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We investigate the state complexity of union and intersection for finite languages. Note 
that the problem of obtaining the tight bounds for both operations was open. First we 
compute upper bounds using structural properties of minimal deterministic finite-state 
automata for finite languages. Then, we show that the upper bounds are tight if we have 
a variable sized alphabet that can depend on the size of input deterministic finite-state 
automata. In addition, we prove that the upper bounds are unreachable for any fixed 
sized alphabet. 
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1. In t roduct ion 

Regular languages are one of the most important and well-studied topics in com
puter science. They are often used in various practical applications such as vi , 
emacs and Per l . Furthermore, researchers have developed a number of software 
libraries for manipulating formal language objects with an emphasis on regular 
languages; examples include Grail [16] and Vaucanson [2]. 
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The applications and implementations of regular languages motivate the study 
of descriptional complexity of regular languages. The descriptional complexity of 
regular languages can be defined in various ways since regular languages can be 
characterized in different ways. For example, the family of languages accepted 
by deterministic finite-state automata (DFAs) or by nondeterministic finite-state 
automata (NFAs) or described by regular expressions consists of exactly the regular 
languages. Yu and his co-authors [f, 18, 19] regarded the number of states in the 
complete minimal DFA for L as the complexity of L and studied the state complexity 
of basic operations on regular languages and finite languages. Similar results where 
state complexity is defined using incomplete DFAs already appeared in the work by 
Maslov [13]. Holzer and Kutrib [8, 9] investigated the state complexity of NFAs. 
Recently, Ellul et al. [5] examined the size of the shortest regular expression for 
a given regular language. There are many other results on state complexity with 
different viewpoints [3, 4, 6, 7, ff, 12, 14, 15]. We focus on the measure of Yu [18]: 
The state complexity of a regular language is the number of states of its minimal 
DFA. The state complexity of an operation on regular languages is a function that 
associates to the state complexities of the operand languages the worst-case state 
complexity of the language resulting from the operation. For instance, we say that 
the state complexity of the intersection of L(A) and L(B) is mn, where A and B 
are minimal DFAs and the numbers of states in A and B are TO and n, respectively. 
This means that mn is the worst-case number of states of the minimal DFA for 
L(A)r\L(B). 

Yu et al. [f 9] gave a systematic study of state complexity of regular language 
operations. Campeanu et al. [1] investigated the state complexity of finite languages. 
The known results [1, 19] are summarized in Table 1. In the figure, TO, n > 1 denote 
the state complexity of L\ and L2, respectively. 

Table 1. The state complexity of basic operations on finite languages and regular languages. Note 
that o refers to results using a two-character alphabet. 

operation finite languages regular languages 

L\ UL2 0(mn) 

L\ n L2 0(mn) 

£ * \ L i TO 

Lx-L-2 (TO - n + 3)2"-2 - 1* 

L\ 2
m-3 + 2m-4, for TO > 4 ' 

Ln 3-2P-1 - 1 if m = 2p 
1 2" - 1 if TO = 2p - 1 

All complexity bounds, except for union and intersection of finite languages, 
in Table 1 are tight; namely, there exist worst-case examples that reach the given 
bounds. For union and intersection, clearly mn is an upper bound since finite 
languages are a proper subfamily of regular languages. We also note that Yu [18] 

mn 

mn 
TO 

(2m- 1)2"-1 

nm — 1 _i_ om — 2 
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briefly mentioned a rough upper bound ran — (ra + n — 2) for both operations. 
Therefore, it is natural to investigate the tight bounds for union and intersection of 
finite languages. 

To conclude the introduction, we summarize the contents of the following sec
tions. We define some basic notions in Section 2. In Section 3, we obtain an upper 
bound ran — (ra + n) for the union of two finite languages L\ and Li that is based on 
the structural properties of the DFAs for L\ and Li. Then, we prove that the bound 
is tight if the alphabet size can depend on ra and n. We also examine the intersec
tion of L\ and Li in Section 4 and obtain an upper bound ran — 3(m + n) + 12. 
We again demonstrate that the upper bound is reachable using a variable sized 
alphabet. Some conclusions and open problems are given in Section 5. 

