
International Journal of Foundations of Computer Science %%R». . . . , . «
Vol. 19, No. 3 (2008) 581-595 V © World Scientific

' v ! 1 1 www.worldscientific.com
© World Scientific Publishing Company

STATE COMPLEXITY OF UNION A N D INTERSECTION
OF FINITE LANGUAGES*

YO-SUB HAN*

Intelligence and Interaction Research Center,
Korea Institute of Science and Technology,
P.O.BOX 131, Cheongryang, Seoul, Korea

emmous@kist.re.kr

a n d

KAI SALOMAA+

School of Computing, Queen's University,
Kingston, Ontario K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Received 27 September 2007
Accepted 18 January 2008

Communicated by Tero Harju and Juhani Karhumaki

We investigate the state complexity of union and intersection for finite languages. Note
that the problem of obtaining the tight bounds for both operations was open. First we
compute upper bounds using structural properties of minimal deterministic finite-state
automata for finite languages. Then, we show that the upper bounds are tight if we have
a variable sized alphabet that can depend on the size of input deterministic finite-state
automata. In addition, we prove that the upper bounds are unreachable for any fixed
sized alphabet.

Keywords: State complexity; finite-state automata; finite languages.

1. In t roduct ion

Regular languages are one of the most important and well-studied topics in com
puter science. They are often used in various practical applications such as vi ,
emacs and Per l . Furthermore, researchers have developed a number of software
libraries for manipulating formal language objects with an emphasis on regular
languages; examples include Grail [16] and Vaucanson [2].

*A preliminary version of this paper appeared in Proceedings of 11th International Conference
Developments in Language Theory, DLT 2007, Lect. Notes Comput. Sci. 4588, Springer-Verlag,
2007, pp. 217-228.
tHan was supported by the KIST research grant and the KRCF research grant.
'Salomaa was supported by the Natural Sciences and Engineering Research Council of Canada
Grant OGP0147224.

581

http://www.worldscientific.com
mailto:emmous@kist.re.kr
mailto:ksalomaa@cs.queensu.ca

582 Y.-S. Han & K. Salomaa

The applications and implementations of regular languages motivate the study
of descriptional complexity of regular languages. The descriptional complexity of
regular languages can be defined in various ways since regular languages can be
characterized in different ways. For example, the family of languages accepted
by deterministic finite-state automata (DFAs) or by nondeterministic finite-state
automata (NFAs) or described by regular expressions consists of exactly the regular
languages. Yu and his co-authors [f, 18, 19] regarded the number of states in the
complete minimal DFA for L as the complexity of L and studied the state complexity
of basic operations on regular languages and finite languages. Similar results where
state complexity is defined using incomplete DFAs already appeared in the work by
Maslov [13]. Holzer and Kutrib [8, 9] investigated the state complexity of NFAs.
Recently, Ellul et al. [5] examined the size of the shortest regular expression for
a given regular language. There are many other results on state complexity with
different viewpoints [3, 4, 6, 7, ff, 12, 14, 15]. We focus on the measure of Yu [18]:
The state complexity of a regular language is the number of states of its minimal
DFA. The state complexity of an operation on regular languages is a function that
associates to the state complexities of the operand languages the worst-case state
complexity of the language resulting from the operation. For instance, we say that
the state complexity of the intersection of L(A) and L(B) is mn, where A and B
are minimal DFAs and the numbers of states in A and B are TO and n, respectively.
This means that mn is the worst-case number of states of the minimal DFA for
L(A)r\L(B).

Yu et al. [f 9] gave a systematic study of state complexity of regular language
operations. Campeanu et al. [1] investigated the state complexity of finite languages.
The known results [1, 19] are summarized in Table 1. In the figure, TO, n > 1 denote
the state complexity of L\ and L2, respectively.

Table 1. The state complexity of basic operations on finite languages and regular languages. Note
that o refers to results using a two-character alphabet.

operation finite languages regular languages

L\ UL2 0(mn)

L\ n L2 0(mn)

£ * \ L i TO

Lx-L-2 (TO - n + 3)2"-2 - 1*

L\ 2
m-3 + 2m-4, for TO > 4 '

Ln 3-2P-1 - 1 if m = 2p
1 2" - 1 if TO = 2p - 1

All complexity bounds, except for union and intersection of finite languages,
in Table 1 are tight; namely, there exist worst-case examples that reach the given
bounds. For union and intersection, clearly mn is an upper bound since finite
languages are a proper subfamily of regular languages. We also note that Yu [18]

mn

mn
TO

(2m- 1)2"-1

nm — 1 _i_ om — 2

State Complexity of Union and Intersection of Finite Languages 583

briefly mentioned a rough upper bound ran — (ra + n — 2) for both operations.
Therefore, it is natural to investigate the tight bounds for union and intersection of
finite languages.

