and w_2 in $L_{\overrightarrow{q}}$, where w_2 is a suffix of w_1 . Since A has only useful states, there must be a path from s to q that spells out a string x. It implies that A accepts both xw_1 and xw_2 , where xw_2 is an outfix of xw_1 — a contradiction. Therefore, if L(A) is outfix-free, then $L_{\overrightarrow{q}}$ is suffix-free for any state $q \in Q$.

Recently, Han et al. [8] proposed algorithms to determine prefix-freeness, suffix-freeness, bifix-freeness and infix-freeness of a given a (nondeterministic) finite-state automaton $A = (Q, \Sigma, \delta, s, f)$ in $O(|Q|^2 + |\delta|^2)$ time. We use their algorithm to check suffix-freeness for each state. Given an ADFA $A = (Q, \Sigma, \delta, s, f)$ and a state $q \in Q$, the size of $A_{\overrightarrow{q}}$ is at most the size of A; namely, $|A_{\overrightarrow{q}}| \leq |A|$. Since it takes $O(|Q|^2 + |\delta|^2)$ time for each state to check suffix-freeness and there are |Q| states, the total time complexity to determine outfix-freeness of A is $O(|Q|^3 + |Q||\delta|^2)$. Since a DFA has a constant number of out-transitions from a state, we obtain the following result.

Theorem 3. Given an ADFA $A = (Q, \Sigma, \delta, s, f)$, we can determine outfixfreeness of L(A) in $O(|Q|^3)$ worst-case time. Furthermore, we determine infix-freeness of L(A) after an outfix-freeness test. If L(A) is infix-free and outfix-free, then L(A) is hyper. Since the time complexity for the infix-freeness test is $O(|Q|^2)$ for A [8], we can determine hyperness of L(A)in $O(|Q|^3)$ time as well.

Theorem 4. Given an ADFA $A = (Q, \Sigma, \delta, s, f)$, we can determine hyperness of L(A) in $O(|Q|^3)$ worst-case time.

4 Prime Outfix-Free Regular Languages and Prime Decomposition

Decomposition is the reverse operation of catenation. If $L = L_1 \cdot L_2$, then L is the catenation of L_1 and L_2 and $L_1 \cdot L_2$ is a decomposition of L. We call L_1 and L_2 factors of L. Note that every language L has a decomposition, $L = \{\lambda\} \cdot L$, where L is a factor of itself. We call $\{\lambda\}$ a trivial language. We define a language L to be prime if $L \neq L_1 \cdot L_2$ for any two non-trivial languages. Then, the prime decomposition of L is to decompose L into $L_1 \cdot L_2 \cdot \ldots \cdot L_k$, where L_1, L_2, \ldots, L_k are prime languages and $k \geq 1$ is a constant.

Mateescu et al. [16,17] showed that the primality of regular languages is decidable and the prime decomposition of a regular language is not unique even for finite languages. Furthermore, they pointed out that no star language L $(L = K^*, \text{ for some } K)$ can possess a prime decomposition. Czyzowicz et al. [5] considered prefix-free regular languages and showed that the prime prefix-free decomposition for a prefix-free regular language L is unique and the unique decomposition for L can be computed in O(m) worst-case time, where m is the size of the minimal DFA for L. Recently, Han et al. [8] investigated the prime infix-free decomposition of infix-free regular languages and demonstrated that the prime infix-free decomposition is not unique.

We examine prime outfix-free regular languages and decomposition. Even though outfix-free regular languages are finite [12], the primality test for finite languages is believed to be NP-complete [17]. Thus, the decomposition problem for finite languages is not trivial at all. We design a linear-time algorithm to determine whether or not a given finite language L is prime outfix-free. We investigate prime outfix-free decompositions and uniqueness.

4.1 Prime Outfix-Free Regular Languages

Definition 2. A regular language L is a prime outfix-free language if $L \neq L_1 \cdot L_2$ for any outfix-free regular languages L_1 and L_2 .

