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Abstract. A string x is an outfix of a string y if there is a string w such
that x1wx2 = y, where x = x1x2 and a set X of strings is outfix-free
if no string in X is an outfix of any other string in X. We examine the
outfix-free regular languages. Based on the properties of outfix strings, we
develop a polynomial-time algorithm that determines the outfix-freeness
of regular languages. We consider two cases: A language is given as a set
of strings and a language is given by an acyclic deterministic finite-state
automaton. Furthermore, we investigate the prime outfix-free decom-
position of outfix-free regular languages and design a linear-time prime
outfix-free decomposition algorithm for outfix-free regular languages. We
demonstrate the uniqueness of prime outfix-free decomposition.

1 Introduction

Codes play a crucial role in many areas such as information processing, date
compression, cryptography, information transmission and so on [14]. They are
categorized with respect to different conditions (for example, prefix-free, suffix-
free, infix-free or outfix-free) according to the applications [11,12,13,15]. Since a
code is a set of strings, it is a language. The conditions that classify code types
define proper subfamilies of given language families. For regular languages, for
example, prefix-freeness defines the family of prefix-free regular language, which
is a proper subfamily of regular languages.

Based on such subfamilies of regular language, researchers have investigated
properties of these languages as well as their decomposition problems. A decom-
position of a language L is a catenation of several languages L1, L2, . . . , Lk such
that L = L1L2 · · · Lk and k ≥ 2. If L cannot be further decomposed except for
L · {λ} or {λ} · L, where λ is the null-string, we say that L a prime language.

Czyzowicz et al. [5] studied prefix-free regular languages and the prime prefix-
free decomposition problem. They showed that the prime prefix-free decompo-
sition of a prefix-free language is unique and demonstrated the importance of
prime prefix-free decomposition in practice. Prefix-free regular languages are of-
ten used in the literature: to define the determinism of generalized automata [6]
and of expression automata [10], and to represent a pattern set [9].
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Recently, Han et al. [8] studied infix-free regular languages and developed
an algorithm to determine whether or not a given regular expression defines an
infix-free regular language. They also designed an algorithm for computing the
prime infix-free decomposition of infix-free regular languages and showed that
the prime infix-free decomposition is not unique. Infix-free regular languages give
rise to faster regular-expression text matching [2]. Infix-free languages are also
used to compute forbidden words [1,4].

As a continuation of our investigations of subfamilies of regular languages,
it is natural to examine outfix-free regular languages and the prime outfix-free
decomposition problem. Note that Ito and his co-researchers [12] showed that
an outfix-free regular language is finite and Han et al. [7] demonstrated that
the family of outfix-free regular languages is a proper subset of the family of
simple-regular languages. On the other hand, there was no known efficient al-
gorithm to determine whether or not a given finite set of strings is outfix-free
apart from using brute force. Furthermore, the decomposition of a finite set of
strings is not unique and the computation of the decomposition is believed to
be NP-complete [17]. Therefore, our goal is to develop an efficient algorithm
for determining outfix-freeness of a given finite language and to investigate the
prime outfix-free decomposition and its uniqueness.

We define some basic notions in Section 2 and propose an efficient algorithm
to determine outfix-freeness in Section 3. Then, in Section 4, we show that an
outfix-free regular language has a unique prime outfix-free decomposition and
the unique decomposition can be computed in linear time in the size of the given
finite-state automaton. We suggest some open problems and conclude this paper
in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the empty
language and the character λ denotes the null string. Given a string x = x1 · · · xn,
|x| is the number of characters in x and x(i, j) = xixi+1 · · · xj is the substring
of x from position i to position j, where i ≤ j. Given two strings x and y in Σ∗,
x is said to be an outfix of y if there is a string w such that x1wx2 = y, where
x = x1x2. For example, abe is an outfix of abcde. Given a set X of strings over
Σ, X is outfix-free if no string in X is an outfix of any other string in X . Given
a string x, let xR be the reversal of x, in which case XR = {xR | x ∈ X}.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F ), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q|
be the number of states in Q and |δ| be the number of transitions in δ. Then,
the size |A| of A is |Q| + |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and
a ∈ Σ, we say p has an out-transition and q has an in-transition. Furthermore,
p is a source state of q and q is a target state of p. A string x over Σ is accepted
by A if there is a labeled path from s to a final state in F that spells out x. Thus,
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the language L(A) of a finite-state automaton A is the set of all strings spelled
out by paths from s to a final state in F . We define A to be non-returning if
the start state of A does not have any in-transitions and A to be non-exiting if
a final state of A does not have any out-transitions. We assume that A has only
useful states; that is, each state appears on some path from the start state to
some final state.