To conclude the introduction, we summarize the contents of the following sec
tions. We define some basic notions in Section 2. In Section 3, we obtain an upper
bound ran — (ra + n) for the union of two finite languages L\ and Li that is based on
the structural properties of the DFAs for L\ and Li. Then, we prove that the bound
is tight if the alphabet size can depend on ra and n. We also examine the intersec
tion of L\ and Li in Section 4 and obtain an upper bound ran — 3(m + n) + 12.
We again demonstrate that the upper bound is reachable using a variable sized
alphabet. Some conclusions and open problems are given in Section 5.

2. Preliminaries

Here we recall some definitions needed in the later sections. For all unexplained
notions related to formal languages and finite automata we refer the reader to
Hopcroft and Ullman [10] or Yu [17].

In the following E always denotes a finite alphabet of characters and E* is the
set of all strings over E. The number of characters in E is denoted by |E|. A
language over E is any subset of E*. The symbol 0 denotes the empty language and
the symbol A denotes the null string.

A finite-state automaton A (FA) is specified by a tuple (Q,Y*,S,s,F), where Q
is a finite set of states, E is an input alphabet, S : Q x E —> 2^ is a transition
function, s G Q is the start state and F C Q is a set of final states. The automaton
is deterministic if S is a total function Q x S ^ Q . The number of states of an FA
A is denoted also by \A\.

A string x over E is accepted by A if there is a labeled path from s to a final
state in F such that this path spells out the string x. Thus, the language L(A)
recognized by A is the set of all strings that are spelled out by paths from s to a
final state in F.

Assume that A has a transition 5(j>, a) = q. In this case, we say that p has an
out-transition and q has an in-transition. Furthermore, p is a source state of q and
q is a target state of p. We say that A is non-returning if the start state of A does
not have any in-transitions. A state q s Q is non- exiting if all out-transitions from
q go to the sink state.

Note that we require a DFA to be complete; namely, each state will have |E|
out-transitions. In particular, a DFA accepting a finite language will have a sink
state (or dead state). Since all sink states are always equivalent, a minimal DFA for
a finite language has a unique sink state. Furthermore, a minimal DFA accepting
a finite language has a unique non-exiting final state. These observations are used
without further mention in the following.

Given an FA A = (Q, E, 6, s, F), we define the right language Lq of a state q s Q
to be the set of strings that are spelled out by some path from q to a final state in
A. Namely, Lq is the language accepted by the FA obtained from A by changing
the start state to q. We say that two states p and q are equivalent if L.p = Lq.

584 Y.-S. Han & K. Salomaa

Let L C S * . The right invariant congruence of L, =z,C £*
setting u =L V if

(Vz G S*) ux G L iff ra G L.

£*, is defined by

3. Union of Finite Languages

Given two DFAs A and B for languages L\ and L2, we can in the well-known
way obtain a DFA for the union of L(A) and L(B) using the Cartesian product
construction.

Proposition 1 Given two DFAs A = (Qi,T,,6i,si,Fi) and B = (Q2, £, £2, s2, F2),
let M y = (Qi x Q2, S, 5, (si, S2), F) , where for all p G Qi and g £ Q2 and o e S ,
5((p,q),a) = (6(p,a),6(q,a)) and F = {(p, f2) \ p G Qi a n d / 2 G F 2 }U{(/ i ,g)
/1 G i<i and 5 G Q 2}. Then, L(MIJ) = L(A) U I/(B) and My is deterministic.

In order to improve the upper bound for the state complexity of union of fi
nite languages, a crucial observation is that both A and B must be non-returning.
Therefore, as Yu [18] observed, if we apply the Cartesian product for union, any
state (si, q) where q 7̂ s2 and any state (p, s2) where p 7̂ s± is not reachable from
the start state (si ,s2) in Mu. Thus, the the DFA Mu has at least (m + n) — 2
useless states.

Consider the right language of a state (i,j) in Mu. We recall the following result
from Han et al. [7].

Proposition 2 (Han et al. [7]) For a state (i,j) in Mu, the right language L^j)
°f (hj) is the union of the right language Li of i (as a state of A) and the right
language Lj of j (as a state of B).