2. Preliminaries 

Here we recall some definitions needed in the later sections. For all unexplained 
notions related to formal languages and finite automata we refer the reader to 
Hopcroft and Ullman [10] or Yu [17]. 

In the following E always denotes a finite alphabet of characters and E* is the 
set of all strings over E. The number of characters in E is denoted by |E|. A 
language over E is any subset of E*. The symbol 0 denotes the empty language and 
the symbol A denotes the null string. 

A finite-state automaton A (FA) is specified by a tuple (Q,Y*,S,s,F), where Q 
is a finite set of states, E is an input alphabet, S : Q x E —> 2^ is a transition 
function, s G Q is the start state and F C Q is a set of final states. The automaton 
is deterministic if S is a total function Q x S ^ Q . The number of states of an FA 
A is denoted also by \A\. 

A string x over E is accepted by A if there is a labeled path from s to a final 
state in F such that this path spells out the string x. Thus, the language L(A) 
recognized by A is the set of all strings that are spelled out by paths from s to a 
final state in F. 

Assume that A has a transition 5(j>, a) = q. In this case, we say that p has an 
out-transition and q has an in-transition. Furthermore, p is a source state of q and 
q is a target state of p. We say that A is non-returning if the start state of A does 
not have any in-transitions. A state q s Q is non- exiting if all out-transitions from 
q go to the sink state. 

Note that we require a DFA to be complete; namely, each state will have |E| 
out-transitions. In particular, a DFA accepting a finite language will have a sink 
state (or dead state). Since all sink states are always equivalent, a minimal DFA for 
a finite language has a unique sink state. Furthermore, a minimal DFA accepting 
a finite language has a unique non-exiting final state. These observations are used 
without further mention in the following. 

Given an FA A = (Q, E, 6, s, F), we define the right language Lq of a state q s Q 
to be the set of strings that are spelled out by some path from q to a final state in 
A. Namely, Lq is the language accepted by the FA obtained from A by changing 
the start state to q. We say that two states p and q are equivalent if L.p = Lq. 
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Let L C S * . The right invariant congruence of L, =z,C £* 
setting u =L V if 

(Vz G S*) ux G L iff ra G L. 

£*, is defined by 

3. Union of Finite Languages 

Given two DFAs A and B for languages L\ and L2, we can in the well-known 
way obtain a DFA for the union of L(A) and L(B) using the Cartesian product 
construction. 

Proposition 1 Given two DFAs A = (Qi,T,,6i,si,Fi) and B = (Q2, £, £2, s2, F2), 
let M y = (Qi x Q2, S, 5, (si, S2), F) , where for all p G Qi and g £ Q2 and o e S , 
5((p,q),a) = (6(p,a),6(q,a)) and F = {(p, f2) \ p G Qi a n d / 2 G F 2 }U{( / i ,g ) 
/1 G i<i and 5 G Q 2}. Then, L(MIJ) = L(A) U I/(B) and My is deterministic. 

In order to improve the upper bound for the state complexity of union of fi
nite languages, a crucial observation is that both A and B must be non-returning. 
Therefore, as Yu [18] observed, if we apply the Cartesian product for union, any 
state (si, q) where q 7̂  s2 and any state (p, s2) where p 7̂  s± is not reachable from 
the start state (si ,s2) in Mu. Thus, the the DFA Mu has at least (m + n) — 2 
useless states. 

Consider the right language of a state (i,j) in Mu. We recall the following result 
from Han et al. [7]. 

Proposition 2 (Han et al. [7]) For a state (i,j) in Mu, the right language L^j) 
°f (hj) is the union of the right language Li of i (as a state of A) and the right 
language Lj of j (as a state of B). 