3 Outfix-Free Regular Languages

We first define outfix-free regular expressions and languages, and then present
an algorithm to determine whether or not a given language is outfix-free. Since
prefix-free, suffix-free, infix-free and outfix-free languages are related to each
other, we define all of them and show their relationships.

Definition 1. A language L is

– prefix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that
x and y are not prefixes of each other.

– suffix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that
x and y are not suffixes of each other.

– bifix-free if L is prefix-free and suffix-free.
– infix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that x

and y are not substrings of each other.
– outfix-free if, for all distinct strings x, y, z ∈ Σ∗, xz ∈ L and xyz ∈ L imply

y = λ.
– hyper if L is infix-free and outfix-free.

For further details and definitions, refer to Ito et al. [12] or Shyr [18].
We say that a regular expression E is outfix-free if L(E) is outfix-free. The

language defined by such an outfix-free regular expression is called an outfix-
free regular language. In a similar way, we can define prefix-free, suffix-free and
infix-free regular expressions and languages.
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Fig. 1. A diagram to show inclusions of families of languages, where p,s,i,o and h
denote prefix-free, suffix-free, infix-free , outfix-free and hyper families, respectively,
and u denotes Σ∗. Note that the outfix-free family is a proper subset of the prefix-free
and suffix-free families and the hyper family is the common intersection between the
infix-free family and the outfix-free family.
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Let A = (Q, Σ, δ, s, F ) denote a deterministic finite-state automaton (DFA)
for L. Han and Wood [10] showed that if A is non-exiting, then L is prefix-free.
Han et al. [8] proposed an algorithm to determine whether or not a given regular
expression E is infix-free in O(|E|2) worst-case time. This algorithm can also
solve the prefix-free and suffix-free cases as well. Therefore, it is natural to design
an algorithm to determine whether or not a given regular language is outfix-free.
Since an outfix-free regular language L is finite [12,14], the problem is decidable
by comparing all pairs of strings in L, although it is certainly undesirable to
do so.

3.1 Prefix-Freeness

Since the family of outfix-free regular languages is a proper subfamily of prefix-
free regular languages as shown in Fig. 1, we consider prefix-freeness of a finite
language first.

Given a finite set of strings W = {w1, w2, . . . , wn}, where n is the number
of strings in W , we construct a trie T for W . A trie is an ordered tree data
structure that is used to store a set of strings and each edge in the tree has a
single character label. For details on tries, refer to data structure textbooks [3,19].
Assume that wi is a prefix of wj , where i �= j; it implies that |wi| < |wj |. Then,
wi and wj must have the common path in T from the root to the ith node q
that spells out wi. Therefore, if we reach q while constructing the path for wj

in T , we recognize that wi is a prefix of wj . Let us consider the case when we
construct a path for wj first and, then, construct a path for wi in T . The path
for wi ends at the |wi|th node q that already has a child node for the path for
wj . Therefore, we know that wi is a prefix of some other string. Note that we
can construct a trie for W in O(|w1| + |w2| + · · · |wn|) time, which is linear in
the size of W .

Lemma 1. Given a finite set W of strings, we can determine whether or not
W is prefix-free in linear time in the size of W by constructing a trie for W . We
can also determine suffix-freeness of W in the same runtime by constructing a
trie for WR.

3.2 Outfix-Freeness

We now consider outfix-freeness. Assume that we have two distinct strings w1
and w2 and w2 is an outfix of w1. It implies that w1 = xyz for some strings x, y
and z such that w2 = xz and y �= λ. Moreover, w1 and w2 have the common
prefix x and the common suffix z. Fig. 2 illustrates it.