1.1 1,2} fl, : l,n-f) (l.Ti

o
o

equivalent

^—»-all states arc unreachable from state (1,1)
Fig. 1. A DFA constructed for the union of two minimal DFAs of finite languages based on the
Cartesian product of states. The figure omits all transitions.

State Complexity of Union and Intersection of Finite Languages 585

Since A recognizes a finite language, A must have a final state / such tha t all of

/ ! s out-transitions go to the sink state. Let d\ and d2 be the sink states of A and

B and / i and f2 be the non-exiting final states of A and B, respectively. Then, by

Proposition 2, (/ i , f 2) , (d\, f2) and (/ i , d2) are equivalent and, thus, can be merged

into a single state. Fig. 1 illustrates this step; note tha t (f\,f2) = (TO— l ,n—1),

(di,f2) = (TO,n—1) and (fi,d2) = (TO—l,n) in the figure. This shows tha t we can

reduce two more states from Mu- Therefore, we obtain the following result.

L e m m a 1 Given two minimal DFAs A and B for finite languages, mn — (TO + n)

states are sufficient for the union of L{A) and L(B), where m = \A\ and n = \B\.

We next examine whether or not the upper bound of Lemma 1 can be reached

in the worst-case. We first consider the case where the size of the alphabet may

depend on the state complexity of the component languages.

L e m m a 2 The upper bound rnn — (m + n) for union is reachable if the size of the

alphabet can depend on m and n.

Proof. Let TO and n be positive numbers and

£ = {6, c} U {a^- I 1 <i < m - 2 , 1 < j < n - 2 and (i, j) ^ (m - 2 , n - 2) } .

Let A = (Qi , £ , Si,po, {Pm-2}), where Q\ = {po,Pi, • • • , p m - i } and S\ is defined
as follows:

• o~i(pi, b) = Pi+i, for 0 < i < m — 2.

• 5i(po, di.j) = pi, for 1 < i < TO — 2 and 1 < j < n — 2, (i,j) 7̂ (TO — 2, n — 2).

For all cases not covered above, 5\ takes the source state to the state pm-i, and

consequently pm-i is the sink s tate of A.

Next, let B = (Q2, £ , 52, <?o, {qVi-2}), where Q2 = {qo, <?i, • • •, qn-i} and d2 is
defined as follows:

• 52(qi, c) = qi+i, for 0 < i < n — 2.

• &2{qo, (ii,j) = qj, for 1 < j < n — 2 and 1 < i < m — 2, (i,j)j^(rn — 2,n — 2).

Again, for all cases not covered above, the target state is the sink state qn-i- Fig. 2

illustrates the definition of the DFAs A and B.

Let L = L(Ai) U L(A2). We claim tha t the minimal DFA for L needs mn —

(rn + n) states. To prove the claim, it is sufficient to show tha t there exists a set R

consisting of mn — (m + n) strings over £ tha t are pairwise inequivalent modulo the

right invariant congruence of L, =L.

We choose R = R\ U R2 U R3, where

R1 = {bl I 0 < i < TO - 1}.

R2 = {cj \ 1 < j <n - 3}. (Note tha t R2 does not include c°, c™~2 and c™_1.)

-R3 = {a>i,j I 1 < i < TO — 2 and 1 < j < n — 2 and (i, j) ^ (TO — 2, n — 2)}.

586 Y.-S. Han & K. Salomaa

Fig. 2. The DFAs A and B in the case where m = 6 and n = 5. State 5 of A (above) and state 4
of B (below) are sink states. Except for the ^-transition to state 5 in A and the c-transition to
state 4 in B, the figure omits all other in-transitions of the sink states.

Any string bl from R\ cannot be equivalent with a string cJ from R% since cJ

2n-2-j £ L b u t fci . c"-2-.7 ^ £. Note that j > 1 and hence also b° -> $ L.
Next consider a string b' from Ri and a string akj from .R3. There are four

possibilities.

1. k y^ i and 0 < i < rn — 3: Now b% and a^j are inequivalent since bl -b' m—2 — i eL
but akJ • 6m"2-i £ L.

2. k y^ i and i m 2: This implies that k < m — 2 and, thus, 6* and â ,,- are
inequivalent since aktj • V %-2-k e L but bl • b1 %-2-k $L.

3. k ^ i and i = rn — 1: The path for 6* = 6 m _ 1 must end at the sink state for
the minimal DFA for L since bm~l is not a prefix of any string in L. On the
other hand, ak.j can be completed to a string of L by appending zero or more
symbols c.