1.1 1,2} fl, : l,n-f) (l.Ti 

o 
o 

equivalent 

^—»-all states arc unreachable from state (1,1) 
Fig. 1. A DFA constructed for the union of two minimal DFAs of finite languages based on the 
Cartesian product of states. The figure omits all transitions. 
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Since A recognizes a finite language, A must have a final state / such tha t all of 

/ ! s out-transitions go to the sink state. Let d\ and d2 be the sink states of A and 

B and / i and f2 be the non-exiting final states of A and B, respectively. Then, by 

Proposition 2, ( / i , f 2 ) , (d\, f2) and ( / i , d2) are equivalent and, thus, can be merged 

into a single state. Fig. 1 illustrates this step; note tha t (f\,f2) = (TO— l ,n—1), 

(di,f2) = (TO,n—1) and (fi,d2) = (TO—l,n) in the figure. This shows tha t we can 

reduce two more states from Mu- Therefore, we obtain the following result. 

L e m m a 1 Given two minimal DFAs A and B for finite languages, mn — (TO + n) 

states are sufficient for the union of L{A) and L(B), where m = \A\ and n = \B\. 

We next examine whether or not the upper bound of Lemma 1 can be reached 

in the worst-case. We first consider the case where the size of the alphabet may 

depend on the state complexity of the component languages. 

L e m m a 2 The upper bound rnn — (m + n) for union is reachable if the size of the 

alphabet can depend on m and n. 

Proof. Let TO and n be positive numbers and 

£ = {6, c} U {a^- I 1 <i < m - 2 , 1 < j < n - 2 and (i, j) ^ ( m - 2 , n - 2 ) } . 

Let A = (Qi , £ , Si,po, {Pm-2}), where Q\ = {po,Pi, • • • , p m - i } and S\ is defined 
as follows: 

• o~i(pi, b) = Pi+i, for 0 < i < m — 2. 

• 5i(po, di.j) = pi, for 1 < i < TO — 2 and 1 < j < n — 2, (i,j) 7̂  (TO — 2, n — 2). 

For all cases not covered above, 5\ takes the source state to the state pm-i, and 

consequently pm-i is the sink s tate of A. 

Next, let B = (Q2, £ , 52, <?o, {qVi-2}), where Q2 = {qo, <?i, • • •, qn-i} and d2 is 
defined as follows: 

• 52(qi, c) = qi+i, for 0 < i < n — 2. 

• &2{qo, (ii,j) = qj, for 1 < j < n — 2 and 1 < i < m — 2, (i,j)j^(rn — 2,n — 2). 

Again, for all cases not covered above, the target state is the sink state qn-i- Fig. 2 

illustrates the definition of the DFAs A and B. 

Let L = L(Ai) U L(A2). We claim tha t the minimal DFA for L needs mn — 

(rn + n) states. To prove the claim, it is sufficient to show tha t there exists a set R 

consisting of mn — (m + n) strings over £ tha t are pairwise inequivalent modulo the 

right invariant congruence of L, =L. 

We choose R = R\ U R2 U R3, where 

R1 = {bl I 0 < i < TO - 1}. 

R2 = {cj \ 1 < j <n - 3}. (Note tha t R2 does not include c°, c™~2 and c™_1.) 

-R3 = {a>i,j I 1 < i < TO — 2 and 1 < j < n — 2 and (i, j) ^ (TO — 2, n — 2)}. 
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Fig. 2. The DFAs A and B in the case where m = 6 and n = 5. State 5 of A (above) and state 4 
of B (below) are sink states. Except for the ^-transition to state 5 in A and the c-transition to 
state 4 in B, the figure omits all other in-transitions of the sink states. 

Any string bl from R\ cannot be equivalent with a string cJ from R% since cJ 

2n-2-j £ L b u t fci . c"-2-.7 ^ £. Note that j > 1 and hence also b° -> $ L. 
Next consider a string b' from Ri and a string akj from .R3. There are four 

possibilities. 

1. k y^ i and 0 < i < rn — 3: Now b% and a^j are inequivalent since bl -b' m—2 — i eL 
but akJ • 6m"2-i £ L. 