From now on, when we say prime, we mean prime outfix-free. Since we are dealing with outfix-free regular languages, there are no back-edges in finitestate automata for such languages. Furthermore, these finite-state automata are always non-exiting and non-returning. Note that if a finite-state automaton is non-exiting and has several final states, then all final states are equivalent and, therefore, are merged into a single final state. **Definition 3.** We define a state b in a DFA A to be a bridge state if the following two conditions hold:

- 1. State b is neither a start nor a final state.
- 2. For any string $w \in L(A)$, its path in A must pass through b. Therefore, we can partition A at b into two subautomata A_1 and A_2 .

Given a DFA $A = (Q, \Sigma, \delta, s, f)$ and a bridge state $b \in Q$, where L(A) is outfix-free, we can partition A into two subautomata A_1 and A_2 as follows: $A_1 = (Q_1, \Sigma, \delta_1, s, b)$ and $A_2 = (Q_2, \Sigma, \delta_2, b, f)$, where Q_1 is a set of states of A that appear on some path from s to b in A, $Q_2 = Q \setminus Q_1 \cup \{b\}$, δ_2 is a set of transitions of A that appear on some path from b to f in A and $\delta_1 = \delta \setminus \delta_2$. Fig. 7 illustrates a partition at a bridge state.

Fig. 7. An example of partitioning of an automaton at a bridge state b

It is easy to verify that $L(A) = L(A_1) \cdot L(A_2)$ from the second requirement in Definition 3.

Lemma 4. If a minimal DFA A has a bridge state, where L(A) is outfix-free, then L(A) is not prime.

Proof. Since A has a bridge state b, we can partition A into A_1 and A_2 at b. We establish that $L(A_1)$ and $L(A_2)$ are outfix-free and, therefore, L(A) is not prime. Assume that $L(A_1)$ is not outfix-free. Then, there are two distinct strings u and v accepted by A_1 , where v is an outfix of u; namely, u = xyz and v = xz for some strings x, y and z. Let w be a string from $L(A_2)$. Since $L(A) = L(A_1) \cdot L(A_2)$, both uw = xyzw and vw = xzw are in L(A). It contradicts the assumption that L(A) is outfix-free. Therefore, if L(A) is outfix-free, then $L(A_1)$ should be outfix-free as well. With a similar argument, we can show that $L(A_2)$ should be outfix-free. Hence, if A has a bridge state, then L(A) can be decomposed as $L(A_1) \cdot L(A_2)$, where $L(A_1)$ and $L(A_2)$ are outfix-free, and, therefore, L(A) is not prime.

Lemma 5. If a minimal DFA A does not have any bridge states and L(A) is outfix-free, then L(A) is prime.

Proof. Assume that L is not prime. Then, L can be decomposed as $L_1 \cdot L_2$, where L_1 and L_2 are outfix-free. Czyzowicz et al. [5] showed that given prefix-free languages A, B and C such that $A = B \cdot C$, A is regular if and only if B and C are regular. Thus, if L is regular, then L_1 and L_2 must be regular since all outfix-free languages are prefix-free. Let A_1 and A_2 be minimal DFAs for L_1 and L_2 , respectively. Since A_1 and A_2 are non-returning and non-exiting, there are only one start state and one final state for each of them. We catenate A_1 and A_2 by merging the final state of A_1 and the start state of A_2 as a single state b. Then, the catenated automaton is the minimal DFA for $L(A_1) \cdot L(A_2) = L$ and has a bridge state b - a contradiction.

We can rephrase Lemma 4 as follows: If L is prime, then its minimal DFA does not have any bridge states. Then, from Lemmas 4 and 5, we obtain the following result.

Theorem 5. An outfix-free regular language L is prime if and only if the minimal DFA for L does not have any bridge states.

Lemma 4 shows that if a minimal DFA A for an outfix-free regular language L has a bridge state, then we can decompose L into a catenation of two outfix-free regular languages using bridge states. In addition, if we have a set B of bridge states for A and decompose A at b, then $B \setminus \{b\}$ is the set of bridge states for the resulting two automata after the decomposition.

Theorem 6. Let A be a minimal DFA for an outfix-free regular language that has k bridge states. Then, L(A) can be decomposed into k + 1 prime outfixfree regular languages, namely, $L(A) = L_1 L_2 \cdots L_{k+1}$ and $L_1, L_2, \ldots, L_{k+1}$ are prime.