4. k = i: Now the strings under consideration are bl and a-i.j.

(a) j < n - 2: We note that a,;̂ • cn_2~J ' e L but 6* • c™~2~-? ^ L since no
string of L can have both 6's and c's. Note that k = i implies that i > 1.

(b) j = n — 2: Since j = n — 2, i < rn — 2 by the definition of .R3. Now
bl • \ ^ L but a^j = aiiri_2 • A e L(B) C L.

Therefore, 6' and a.;., are inequivalent.

Symmetrically, we see that any string from R2 cannot be equivalent with a
string from R3. This case is, in fact, simpler than the previous case since R2 is
more restrictive than R\.

Finally, we show that all strings from R\ (respectively, from R^ and from R3)
are pairwise inequivalent with each other.

1. R\\ By appending a suitable number of b's, we can always distinguish two
distinct strings from R\.

2. R2: By appending a suitable number of c's, we can always distinguish two
distinct strings from i?2-

State Complexity of Union and Intersection of Finite Languages 587

3. R3: Consider two distinct strings a,-7- and aXtV from R3. Without loss of

generality, we assume tha t i < x. The other possibility, where j and y differ,

is completely symmetric. Since ciij • \)m-2-% g T, but aXtV • 5™l~2~* ^ L, a,ij

and ax,y are inequivalent. Note tha t m — 2 — i > 0 and, thus, the inequivalence

holds even in the case where y = n — 2.

This concludes the proof. •

In the construction of the proof of Lemma 2, | S | is mn — 2m — 2n + 5. By using a

more complicated construction, it would be possible to reduce | S | . However, below

we see tha t the alphabet X has to depend on TO and n.

L e m m a 3 The upper bound mn — (m + n) for union cannot be reached with a fixed

alphabet when m and n are arbitrarily large.

Proof. Assume tha t X is a fixed alphabet with | S | = t. We show tha t it is not

possible to reach the upper bound mn — (m + n) for arbitrarily large m and n.

Let A have state set {po,Pi, • • • ,Pm-i} a n d B have state set {qo, q\,. •., qn-i},

where po and qo are start states. We assume tha t m,n > 2. The only finite language

with a one-state DFA is 0.

Without loss of generality we can assume tha t A and B are minimal DFAs. Since

A recognizes a finite language, we can order the states such tha t if pj is reachable

from pi, then i < j . In particular, pm-i is the sink state and pm-2 the non-exiting

final s tate. The states of B are ordered in a similar way.

Let C be the DFA with mn — (m + n) states recognizing L(A) U L(B) tha t

is constructed as in the proof of Lemma 1. The DFA C is obtained from Mu by

identifying some of the pair-states.

Let i G { 1 , . . . , m—2}. Any string tha t reaches p-i from po can go through only

the states pi,... ,Pi-i in between and cannot visit the same state twice. Hence,

there are at most

t + t2 + • • • + tl = ^ — p =dcf D(i)

strings tha t can reach pi from po-

Since C is deterministic, this implies tha t for any fixed i, 1 < i < m — 2, at most

D(i) of the pair-states (pi,qj), j S { 1 , . . . , n — 2} , are reachable from (po,Qo) in C.

Thus, if n — 2 > D(i), then some pair-states of C with pi as the first component are

not reachable. From the proof of Lemma 1, we know tha t C recognizes L(A)UL(B)

and, hence, the minimal DFA for L(A)\JL(B) needs fewer than mn—(m + n) states.

•
We establish the following statement from Lemmas 1 and 2.

T h e o r e m 1 Given two minimal DFAs A and B for finite languages, mn — (TO +

n) states are necessary and sufficient in the worst-case for the minimal DFA of

L(A) U L(B), where TO = \A\ and n= \B\.

Lemma 3 shows tha t the upper bound in Lemma 1 is unreachable if |E| is fixed

and m and n are arbitrarily large whereas Lemma 2 shows tha t the upper bound

is reachable if | S | depends on TO and n. These results naturally lead us to examine

the s tate complexity of union with a fixed sized alphabet.

588 Y.-S. Han & K. Salomaa

Below, for ease of presentation, we first give the lower bound result using a four
character alphabet and afterward explain how the construction can be modified for
a binary alphabet.

Lemma 4 Let £ be an alphabet with four characters. There exists a constant a such
that the following holds for infinitely many m, n > 1, where min{m, n} is unbounded.
There exist DFAs A and B, with m and n states respectively, that recognize finite
languages over £ such that the minimal DFA for the union L(A) U L(B) requires
a(min{m, n})2 states.