2. k y^ i and i m 2: This implies that k < m — 2 and, thus, 6* and â ,,- are 
inequivalent since aktj • V %-2-k e L but bl • b1 %-2-k $L. 

3. k ^ i and i = rn — 1: The path for 6* = 6 m _ 1 must end at the sink state for 
the minimal DFA for L since bm~l is not a prefix of any string in L. On the 
other hand, ak.j can be completed to a string of L by appending zero or more 
symbols c. 

4. k = i: Now the strings under consideration are bl and a-i.j. 

(a) j < n - 2: We note that a,;̂  • cn_2~J ' e L but 6* • c™~2~-? ^ L since no 
string of L can have both 6's and c's. Note that k = i implies that i > 1. 

(b) j = n — 2: Since j = n — 2, i < rn — 2 by the definition of .R3. Now 
bl • \ ^ L but a^j = aiiri_2 • A e L(B) C L. 

Therefore, 6' and a.;., are inequivalent. 

Symmetrically, we see that any string from R2 cannot be equivalent with a 
string from R3. This case is, in fact, simpler than the previous case since R2 is 
more restrictive than R\. 

Finally, we show that all strings from R\ (respectively, from R^ and from R3) 
are pairwise inequivalent with each other. 

1. R\\ By appending a suitable number of b's, we can always distinguish two 
distinct strings from R\. 

2. R2: By appending a suitable number of c's, we can always distinguish two 
distinct strings from i?2-
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3. R3: Consider two distinct strings a,-7- and aXtV from R3. Without loss of 

generality, we assume tha t i < x. The other possibility, where j and y differ, 

is completely symmetric. Since ciij • \)m-2-% g T, but aXtV • 5™l~2~* ^ L, a,ij 

and ax,y are inequivalent. Note tha t m — 2 — i > 0 and, thus, the inequivalence 

holds even in the case where y = n — 2. 

This concludes the proof. • 

In the construction of the proof of Lemma 2, | S | is mn — 2m — 2n + 5. By using a 

more complicated construction, it would be possible to reduce | S | . However, below 

we see tha t the alphabet X has to depend on TO and n. 

L e m m a 3 The upper bound mn — (m + n) for union cannot be reached with a fixed 

alphabet when m and n are arbitrarily large. 

Proof. Assume tha t X is a fixed alphabet with | S | = t. We show tha t it is not 

possible to reach the upper bound mn — (m + n) for arbitrarily large m and n. 

Let A have state set {po,Pi, • • • ,Pm-i} a n d B have state set {qo, q\,. •., qn-i}, 

where po and qo are start states. We assume tha t m,n > 2. The only finite language 

with a one-state DFA is 0. 

Without loss of generality we can assume tha t A and B are minimal DFAs. Since 

A recognizes a finite language, we can order the states such tha t if pj is reachable 

from pi, then i < j . In particular, pm-i is the sink state and pm-2 the non-exiting 

final s tate. The states of B are ordered in a similar way. 

Let C be the DFA with mn — (m + n) states recognizing L(A) U L(B) tha t 

is constructed as in the proof of Lemma 1. The DFA C is obtained from Mu by 

identifying some of the pair-states. 

Let i G { 1 , . . . , m—2}. Any string tha t reaches p-i from po can go through only 

the states pi,... ,Pi-i in between and cannot visit the same state twice. Hence, 

there are at most 

t + t2 + • • • + tl = ^ — p =dcf D(i) 

strings tha t can reach pi from po-

Since C is deterministic, this implies tha t for any fixed i, 1 < i < m — 2, at most 

D(i) of the pair-states (pi,qj), j S { 1 , . . . , n — 2} , are reachable from (po,Qo) in C. 

Thus, if n — 2 > D(i), then some pair-states of C with pi as the first component are 

not reachable. From the proof of Lemma 1, we know tha t C recognizes L(A)UL(B) 

and, hence, the minimal DFA for L(A)\JL(B) needs fewer than mn—(m + n) states. 

• 
We establish the following statement from Lemmas 1 and 2. 