Based on these observations, we determine whether or not one string w1 is an
outfix of another string w2 for two given strings w1 and w2, where |w1| ≥ |w2|.
We compare two characters, one from w1 and the other from w2, from left to
right (from 1 to |w2|) until two compared characters are different; say the ith
characters are different. If we completely read w2, then we recognize that w2 is
a prefix of w1 and, therefore, w2 is an outfix of w1. We repeat these character-
by-character comparisons from right to left (from |w2| to 1) until we have two
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a b c a a b b b a a

a b c b a a

Fig. 2. A graphical illustration of an outfix string; abcbaa is an outfix of abcaabbbaa

different characters. Assume that the jth characters are different. If i > j, then
w2 is an outfix of w1. Otherwise, w2 is not an outfix of w1. For example, i = 4
and j = 3 in Fig. 2.

Lemma 2. Given two strings w1 and w2, where |w1| ≥ |w2|, w2 is an outfix of
w1 if and only if there is a position i such that w2(1, i) is a prefix of w1 and
w2(i + 1, |w2|) is a suffix of w1.

Let us consider the trie T for w1 and w2. Since w1 and w2 have the common
prefix, both strings share the common path from the root to a node q of height i
that spells out w2(1, i). Moreover, the path for w2(i+1, |w2|) in T is a suffix-path
for w1(i + 1, |w1|) in T . For example, in Fig. 3, the path for x is the common
prefix-path and the path for z is the common suffix-path. Thus, if a given finite
set W of strings is not outfix-free, then there is such a pair of strings. Since a
node q ∈ T gives the common prefix for all strings that pass through q, we only
need to check whether some path from q to a leaf is a suffix-path for some other
path from q to another leaf.

Let T (q) be the subtree of T rooted at q ∈ T . Then, we can determine
whether or not a path from q is a suffix-path for another path from q in T (q) by
determining the suffix-freeness of all paths from q to a leaf in T (q) based on the
same algorithm for Lemma 1. The running time is linear in the the size of T (q).

x

y
z

z

q

Fig. 3. An example of a trie for strings w1 = xyz and w2 = xz. Note that both paths
end with the same subpath sequence in the trie since w1 and w2 have the common
suffix z.
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3.3 Complexity of Outfix-Freeness

The subfunction is prefix-free(T ) in Fig. 4 determines whether or not the set of
strings represented by a given trie T is prefix-free. Note that is prefix-free(T )
runs in O(|T |) time, where |T | is the number of nodes in T .

Given a finite set W = {w1, w2, . . . , wn} of strings, we can construct a trie T
in O(

∑n
i=1 |wi|) time and space, which is linear in the size of W , where n ≥ 1.

Prefix-freeness and suffix-freeness can be verified in linear time. Thus, the total
running time for the algorithm Outfix-freeness (OFF) in Fig. 4 is

O(|T |) +
∑

q∈T

|T (q)|,

where q is a node that has more than one child. In the worst-case, we have to
examine all nodes in T ; for example, T is a complete tree, where each internal
node has the same number of children. To compute the size of

∑
|T (q)|, let

us consider a string wi ∈ W that makes a path P from the root to a leaf in
T . If a node q ∈ T of height j in path P has more than one child, then the
suffix wi(j + 1, |wi|) of wi that starts from q is used in is suffix-free(T (q)) in
OFF. In the worst-case, all suffixes of wi can be used by is suffix-free(T (q)).
Therefore, wi contributes O(|wi|2) to the total running time of OFF. Fig. 5
illustrates a worst-case example.

Therefore, the total time complexity is O(|w1|2 + |w2|2 + · · · + |wn|2) in the
worse case. If the size of wi is O(k), for some k, then the running time is O(k2n).
On the other hand, the all-pairs comparison approach gives O(kn2) worst-case
running time. Note that the size of each string in W is usually much smaller
than the number of strings in W ; namely, k � n.

Theorem 1. Given a finite set W = {w1, w2, . . . , wn} of strings, we can de-
termine whether or not W is outfix-free in O(

∑n
i |wi|2) time using O(

∑n
i |wi|)

space in the worse-case.