The same result holds for a binary alphabet.
Proof. Let £ = {a, b,c, d}. We introduce some notations for the proof. Given
an even length string w G £*, odd(w) denotes the subsequence of characters that
occur in odd positions in w and, thus, the length of odd(w) is half the length of
w. For example, if w = adacbcbc, then odd(w) = aabb. Similarly, even(w) denotes
the subsequence of characters that occur in even positions in w. With the same
example as above, even(w) = dccc.

Let s > 1 be arbitrary and r = [log s] . We define the finite language

L\ = {'W1W2 | \wi\ = 2r, u>2 = odd(wi) G {a, b}*, even(wi) G {c, d}*}.

The language L\ can be recognized by a DFA A with at most 10s states. For
reading a prefix of length 2r of an input string, the start state of A has two out-
transitions with labels a and b and the two corresponding target states are different.
Then, each target state has two out-transitions with labels c and d where the target
states are the same. This repeats in A until we finish reading a prefix of length 2r.
All other transitions go to the sink state. Fig. 3 illustrates the construction of A
with r = 3.

The computations of A, which do not go to the sink state, on inputs of length 2r
form a tree-like structure that branches into 2 r different states. Each of the 2 r states
represents a unique string odd(u) G {a, b}*, where u is the (prefix of the) input of
length 2r. Then, the computation from each of these 2 r states verifies whether or
not the remaining suffix is identical to the string odd(w). This can be accomplished
using a tree that merges all the computations into a single final state. (See the right
part of Fig. 3 for an example.) From each state, there is only one out-transition
(either with symbol a or b). if we ignore transitions into the sink state. (The
structure looks like a tree when we ignore transitions into the sink state.)

The first "expanding" tree of A that corresponds to computations on strings of
length 2r (for instance, the left part of Fig. 3) uses less than 4 • 2r < 8s statesa since
we repeat each level with the c, d transitions in the tree and s < 2 r < 2s.

Finally, consider the number of states in the "merging" tree. (This is the right
part of Fig. 3.) The merging tree has 2 r leaves and, therefore, the tree needs at
most 2 • 2 r < 4,s states. However, we observe that the the 2* leaves of the expanding
tree are identical to the 2* leaves of the merging tree, as states of A. Therefore, we
only need 2,s "new" states for the merging tree.

"Note that a balanced tree with 2r leaves has less than 2 • 2r nodes.

State Complexity of Union and Intersection of Finite Languages 589

expanding tree merging tree

Fig. 3. A DFA A that recognizes L\ when r = 3. We omit the sink state and its in-transitions.

The total number of states in A is less than 10s. (1)

Symmetrically, we define

L2 = {w\W2 | \w\\ = 2r, odd(iui) G {a, b}*, wi = even(wi) G {c, d}*}.

The language L^ consists of strings uv, where |w| = 2r, odd characters of u are
in {a, b}, even characters of u are in {c, d} and even(w) coincides with v. Using an
argument similar to that for equation (1), we establish that

L2 can be recognized by a DFA with less than 10s states. (2)

Now let L = LiU L2- Let u\ and n?. be arbitrary distinct strings of length 2r
such that odd(ui) G {a,b}* and even(«i) G {c,d}*, for i = 1,2.

If odd(tii) y^ odd(ti2), then u\ • odd(«i) G L\ C L but «2 • odd(ui) ^ L. Hence,
u\ and U2 are not equivalent modulo the right invariant congruence of L. Similarly,
if even(wi) ^ even(u2)5 then, u\ • even(wi) E L2 ^ L but «2 • even(wi) ^ L.

The above implies that the right invariant congruence of L has at least 2'"-2r > s2

different classes. Therefore, if rn = n = 10s is the size of the minimal DFAs for
the finite languages L\ and L2, then from equations (1) and (2) we know that the
minimal DFA for L = L\ U L2 needs at least

1
Too' -n states. (3)

Notice that we have used an alphabet S with four characters. If we encode the
languages L\ and L2 over a binary alphabet, then we get a similar lower bound

590 Y.-S. Han & K. Salomaa

for the state complexity of L\ U L2 with the only change that the constant -^ in
equation (3) will become smaller. •

4. Intersection of Finite Languages

Next we examine the state complexity of intersection of finite languages. Our
approach is again based on the structural properties of minimal DFAs recognizing
finite languages. Using the well-known Cartesian product construction, we obtain
a DFA for the intersection of two regular languages. For details, see Hopcroft and
Ullman [10].