T h e o r e m 1 Given two minimal DFAs A and B for finite languages, mn — (TO + 

n) states are necessary and sufficient in the worst-case for the minimal DFA of 

L(A) U L(B), where TO = \A\ and n= \B\. 

Lemma 3 shows tha t the upper bound in Lemma 1 is unreachable if |E| is fixed 

and m and n are arbitrarily large whereas Lemma 2 shows tha t the upper bound 

is reachable if | S | depends on TO and n. These results naturally lead us to examine 

the s tate complexity of union with a fixed sized alphabet. 
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Below, for ease of presentation, we first give the lower bound result using a four 
character alphabet and afterward explain how the construction can be modified for 
a binary alphabet. 

Lemma 4 Let £ be an alphabet with four characters. There exists a constant a such 
that the following holds for infinitely many m, n > 1, where min{m, n} is unbounded. 
There exist DFAs A and B, with m and n states respectively, that recognize finite 
languages over £ such that the minimal DFA for the union L(A) U L(B) requires 
a(min{m, n})2 states. 

The same result holds for a binary alphabet. 
Proof. Let £ = {a, b,c, d}. We introduce some notations for the proof. Given 
an even length string w G £*, odd(w) denotes the subsequence of characters that 
occur in odd positions in w and, thus, the length of odd(w) is half the length of 
w. For example, if w = adacbcbc, then odd(w) = aabb. Similarly, even(w) denotes 
the subsequence of characters that occur in even positions in w. With the same 
example as above, even(w) = dccc. 

Let s > 1 be arbitrary and r = [log s] . We define the finite language 

L\ = {'W1W2 | \wi\ = 2r, u>2 = odd(wi) G {a, b}*, even(wi) G {c, d}*}. 

The language L\ can be recognized by a DFA A with at most 10s states. For 
reading a prefix of length 2r of an input string, the start state of A has two out-
transitions with labels a and b and the two corresponding target states are different. 
Then, each target state has two out-transitions with labels c and d where the target 
states are the same. This repeats in A until we finish reading a prefix of length 2r. 
All other transitions go to the sink state. Fig. 3 illustrates the construction of A 
with r = 3. 

The computations of A, which do not go to the sink state, on inputs of length 2r 
form a tree-like structure that branches into 2 r different states. Each of the 2 r states 
represents a unique string odd(u) G {a, b}*, where u is the (prefix of the) input of 
length 2r. Then, the computation from each of these 2 r states verifies whether or 
not the remaining suffix is identical to the string odd(w). This can be accomplished 
using a tree that merges all the computations into a single final state. (See the right 
part of Fig. 3 for an example.) From each state, there is only one out-transition 
(either with symbol a or b). if we ignore transitions into the sink state. (The 
structure looks like a tree when we ignore transitions into the sink state.) 

The first "expanding" tree of A that corresponds to computations on strings of 
length 2r (for instance, the left part of Fig. 3) uses less than 4 • 2r < 8s statesa since 
we repeat each level with the c, d transitions in the tree and s < 2 r < 2s. 

Finally, consider the number of states in the "merging" tree. (This is the right 
part of Fig. 3.) The merging tree has 2 r leaves and, therefore, the tree needs at 
most 2 • 2 r < 4,s states. However, we observe that the the 2* leaves of the expanding 
tree are identical to the 2* leaves of the merging tree, as states of A. Therefore, we 
only need 2,s "new" states for the merging tree. 

"Note that a balanced tree with 2r leaves has less than 2 • 2r nodes. 
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expanding tree merging tree 

Fig. 3. A DFA A that recognizes L\ when r = 3. We omit the sink state and its in-transitions. 

The total number of states in A is less than 10s. (1) 

Symmetrically, we define 

L2 = {w\W2 | \w\\ = 2r, odd(iui) G {a, b}*, wi = even(wi) G {c, d}*}. 