Outfix-freeness(W = {w1, w2, . . . , wn})

Construct a trie T for W

if (is prefix-free(T ) = no)
then return no

if (is suffix-free(T ) = no)
then return no

for each q ∈ T that has more than one child
if (is suffix-free(T (q)) = no)

then return no

return yes

Fig. 4. An outfix-freeness checking algorithm for a given finite set of strings
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Fig. 5. All suffixes of a string w in T are used to determine the outfix-freeness by OFF.
The size of the sum of all suffixes is O(|w|2).

Now we characterize the family of outfix-free (regular) languages in terms of
closure properties.

Theorem 2. The family of outfix-free (regular) languages is closed under cate-
nation and intersection but not under union, complement or star.

Proof. We only prove the catenation case. The other cases can be proved straight-
forwardly.

Assume that L = L1 ·L2 is not outfix-free whereas L1 and L2 are outfix-free.
Then, there are two distinct strings s and t ∈ L, where t is an outfix of s. Namely,
s = xyz, t = xz and y �= λ. Since s and t are catenation of two strings from L1
and L2, s and t can be partitioned into two parts; s = s1s2 and t = t1t2, where
si, ti ∈ Li for i = 1, 2. From the assumption that t is an outfix of s, s and t have
the common prefix and the common suffix as shown in Fig. 6. If we decompose
s and t into s1s2 and t1t2, then we have one of the following four cases:

1. s1 is a prefix of t1.
2. t1 is a prefix of s1.
3. s2 is a suffix of t2.
4. t2 is a suffix of s2.

Let us consider the first case as illustrated in Fig. 6. Since s1 is a prefix of
t1 and s1, t1 ∈ L1, L1 is not outfix-free — a contradiction. We can use a similar
argument for the other three cases. �	

x y z
s1 s2

t1 t2

s

t x z

Fig. 6. The figure illustrates the first case in the proof of Theorem 2, where si and
ti ∈ Li for i = 1, 2. Since s1 is a prefix of t1, L1 is not outfix-free.
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3.4 Outfix-Freeness of Acyclic Deterministic Finite-State Automata

Acyclic deterministic finite-state automata (ADFAs) are a proper subfamily of
DFAs that define finite languages. For example, a trie is an ADFA. Since ADFAs
represent finite languages, they are often used to store a finite number of strings.
Moreover, ADFAs require less space than tries. For instance, we use O(|Σ|5)
space to store all strings of length 5 over Σ in a trie. On the other hand, we use
6 states with 5 × |Σ| transitions in an ADFA. We consider outfix-freeness of a
language given by an ADFA A = (Q, Σ, δ, s, f). Given A and a state q ∈ Q, we
define the right language L−→q to be the set of strings spelled out by paths from
q to f .

Assume that two strings w1 = xyz and w2 = xz are accepted by A, where
w2 is an outfix of w1. Note that w1 and w2 have the common prefix x and the
common suffix z and there is a unique path from s to a state q that spells out
x in A since A is deterministic. Then, yz and z are accepted by A−→q . It means
that L−→q is not suffix-free.

Lemma 3. Given an ADFA A = (Q, Σ, δ, s, f), L(A) is outfix-free if and only
if L−→q is suffix-free for any state q ∈ Q.

Proof.
=⇒ Assume that L−→q is not suffix-free. Then, there are two strings w1 and w2

in L−→q , where w2 is a suffix of w1. Since A has only useful states, there must be
a path from s to q that spells out a string x. It implies that A accepts both xw1
and xw2, where xw2 is an outfix of xw1 — a contradiction. Therefore, if L(A)
is outfix-free, then L−→q is suffix-free for any state q ∈ Q.

⇐= Assume that L(A) is not outfix-free. Then, there are two strings w1 =
xyz and w2 = xz accepted by A, where w2 is an outfix of w1. There is a unique
path from s to q that spells out x in A. Then, there are two distinct paths, one
is for yz and the other is for z, from q since A accepts w1 and w2. It implies that
A−→q accepts yz and z and L−→q is not suffix-free — a contradiction. Therefore, if
L−→q is suffix-free for any state q ∈ Q, then L(A) is outfix-free. �	

Recently, Han et al. [8] proposed algorithms to determine prefix-freeness,
suffix-freeness, bifix-freeness and infix-freeness of a given a (nondeterministic)
finite-state automaton A = (Q, Σ, δ, s, f) in O(|Q|2 + |δ|2) time. We use their al-
gorithm to check suffix-freeness for each state. Given an ADFA A = (Q, Σ, δ, s, f)
and a state q ∈ Q, the size of A−→q is at most the size of A; namely, |A−→q | ≤ |A|.
Since it takes O(|Q|2 + |δ|2) time for each state to check suffix-freeness and there
are |Q| states, the total time complexity to determine outfix-freeness of A is
O(|Q|3 + |Q||δ|2). Since a DFA has a constant number of out-transitions from a
state, we obtain the following result.