Proposition 3 Given two DFAs A = (Qi, £, £1, si, Fi) and B = (Q2, S, 52, s2, F2),
let M n = (Qi x Q2, S, 5, (si, S2), F\ x F2), where for all p G Q\ and q G Q2 and
o £ E , 6((p,q),a) = (61(p,a),52(q,a)). Then, L(Mn) = L(A)nL(B).

k

1,2] f 1.3

Oi

^~»all states are unreachable from state (1,1)
Fig. 4. The DFA recognizing the intersection of two finite languages. We omit all transitions in
the figure.

Fig. 4 illustrates the construction of Mn that recognizes the intersection of lan
guages recognized by DFAs A and B. In the figure, m and n denote the sink states
of A and B and m— 1 and n—1 denote non-exiting final states of A and B, respec
tively. All states of Mn in the first row and in the first column are unreachable
from (1,1) since A and B are non-returning and, thus, these states are useless in
Mn. Moreover, by the construction, all remaining states in the last row and in the
last column are equivalent to the sink state and, therefore, can be merged. Let us
examine the remaining states in the second-to-last row and in the second-to-last
column except for (m — 1, n — 1).
Claim 1 A state (i, n — 1) in the second-to-last column, for 2 < i < rn — 1, is either

State Complexity of Union and Intersection of Finite Languages 591

equivalent to (TO — 1, n — 1) if state i is a final state in A, or,

equivalent to (TO, n) if state i is not a final state in A.

Proof. By the construction, for a state (i,j) of M n , the right language L^^ of
(i,j) is Li n Lj. Thus, if state i is a final state in A, then I/(i.„,_i) = {A} and,
therefore, (i, n — 1) and (TO — 1, n — 1) are equivalent. Otherwise, L^hn_i^ = 0 and,
thus, (i,n — 1) and (m,n) are equivalent. •

A property completely analogous to Claim 1 holds for the states in the second-
to-last row in M n . Therefore, all the remaining states in the second-to-last row and
in the second-to-last column except for (TO — l,n — 1) can be merged with either
(TO — 1, n — 1) or (TO, n). Thus, the number of remaining pairwise inequivalent states
is

mn - {(TO - 1) + (n - 1)} - {(TO - 2) + (n - 2)} - {(TO - 3) + (n - 3)}

= mn — 3(m + n) + 12,

where {(TO — 1) + (n — 1)} represents the number of states merged in the first row
and the first column, {(TO — 2) + (n — 2)} is from the last row and the last column
and {(m —3) + (n —3)} is from the second-to-last row and the second-to-last column.
We establish the following lemma from the calculation.

Lemma 5 Given two minimal DFAs A and B recognizing finite languages, where
m = \A\ and n = \B\, mn — 3(TO + n) + 12 states are sufficient for the intersection
ofL{A) andL{B).

We now show that mn — 3(m + n) + 12 states are necessary and, therefore, the
bound is tight.

Let m and n be positive numbers and choose

S = {a-i.j | 1 < i < m — 2 and 1 < j < n — 2} U {<zm-i,n-i}.

Let A = {Qi,T,,5i,po,{pm-2}), where Qi = {po,Pi,- • • ,Pm-i} and Si is defined
by setting:

• 5i(px,a.ij) = Px+i, for 0 < a; < TO — 2, 1 < i < m — 2 and 1 < j < n — 2.

If the sum x + i is larger than TO — 1, then px+i is the sink state (= p m _i) . In
all other cases not covered above, the relation 5\ takes the source state to the sink
state Pm-i- In particular, this means that a„,,_ijT,,_i takes all states of A to the sink
state.

Next, let B = (Q2, S, S2, qo, {gW-2}), where Q2 = {qo, <?i, • • •, qn-i} and S2 is
defined by:

• failx, ai.j) = Qx+j, for 0 < a; < TO — 2, 1 < j < n — 2 and 1 < -j < TO — 2.

Similarly, if the sum x + j is larger than n — 1, then gx+7- is the sink state (= qn-i)-
Again for all cases not covered above, the target state of the transition is the sink
state qn-\. Fig. 5 illustrates the construction of DFAs A and B.

592 Y.-S. Han & K. Salomaa

Fig. 5. The construction of DFAs A and B with m = 6 and n = 5. Here the state 5 of A (above)
and state 4 of B (below) are the sink states. We omit a large number of in-transitions into the
sink states.