The language L^ consists of strings uv, where |w| = 2r, odd characters of u are 
in {a, b}, even characters of u are in {c, d} and even(w) coincides with v. Using an 
argument similar to that for equation (1), we establish that 

L2 can be recognized by a DFA with less than 10s states. (2) 

Now let L = LiU L2- Let u\ and n?. be arbitrary distinct strings of length 2r 
such that odd(ui) G {a,b}* and even(«i) G {c,d}*, for i = 1,2. 

If odd(tii) y^ odd(ti2), then u\ • odd(«i) G L\ C L but «2 • odd(ui) ^ L. Hence, 
u\ and U2 are not equivalent modulo the right invariant congruence of L. Similarly, 
if even(wi) ^ even(u2)5 then, u\ • even(wi) E L2 ^ L but «2 • even(wi) ^ L. 

The above implies that the right invariant congruence of L has at least 2'"-2r > s2 

different classes. Therefore, if rn = n = 10s is the size of the minimal DFAs for 
the finite languages L\ and L2, then from equations (1) and (2) we know that the 
minimal DFA for L = L\ U L2 needs at least 

1 
Too' -n states. (3) 

Notice that we have used an alphabet S with four characters. If we encode the 
languages L\ and L2 over a binary alphabet, then we get a similar lower bound 
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for the state complexity of L\ U L2 with the only change that the constant -^ in 
equation (3) will become smaller. • 

4. Intersection of Finite Languages 

Next we examine the state complexity of intersection of finite languages. Our 
approach is again based on the structural properties of minimal DFAs recognizing 
finite languages. Using the well-known Cartesian product construction, we obtain 
a DFA for the intersection of two regular languages. For details, see Hopcroft and 
Ullman [10]. 

Proposition 3 Given two DFAs A = (Qi, £, £1, si, Fi) and B = (Q2, S, 52, s2, F2), 
let M n = (Qi x Q2, S, 5, (si, S2), F\ x F2), where for all p G Q\ and q G Q2 and 
o £ E , 6((p,q),a) = (61(p,a),52(q,a)). Then, L(Mn) = L(A)nL(B). 

k 

1,2] f 1.3 

Oi 

^~»all states are unreachable from state (1,1) 
Fig. 4. The DFA recognizing the intersection of two finite languages. We omit all transitions in 
the figure. 

Fig. 4 illustrates the construction of Mn that recognizes the intersection of lan
guages recognized by DFAs A and B. In the figure, m and n denote the sink states 
of A and B and m— 1 and n—1 denote non-exiting final states of A and B, respec
tively. All states of Mn in the first row and in the first column are unreachable 
from (1,1) since A and B are non-returning and, thus, these states are useless in 
Mn. Moreover, by the construction, all remaining states in the last row and in the 
last column are equivalent to the sink state and, therefore, can be merged. Let us 
examine the remaining states in the second-to-last row and in the second-to-last 
column except for (m — 1, n — 1). 
Claim 1 A state (i, n — 1) in the second-to-last column, for 2 < i < rn — 1, is either 
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equivalent to (TO — 1, n — 1) if state i is a final state in A, or, 

equivalent to (TO, n) if state i is not a final state in A. 

Proof. By the construction, for a state (i,j) of M n , the right language L^^ of 
(i,j) is Li n Lj. Thus, if state i is a final state in A, then I/(i.„,_i) = {A} and, 
therefore, (i, n — 1) and (TO — 1, n — 1) are equivalent. Otherwise, L^hn_i^ = 0 and, 
thus, (i,n — 1) and (m,n) are equivalent. • 

A property completely analogous to Claim 1 holds for the states in the second-
to-last row in M n . Therefore, all the remaining states in the second-to-last row and 
in the second-to-last column except for (TO — l,n — 1) can be merged with either 
(TO — 1, n — 1) or (TO, n). Thus, the number of remaining pairwise inequivalent states 
is 

mn - {(TO - 1) + (n - 1)} - {(TO - 2) + (n - 2)} - {(TO - 3) + (n - 3)} 

= mn — 3(m + n) + 12, 

where {(TO — 1) + (n — 1)} represents the number of states merged in the first row 
and the first column, {(TO — 2) + (n — 2)} is from the last row and the last column 
and {(m —3) + (n —3)} is from the second-to-last row and the second-to-last column. 
We establish the following lemma from the calculation. 