Theorem 3. Given an ADFA A = (Q, Σ, δ, s, f), we can determine outfix-
freeness of L(A) in O(|Q|3) worst-case time.
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Furthermore, we determine infix-freeness of L(A) after an outfix-freeness test.
If L(A) is infix-free and outfix-free, then L(A) is hyper. Since the time complexity
for the infix-freeness test is O(|Q|2) for A [8], we can determine hyperness of L(A)
in O(|Q|3) time as well.

Theorem 4. Given an ADFA A = (Q, Σ, δ, s, f), we can determine hyperness
of L(A) in O(|Q|3) worst-case time.

4 Prime Outfix-Free Regular Languages and Prime
Decomposition

Decomposition is the reverse operation of catenation. If L = L1 ·L2, then L is the
catenation of L1 and L2 and L1 · L2 is a decomposition of L. We call L1 and L2
factors of L. Note that every language L has a decomposition, L = {λ}·L, where
L is a factor of itself. We call {λ} a trivial language. We define a language L
to be prime if L �= L1 · L2 for any two non-trivial languages. Then, the prime
decomposition of L is to decompose L into L1 ·L2 · . . . ·Lk, where L1, L2, . . . , Lk

are prime languages and k ≥ 1 is a constant.
Mateescu et al. [16,17] showed that the primality of regular languages is

decidable and the prime decomposition of a regular language is not unique even
for finite languages. Furthermore, they pointed out that no star language L
(L = K∗, for some K) can possess a prime decomposition. Czyzowicz et al. [5]
considered prefix-free regular languages and showed that the prime prefix-free
decomposition for a prefix-free regular language L is unique and the unique
decomposition for L can be computed in O(m) worst-case time, where m is the
size of the minimal DFA for L. Recently, Han et al. [8] investigated the prime
infix-free decomposition of infix-free regular languages and demonstrated that
the prime infix-free decomposition is not unique.

We examine prime outfix-free regular languages and decomposition. Even
though outfix-free regular languages are finite [12], the primality test for finite
languages is believed to be NP-complete [17]. Thus, the decomposition problem
for finite languages is not trivial at all. We design a linear-time algorithm to
determine whether or not a given finite language L is prime outfix-free. We
investigate prime outfix-free decompositions and uniqueness.

4.1 Prime Outfix-Free Regular Languages

Definition 2. A regular language L is a prime outfix-free language if L �= L1 ·L2
for any outfix-free regular languages L1 and L2.

From now on, when we say prime, we mean prime outfix-free. Since we are
dealing with outfix-free regular languages, there are no back-edges in finite-
state automata for such languages. Furthermore, these finite-state automata are
always non-exiting and non-returning. Note that if a finite-state automaton is
non-exiting and has several final states, then all final states are equivalent and,
therefore, are merged into a single final state.



Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 105

Definition 3. We define a state b in a DFA A to be a bridge state if the fol-
lowing two conditions hold:

1. State b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b. Therefore, we

can partition A at b into two subautomata A1 and A2.

Given a DFA A = (Q, Σ, δ, s, f) and a bridge state b ∈ Q, where L(A) is
outfix-free, we can partition A into two subautomata A1 and A2 as follows:
A1 = (Q1, Σ, δ1, s, b) and A2 = (Q2, Σ, δ2, b, f), where Q1 is a set of states of
A that appear on some path from s to b in A, Q2 = Q \ Q1 ∪ {b}, δ2 is a set
of transitions of A that appear on some path from b to f in A and δ1 = δ \ δ2.
Fig. 7 illustrates a partition at a bridge state.

b

1 2

3 4 6 7

8 9

1 2

3 4 bb 6 7

8 9

Fig. 7. An example of partitioning of an automaton at a bridge state b

It is easy to verify that L(A) = L(A1) · L(A2) from the second requirement
in Definition 3.