Lemma 6 Let A and B be as above and L = L(A) f] L(B). The minimal DFA for
L needs ran — 3(m + n) + 12 states.

Proof. We prove the statement by showing that there exists a set R of rnn —
3(m+n) + 12 strings over £ that are pairwise inequivalent modulo the right invariant
congruence of L.

We choose R = R1 U R2 U R3 U i?4, where

Ri = {A}.

R-2 = {o,m-2,n-2}-

R3 = {am-i,n-i}-

Ri = {ai.j I for 1 < i < rn — 3 and 1 < j < n — 3}.

Any string x from R2 U R3 U i?4 cannot be equivalent with A from R\ since
A • am-2,n-2 S i but x • am-2,n-2 £ L. Similarly, any string x from R\ U R3 U i?4
cannot be equivalent with am-2,n-2 from R2 since am-2.n-2 • A G L but x • X ^ L.
Note that the string a m - i , n - i from i?3 is not a prefix of any string in L whereas
any string x from R\ U i?2 U i?4 can be completed to a string in L by appending a
suitable suffix. Therefore, R±, R2 and -R3 are inequivalent with each other including
R4.

Finally, we consider two strings a,-,^ and aXiV in R4. Note that aj]7--am_2-j,n-2-j £
L but aXiJ/ • am_2-j,n-2-j ^ -̂ when (i,j) 7̂ {x,y). Therefore, any two strings from
i?4 are not equivalent.

Now we count the number of strings in R. We note that |i?i| = I.R2I = \R'd\ = 1
and |i?4| = (m — 3)(n — 3). Therefore, \R\ = mn — 3(m + n) + 12. This implies that
there are at least mn — 3(m + n) + 12 states in the minimal DFA for L. •

We obtain the following result from Lemmas 5 and 6.

State Complexity of Union and Intersection of Finite Languages 593

Theorem 2 Given two minimal DFAs A and B recognizing finite languages, where
m = \A\ and n = \B\, rnn — 3(m + n) + 12 states are necessary and sufficient in the
worst-case for the intersection of L(A) and L(B).

Note that the upper bound ran — 3(m + n) + 12 is reachable when |E| depends
on m and n as shown in Lemma 6. On the other hand, using the same argument as
in Lemma 3, we can prove that the upper bound cannot be reached for large values
of m and n when the alphabet £ is fixed.

Finally, we establish a lower bound for the state complexity of intersection of
finite languages over a fixed alphabet that is within a multiplicative constant from
the upper bound.

Lemma 7 Let S be an alphabet with four characters. There exists a constant a such
that the following holds for infinitely many m, n > 1, where min{m, n} is unbounded.
There exist minimal DFAs A and B that recognize finite languages over S such that
the minimal DFA for the intersection L{A) n L(B) requires a(min{m,n})2 states,
where \A\ = m and \B\ = n.

The same result holds for a binary alphabet.
Proof. The construction is a modification of the construction that we used
in Lemma 4. For ease of presentation, we first define the languages over a four
character alphabet and, afterward, observe how this can be done with a binary
alphabet.

Let X = {a, b, c, d}, and let s be an arbitrary integer and r = [log s]. We define

L-i = {wiw2 | \w\\ = |w2| = 2r, odd(wi) = odd(w2),

odd(wi),odd(w2) G {a, b}*. even(wi), even(W2) G {c, d}*}.

The functions odd(w) and even(w) have been defined in Section 3.
It is easy to verify that L3 can be recognized by a DFA with 14s states. The

construction of the DFA is similar to that given for the language L\ in Lemma 4
except that the new construction may need (close to) 4 • 2s — 2s = 6s states for the
"merging tree".

Similarly, we define

Li = {w\W2 I \w\\ = \w2\ = 2r, even(wi) = even(w2),

odd(wi),odd(u>2) G {a, 6}*, even(wi), even(w2) G {c, d}*}.

We, then, observe that L4 can be recognized by a DFA with at most 14s states
by a similar construction as was used for L3.