Proof. Let (b_1, b_2, \ldots, b_k) be the sequence of bridge states from s to f in A. We prove the statement by induction on k. It is sufficient to show that L(A) = L'L'' such that L' is accepted by a DFA A' with k-1 bridge states and L'' is a prime outfix-free regular language.

We partition A into two subautomata A' and A'' at b_k . Note that L(A') and L(A'') are outfix-free languages by the proof of Lemma 4. Since A'' has no bridge states, L'' = L(A'') is prime by Theorem 5. By the definition of bridge states, all paths must pass through $(b_1, b_2, \ldots, b_{k-1})$ in A' and, therefore, A' has k-1 bridge states. Thus, if A has k bridge states, then L(A) can be decomposed into k+1 prime outfix-free regular languages.

Note that Theorem 6 guarantees the uniqueness of prime outfix-free decomposition. Furthermore, finding the prime decomposition of an outfix-free regular language is equivalent to identifying bridge states of its minimal DFA by Theorems 5 and 6. We now show how to compute a set of bridge states defined in Definition 3 from a given minimal DFA A in O(m) time, where m is the size of A. Let G(V, E) be a labeled directed graph for a given minimal DFA $A = (Q, \Sigma, \delta, s, f)$, where V = Q and $E = \delta$. We say that a path in G is *simple* if it does not have a cycle.

Lemma 6. Let $P_{s,f}$ be a simple path from s to f in G. Then, only the states on $P_{s,f}$ can be bridge states of A.

Proof. Assume that a state q is a bridge state and is not on $P_{s,f}$. Then, it contradicts the second requirement of bridge states.

Assume that we have a simple path $P_{s,f}$ from s to f in G = (V, E), which can be computed in O(|V| + |E|) worst-case time. All states on $P_{s,f}$ form a set of candidate bridge states (CBS); namely, $CBS = (s, b_1, b_2, \dots, b_k, f)$.

We use DFS to explore G from s. We visit all states in CBS first. While exploring G, we maintain the following two values, for each state $q \in Q$,

anc: The index *i* of a state $b_i \in CBS$ such that there is a path from b_i to *q* and there is no path from $b_j \in CBS$ to *q* for j > i. The **anc** of b_i is *i*.

max: The index *i* of a state $b_i \in CBS$ such that there is a path from *q* to b_i and there is no path from *q* to b_j for i < j without visiting any state in CBS.

The **max** value of a state q means that there is a path from q to b_{max} . If b_i has a **max** value and **max** $\neq i + 1$, then it means that there is another simple path from b_i to b_{max} without passing through b_{i+1} .

When a state $q \in Q \setminus CBS$ is visited during DFS, q inherits **anc** of its preceding state. A state q has two types of child state: One type is a subset T_1 of states in CBS and the other is a subset T_2 of $Q \setminus CBS$; namely, all states in T_1 are candidate bridge states and all states in T_2 are not candidate bridge states. Once we have explored all children of q, we update **max** of q as follows:

$$\mathbf{max} = \max(\max_{q \in T_1}(q.\mathbf{anc}), \max_{q \in T_2}(q.\mathbf{max})).$$

Fig. 8 provides an example of DFS after updating (anc, max) for all states in G.

Fig. 8. An example of DFS that computes (anc, max), for each state in G, for a given $CBS = (s, b_1, b_2, b_3, b_4, b_5, b_6, f)$

If a state $b_i \in CBS$ does not have any out-transitions except a transition to $b_{i+1} \in CBS$ (for example, b_6 in Fig. 8), then b_i has (i, i + 1) when DFS is completed. Once we have completed DFS and computed (**anc**, **max**) for all states in G, we remove states from CBS that violate the requirements to be bridge states. Assume $b_i \in CBS$ has (i, j), where i < j. We remove $b_{i+1}, b_{i+2}, \ldots, b_{j-1}$ from CBS since that there is a path from b_i to b_j ; that is, there is another simple path from b_i to f. Then, we remove s and f from CBS. For example, we have $\{b_1, b_2\}$ after removing states that violate the requirements from CBS in Fig. 8. This algorithm gives the following result.

Theorem 7. Given a minimal DFA A for an outfix-free regular language:

- 1. We can determine the primality of L(A) in O(m) time,
- 2. We can compute the unique outfix-free decomposition of L(A) in O(m) time if L(A) is not prime,

where m is the size of A.