Lemma 4. If a minimal DFA A has a bridge state, where L(A) is outfix-free,
then L(A) is not prime.

Proof. Since A has a bridge state b, we can partition A into A1 and A2 at b. We
establish that L(A1) and L(A2) are outfix-free and, therefore, L(A) is not prime.
Assume that L(A1) is not outfix-free. Then, there are two distinct strings u and
v accepted by A1, where v is an outfix of u; namely, u = xyz and v = xz for some
strings x, y and z. Let w be a string from L(A2). Since L(A) = L(A1) · L(A2),
both uw = xyzw and vw = xzw are in L(A). It contradicts the assumption
that L(A) is outfix-free. Therefore, if L(A) is outfix-free, then L(A1) should be
outfix-free as well. With a similar argument, we can show that L(A2) should
be outfix-free. Hence, if A has a bridge state, then L(A) can be decomposed as
L(A1) · L(A2), where L(A1) and L(A2) are outfix-free, and, therefore, L(A) is
not prime. �	
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Lemma 5. If a minimal DFA A does not have any bridge states and L(A) is
outfix-free, then L(A) is prime.

Proof. Assume that L is not prime. Then, L can be decomposed as L1 · L2,
where L1 and L2 are outfix-free. Czyzowicz et al. [5] showed that given prefix-
free languages A, B and C such that A = B · C, A is regular if and only if B
and C are regular. Thus, if L is regular, then L1 and L2 must be regular since
all outfix-free languages are prefix-free. Let A1 and A2 be minimal DFAs for L1
and L2, respectively. Since A1 and A2 are non-returning and non-exiting, there
are only one start state and one final state for each of them. We catenate A1 and
A2 by merging the final state of A1 and the start state of A2 as a single state b.
Then, the catenated automaton is the minimal DFA for L(A1) · L(A2) = L and
has a bridge state b — a contradiction. �	

We can rephrase Lemma 4 as follows: If L is prime, then its minimal DFA
does not have any bridge states. Then, from Lemmas 4 and 5, we obtain the
following result.

Theorem 5. An outfix-free regular language L is prime if and only if the min-
imal DFA for L does not have any bridge states.

Lemma 4 shows that if a minimal DFA A for an outfix-free regular language L
has a bridge state, then we can decompose L into a catenation of two outfix-free
regular languages using bridge states. In addition, if we have a set B of bridge
states for A and decompose A at b, then B \ {b} is the set of bridge states for
the resulting two automata after the decomposition.

Theorem 6. Let A be a minimal DFA for an outfix-free regular language that
has k bridge states. Then, L(A) can be decomposed into k + 1 prime outfix-
free regular languages, namely, L(A) = L1L2 · · · Lk+1 and L1, L2, . . . , Lk+1 are
prime.

Proof. Let (b1, b2, . . . , bk) be the sequence of bridge states from s to f in A. We
prove the statement by induction on k. It is sufficient to show that L(A) = L′L′′

such that L′ is accepted by a DFA A′ with k − 1 bridge states and L′′ is a prime
outfix-free regular language.

We partition A into two subautomata A′ and A′′ at bk. Note that L(A′) and
L(A′′) are outfix-free languages by the proof of Lemma 4. Since A′′ has no bridge
states, L′′ = L(A′′) is prime by Theorem 5. By the definition of bridge states,
all paths must pass through (b1, b2, . . . , bk−1) in A′ and, therefore, A′ has k − 1
bridge states. Thus, if A has k bridge states, then L(A) can be decomposed into
k + 1 prime outfix-free regular languages. �	

Note that Theorem 6 guarantees the uniqueness of prime outfix-free decom-
position. Furthermore, finding the prime decomposition of an outfix-free regu-
lar language is equivalent to identifying bridge states of its minimal DFA by
Theorems 5 and 6.
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We now show how to compute a set of bridge states defined in Definition 3
from a given minimal DFA A in O(m) time, where m is the size of A. Let G(V, E)
be a labeled directed graph for a given minimal DFA A = (Q, Σ, δ, s, f), where
V = Q and E = δ. We say that a path in G is simple if it does not have a cycle.