Lemma 5 Given two minimal DFAs A and B recognizing finite languages, where 
m = \A\ and n = \B\, mn — 3(TO + n) + 12 states are sufficient for the intersection 
ofL{A) andL{B). 

We now show that mn — 3(m + n) + 12 states are necessary and, therefore, the 
bound is tight. 

Let m and n be positive numbers and choose 

S = {a-i.j | 1 < i < m — 2 and 1 < j < n — 2} U {<zm-i,n-i}. 

Let A = {Qi,T,,5i,po,{pm-2}), where Qi = {po,Pi,- • • ,Pm-i} and Si is defined 
by setting: 

• 5i(px,a.ij) = Px+i, for 0 < a; < TO — 2, 1 < i < m — 2 and 1 < j < n — 2. 

If the sum x + i is larger than TO — 1, then px+i is the sink state (= p m _i ) . In 
all other cases not covered above, the relation 5\ takes the source state to the sink 
state Pm-i- In particular, this means that a„,,_ijT,,_i takes all states of A to the sink 
state. 

Next, let B = (Q2, S, S2, qo, {gW-2}), where Q2 = {qo, <?i, • • •, qn-i} and S2 is 
defined by: 

• failx, ai.j) = Qx+j, for 0 < a; < TO — 2, 1 < j < n — 2 and 1 < -j < TO — 2. 

Similarly, if the sum x + j is larger than n — 1, then gx+7- is the sink state (= qn-i)-
Again for all cases not covered above, the target state of the transition is the sink 
state qn-\. Fig. 5 illustrates the construction of DFAs A and B. 
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Fig. 5. The construction of DFAs A and B with m = 6 and n = 5. Here the state 5 of A (above) 
and state 4 of B (below) are the sink states. We omit a large number of in-transitions into the 
sink states. 

Lemma 6 Let A and B be as above and L = L(A) f] L(B). The minimal DFA for 
L needs ran — 3(m + n) + 12 states. 

Proof. We prove the statement by showing that there exists a set R of rnn — 
3(m+n) + 12 strings over £ that are pairwise inequivalent modulo the right invariant 
congruence of L. 

We choose R = R1 U R2 U R3 U i?4, where 

Ri = {A}. 

R-2 = {o,m-2,n-2}-

R3 = {am-i,n-i}-

Ri = {ai.j I for 1 < i < rn — 3 and 1 < j < n — 3}. 

Any string x from R2 U R3 U i?4 cannot be equivalent with A from R\ since 
A • am-2,n-2 S i but x • am-2,n-2 £ L. Similarly, any string x from R\ U R3 U i?4 
cannot be equivalent with am-2,n-2 from R2 since am-2.n-2 • A G L but x • X ^ L. 
Note that the string a m - i , n - i from i?3 is not a prefix of any string in L whereas 
any string x from R\ U i?2 U i?4 can be completed to a string in L by appending a 
suitable suffix. Therefore, R±, R2 and -R3 are inequivalent with each other including 
R4. 

Finally, we consider two strings a,-,^ and aXiV in R4. Note that aj]7--am_2-j,n-2-j £ 
L but aXiJ/ • am_2-j,n-2-j ^ -̂  when (i,j) 7̂  {x,y). Therefore, any two strings from 
i?4 are not equivalent. 

Now we count the number of strings in R. We note that |i?i| = I.R2I = \R'd\ = 1 
and |i?4| = (m — 3)(n — 3). Therefore, \R\ = mn — 3(m + n) + 12. This implies that 
there are at least mn — 3(m + n) + 12 states in the minimal DFA for L. • 

We obtain the following result from Lemmas 5 and 6. 
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Theorem 2 Given two minimal DFAs A and B recognizing finite languages, where 
m = \A\ and n = \B\, rnn — 3(m + n) + 12 states are necessary and sufficient in the 
worst-case for the intersection of L(A) and L(B). 