Let L = L3 n LA, and u\ and u^ be distinct strings in ({a, b}{c, d})r. Then,
U1U1 G L but U2U1 <£ L and, hence, u\ and «2 are not equivalent modulo the right
invariant congruence of L. We have seen that the right invariant congruence of L
has at least 22r > s2 classes. (Recall that 2r > s.) Thus, if m = n = 14s is the size
of the minimal DFAs for L3 and L4, then the minimal DFA for L = L3 n L4 needs
at least

1 2

n states.
196

(4)

594 Y.-S. Han & K. Salomaa

This construction uses an alphabet of size four. The same construction works if

we encode the characters over a binary alphabet and the modification only changes

the constant -^ in equation (4). Therefore, a state complexity lower bound a • n2,

where a is a constant, holds also for the intersection of finite languages over a binary

alphabet. •

5. C on c l u s io ns

We have considered the state complexity of union and intersection of finite lan

guages. Recall tha t the precise s tate complexity of union and intersection has been

open although rough upper bounds were given by Yu [18].

Based on the structural properties of two minimal DFAs recognizing finite lan

guages (having TO and n states, respectively), we have proved tha t

1. For union, ran — (m + n) states are necessary and sufficient.

2. For intersection, ran — 3(TO + n) + 12 states are necessary and sufficient.

We have noted tha t the bounds can be reached in the worst-case if | S | is allowed

to depend on the sizes of the minimal DFAs for the two finite languages. If | S | is

fixed and TO and n are arbitrarily large, then we have shown tha t the upper bounds

for either case are not reachable.

The main open problem remaining would be to calculate the precise worst-case

s tate complexity of union and intersection of finite languages as a function of the

alphabet size. Tha t is, what is the worst-case s tate complexity, as a function of TO,

n and k, for the union (intersection) of two finite languages over a fe-letter alphabet,

k > 2, where the component languages require TO and n states, respectively.

References

1. C. Campeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic oper
ations on finite languages. In Proceedings of WIA '99, Lecture Notes in Computer
Science 2214, 60-70, 2001.

2. T. Claveirole, S. Lombardy, S. O'Connor, L.-N. Pouchet, and J. Sakarovitch. Inside
Vaucanson. In Proceedings of CIAA '05, Lecture Notes in Computer Science 3845,
116-128, 2006.

3. M. Domaratzki. State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics, 7(4):455-468, 2002.

4. M. Domaratzki and K. Salomaa. State complexity of shuffle on trajectories. Journal
of Automata, Languages and Combinatorics, 9(2-3):217-232, 2004.

5. K. Ellul, B. Krawetz, J. Shallit, and M.-W. Wang. Regular expressions: New
results and open problems. Journal of Automata, Languages and Combinatorics,
9:233-256, 2004.

6. Y.-S. Han and K. Salomaa. State complexity of basic operations on suffix-free
regular languages. In Proceedings of MFCS'07, Lecture Notes in Computer Science
4708, 501-512, 2007.

7. Y.-S. Han, K. Salomaa, and D. Wood. State complexity of prefix-free regular
languages. In Proceedings of DCFS'06, 165-176, 2006. Full version is submitted for
publication.

State Complexity of Union and Intersection of Finite Languages 595

8. M. Holzer and M. Kutrib. Unary language operations and their nondeterministic
state complexity. In Proceedings of DLT'02, Lecture Notes in Computer Science
2450, 162-172, 2002.

9. M. Holzer and M. Kutrib. Nondeterministic descriptional complexity of regular
languages. International Journal of Foundations of Computer Science, 14(6):1087-
1102, 2003.

10. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA, 2 edition, 1979.

11. M. Hricko, G. Jiraskova, and A. Szabari. Union and intersection of regular languages
and descriptional complexity. In Proceedings of DCFS'05, 170-181, 2005.

12. J. Jirasek, G. Jiraskova, and A. Szabari. State complexity of concatenation and
complementation. International Journal of Foundations of Computer Science,
16(3):511-529, 2005.

13. A. Maslov. Estimates of the number of states of finite automata. Soviet Mathematics
Doklady, 11:1373-1375, 1970.

14. C. Nicaud. Average state complexity of operations on unary automata. In Proceed
ings of MFCS'99, Lecture Notes in Computer Science 1672, 231-240, 1999.

15. G. Pighizzini and J. Shallit. Unary language operations, state complexity and
Jacobsthal's function. International Journal of Foundations of Computer Science,
13(1):145-159, 2002.

16. D. R. Raymond and D. Wood. Grail: A CH—h library for automata and expressions.
Journal of Symbolic Computation, 17:341-350, 1994.

17. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Word,
Language, Grammar, volume 1 of Handbook of Formal Languages, 41-110. Springer-
Verlag, 1997.

18. S. Yu. State complexity of regular languages. Journal of Automata, Languages and
Combinatorics, 6(2):221-234, 2001.

19. S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125(2):315-328, 1994.