Lemma 6. Let Ps,f be a simple path from s to f in G. Then, only the states
on Ps,f can be bridge states of A.

Proof. Assume that a state q is a bridge state and is not on Ps,f . Then, it
contradicts the second requirement of bridge states. �	

Assume that we have a simple path Ps,f from s to f in G = (V, E), which
can be computed in O(|V | + |E|) worst-case time. All states on Ps,f form a set
of candidate bridge states (CBS); namely, CBS = (s, b1, b2, . . . , bk, f).

We use DFS to explore G from s. We visit all states in CBS first. While
exploring G, we maintain the following two values, for each state q ∈ Q,

anc: The index i of a state bi ∈ CBS such that there is a path from bi to q
and there is no path from bj ∈ CBS to q for j > i. The anc of bi is i.
max: The index i of a state bi ∈ CBS such that there is a path from q to
bi and there is no path from q to bj for i < j without visiting any state in
CBS.

The max value of a state q means that there is a path from q to bmax. If bi

has a max value and max �= i + 1, then it means that there is another simple
path from bi to bmax without passing through bi+1.

When a state q ∈ Q \ CBS is visited during DFS, q inherits anc of its
preceding state. A state q has two types of child state: One type is a subset T1
of states in CBS and the other is a subset T2 of Q \ CBS; namely, all states
in T1 are candidate bridge states and all states in T2 are not candidate bridge
states. Once we have explored all children of q, we update max of q as follows:

max = max(max
q∈T1

(q.anc), max
q∈T2

(q.max)).

Fig. 8 provides an example of DFS after updating (anc, max) for all states
in G.

s b1 b2 b3 b4 b5 b6 f
(1,2) (2,6) (3,4) (4,5) (5,7) (6,7)

(5,6)

(2,6)

(2,4)(2,6)

Fig. 8. An example of DFS that computes (anc, max), for each state in G, for a given
CBS = (s, b1, b2, b3, b4, b5, b6, f)
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If a state bi ∈ CBS does not have any out-transitions except a transition
to bi+1 ∈ CBS (for example, b6 in Fig. 8), then bi has (i, i + 1) when DFS is
completed. Once we have completed DFS and computed (anc, max) for all states
in G, we remove states from CBS that violate the requirements to be bridge
states. Assume bi ∈ CBS has (i, j), where i < j. We remove bi+1, bi+2, . . . , bj−1
from CBS since that there is a path from bi to bj; that is, there is another simple
path from bi to f . Then, we remove s and f from CBS. For example, we have
{b1, b2} after removing states that violate the requirements from CBS in Fig. 8.
This algorithm gives the following result.

Theorem 7. Given a minimal DFA A for an outfix-free regular language:

1. We can determine the primality of L(A) in O(m) time,
2. We can compute the unique outfix-free decomposition of L(A) in O(m) time

if L(A) is not prime,

where m is the size of A.

5 Conclusions

We have investigated the outfix-free regular languages. First, we suggested an
algorithm to verify whether or not a given set W = {w1, w2, . . . , wn} of strings is
outfix-free. We then established that the verification takes O(

∑n
i=1 |wi|2) worst-

case time, where n is the number of strings in W . We also considered the case
when a language L is given by an ADFA. Moreover, we have extended the algo-
rithm to determine hyperness of L by checking infix-freeness using the algorithm
of Han et al. [8].

We have demonstrated that an outfix-free regular language L has a unique
outfix-free decomposition and the unique decomposition can be computed in
O(m) time, where m is the size of the minimal DFA for L.

As we have observed, outfix-free regular languages are finite sets. However,
this observation does not hold for the context-free languages. For example, the
non-regular language, {w | w = aicbi, i ≥ 1} is context-free, outfix-free and
infinite. The decidability of outfix-freeness for context-free languages is open
as is the prime decomposition problem. Moreover, there are non-context-free
languages that are outfix-free; for example, {w | w = aibici, i ≥ 1}. Thus, it
is reasonable to investigate the properties and the structure of the family of
outfix-free languages.
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