5 Conclusions

We have investigated the outfix-free regular languages. First, we suggested an algorithm to verify whether or not a given set $W = \{w_1, w_2, \ldots, w_n\}$ of strings is outfix-free. We then established that the verification takes $O(\sum_{i=1}^{n} |w_i|^2)$ worst-case time, where n is the number of strings in W. We also considered the case when a language L is given by an ADFA. Moreover, we have extended the algorithm to determine hyperness of L by checking infix-freeness using the algorithm of Han et al. [8].

We have demonstrated that an outfix-free regular language L has a unique outfix-free decomposition and the unique decomposition can be computed in O(m) time, where m is the size of the minimal DFA for L.

As we have observed, outfix-free regular languages are finite sets. However, this observation does not hold for the context-free languages. For example, the non-regular language, $\{w \mid w = a^i c b^i, i \ge 1\}$ is context-free, outfix-free and infinite. The decidability of outfix-freeness for context-free languages is open as is the prime decomposition problem. Moreover, there are non-context-free languages that are outfix-free; for example, $\{w \mid w = a^i b^i c^i, i \ge 1\}$. Thus, it is reasonable to investigate the properties and the structure of the family of outfix-free languages.

References

- M.-P. Béal, M. Crochemore, F. Mignosi, A. Restivo, and M. Sciortino. Computing forbidden words of regular languages. *Fundamenta Informaticae*, 56(1-2):121–135, 2003.
- C. L. A. Clarke and G. V. Cormack. On the use of regular expressions for searching text. ACM Transactions on Programming Languages and Systems, 19(3):413–426, 1997.

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.
- M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words. Information Processing Letters, 67(3):111–117, 1998.
- J. Czyzowicz, W. Fraczak, A. Pelc, and W. Rytter. Linear-time prime decomposition of regular prefix codes. *International Journal of Foundations of Computer Science*, 14:1019–1032, 2003.
- D. Giammarresi and R. Montalbano. Deterministic generalized automata. *Theo*retical Computer Science, 215:191–208, 1999.
- Y.-S. Han, G. Trippen, and D. Wood. Simple-regular expressions and languages. In *Proceedings of DCFS'05*, 146–157, 2005.
- 8. Y.-S. Han, Y. Wang, and D. Wood. Infix-free regular expressions and languages. To appear in International Journal of Foundations of Computer Science, 2005.
- Y.-S. Han, Y. Wang, and D. Wood. Prefix-free regular-expression matching. In *Proceedings of CPM'05*, 298–309. Springer-Verlag, 2005. Lecture Notes in Computer Science 3537.
- Y.-S. Han and D. Wood. The generalization of generalized automata: Expression automata. International Journal of Foundations of Computer Science, 16(3):499– 510, 2005.
- M. Ito, H. Jürgensen, H.-J. Shyr, and G. Thierrin. N-prefix-suffix languages. International Journal of Computer Mathematics, 30:37–56, 1989.
- M. Ito, H. Jürgensen, H.-J. Shyr, and G. Thierrin. Outfix and infix codes and related classes of languages. *Journal of Computer and System Sciences*, 43:484– 508, 1991.
- H. Jürgensen. Infix codes. In Proceedings of Hungarian Computer Science Conference, 25–29, 1984.
- H. Jürgensen and S. Konstantinidis. Codes. In G. Rozenberg and A. Salomaa, editors, Word, Language, Grammar, volume 1 of Handbook of Formal Languages, 511–607. Springer-Verlag, 1997.
- D. Y. Long, J. Ma, and D. Zhou. Structure of 3-infix-outfix maximal codes. *The-oretical Computer Science*, 188(1-2):231–240, 1997.
- A. Mateescu, A. Salomaa, and S. Yu. On the decomposition of finite languages. Technical Report 222, TUCS, 1998.
- A. Mateescu, A. Salomaa, and S. Yu. Factorizations of languages and commutativity conditions. Acta Cybernetica, 15(3):339–351, 2002.
- H.-J. Shyr. Lecture Notes: Free Monoids and Languages. Hon Min Book Company, Taichung, Taiwan R.O.C, 1991.
- D. Wood. Data structures, algorithms, and performance. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.