Note that the upper bound ran — 3(m + n) + 12 is reachable when |E| depends 
on m and n as shown in Lemma 6. On the other hand, using the same argument as 
in Lemma 3, we can prove that the upper bound cannot be reached for large values 
of m and n when the alphabet £ is fixed. 

Finally, we establish a lower bound for the state complexity of intersection of 
finite languages over a fixed alphabet that is within a multiplicative constant from 
the upper bound. 

Lemma 7 Let S be an alphabet with four characters. There exists a constant a such 
that the following holds for infinitely many m, n > 1, where min{m, n} is unbounded. 
There exist minimal DFAs A and B that recognize finite languages over S such that 
the minimal DFA for the intersection L{A) n L(B) requires a(min{m,n})2 states, 
where \A\ = m and \B\ = n. 

The same result holds for a binary alphabet. 
Proof. The construction is a modification of the construction that we used 
in Lemma 4. For ease of presentation, we first define the languages over a four 
character alphabet and, afterward, observe how this can be done with a binary 
alphabet. 

Let X = {a, b, c, d}, and let s be an arbitrary integer and r = [log s]. We define 

L-i = {wiw2 | \w\\ = |w2| = 2r, odd(wi) = odd(w2), 

odd(wi),odd(w2) G {a, b}*. even(wi), even(W2) G {c, d}*}. 

The functions odd(w) and even(w) have been defined in Section 3. 
It is easy to verify that L3 can be recognized by a DFA with 14s states. The 

construction of the DFA is similar to that given for the language L\ in Lemma 4 
except that the new construction may need (close to) 4 • 2s — 2s = 6s states for the 
"merging tree". 

Similarly, we define 

Li = {w\W2 I \w\\ = \w2\ = 2r, even(wi) = even(w2), 

odd(wi),odd(u>2) G {a, 6}*, even(wi), even(w2) G {c, d}*}. 

We, then, observe that L4 can be recognized by a DFA with at most 14s states 
by a similar construction as was used for L3. 

Let L = L3 n LA, and u\ and u^ be distinct strings in ({a, b}{c, d})r. Then, 
U1U1 G L but U2U1 <£ L and, hence, u\ and «2 are not equivalent modulo the right 
invariant congruence of L. We have seen that the right invariant congruence of L 
has at least 22r > s2 classes. (Recall that 2r > s.) Thus, if m = n = 14s is the size 
of the minimal DFAs for L3 and L4, then the minimal DFA for L = L3 n L4 needs 
at least 

1 2 

n states. 
196 

(4) 
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This construction uses an alphabet of size four. The same construction works if 

we encode the characters over a binary alphabet and the modification only changes 

the constant -^ in equation (4). Therefore, a state complexity lower bound a • n2, 

where a is a constant, holds also for the intersection of finite languages over a binary 

alphabet. • 

5. C on c l u s io ns 

We have considered the state complexity of union and intersection of finite lan

guages. Recall tha t the precise s tate complexity of union and intersection has been 

open although rough upper bounds were given by Yu [18]. 

Based on the structural properties of two minimal DFAs recognizing finite lan

guages (having TO and n states, respectively), we have proved tha t 

1. For union, ran — (m + n) states are necessary and sufficient. 

2. For intersection, ran — 3(TO + n) + 12 states are necessary and sufficient. 

We have noted tha t the bounds can be reached in the worst-case if | S | is allowed 

to depend on the sizes of the minimal DFAs for the two finite languages. If | S | is 

fixed and TO and n are arbitrarily large, then we have shown tha t the upper bounds 

for either case are not reachable. 

The main open problem remaining would be to calculate the precise worst-case 

s tate complexity of union and intersection of finite languages as a function of the 

alphabet size. Tha t is, what is the worst-case s tate complexity, as a function of TO, 

n and k, for the union (intersection) of two finite languages over a fe-letter alphabet, 

k > 2, where the component languages require TO and n states, respectively. 
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