
October 14, 2015 9:2 IJFCS S0129054115500392 page 697

International Journal of Foundations of Computer Science
Vol. 26, No. 6 (2015) 697–707
c© World Scientific Publishing Company
DOI: 10.1142/S0129054115500392

State Complexity of Boundary of Prefix-Free Regular Languages

Hae-Sung Eom∗ and Yo-Sub Han†

Department of Computer Science, Yonsei University

50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea
∗haesung@cs.yonsei.ac.kr
†emmous@cs.yonsei.ac.kr

Received 4 January 2015
Accepted 24 March 2015

Communicated by Arto K. Salomaa

Recently, researchers studied the state complexity of boundary — L∗∩Lc∗ — of regular
languages L motivated from the famous Kuratowski’s 14-theorem. Prefix codes — a
set of languages — play an important role in several applications. We consider prefix-
free regular languages and investigate the state complexity of two operations, Lc∗ and
L∗∩Lc∗ for prefix-free regular languages. Based on the unique structural properties of a
prefix-free minimal DFA, we compute the precise state complexity of Lc∗ and L∗ ∩Lc∗.
We then present the tight bound over a quaternary alphabet for Lc∗ and L∗ ∩Lc∗. Our
results are smaller than the composition of the state complexity function for individual
operations of prefix-free regular languages.

Keywords: Finite-state automata; prefix-free regular languages; boundary operation;
state complexity.

1. Introduction

State complexity is one of the most intensively studied topics in automata and

formal language theory in recent years [1, 2, 4, 5, 8, 11, 13, 15, 16, 18, 22, 23]. Many

applications including ClamAV,a PROSITEb and Snortc use regular languages and

finite-state automata (FAs). The size of FAs used in those applications increase

steadily. State complexity is a measurement of a FA size by the number of states in

the FA. Since measuring the size of FAs become more and more important, state

complexity also becomes important in automata theory. For instance the estimated

upper bound of the state complexity useful in practice since it may help to manage

resource efficiently. Moreover, it is a challenging quest to verify whether or not an

estimated upper bound can be reached. The state complexity of an operation for

regular languages is defined as the number of states that are necessary and sufficient

†Corresponding author.
ahttp://www.clamav.net.
bhttp://prosite.expasy.org/.
chttps://www.snort.org/.

697

http://dx.doi.org/10.1142/S0129054115500392

October 14, 2015 9:2 IJFCS S0129054115500392 page 698

698 H.-S. Eom & Y.-S. Han

in the worst-case for the minimal DFA to accept the language resulting from the

operation, considered as a function of the state complexities of operands. Maslov [14]

obtained the state complexity of concatenation and other basic operations; however,

his short paper did not include many proofs. Later, unaware of the earlier work,

Yu et al. [23] reintroduced the study of operational state complexity in a more

systematic way.

While researchers mainly looked at the state complexity of single operations

(union, intersection, catenation and so on), Yu and his co-authors started to investi-

gate the state complexity of combined operations (star-of-union, star-of-intersection

and so on) [6, 7, 17, 19]. They showed that the state complexity of a combined op-

eration is usually not equal to the function composition of the state complexities

of the participating individual operations. They also observed that, in a few cases,

the state complexity of a combined operation is very close to the composition of

the individual state complexities.

Recently, Jirásek and Jirásková studied the state complexity of boundary of

regular languages [12]. The boundary of a language is defined as L∗ ∩ Lc∗. The

problem is motivated from the famous Kuratowski’s “14-theorem” states that, in

a topological space, at most 14 sets can be produced by applying the operations

of closure and complement to a given set. They found the tight bound for the

boundary of a language over a five-letter alphabet.

Here we consider the state complexity of boundary of prefix-free regular lan-

guages. Note that prefix-free regular languages preserve unique structural properties

in minimal DFAs, and these properties are crucial to obtain the state complexity

bounds that are often significantly lower than for general regular languages [9, 10].

We first compute the state complexity of Lc∗ for prefix-free regular languages and

then compute the state complexity of boundary of prefix-free regular languages. In

Sec. 2, we define some basic notions. Then we present the state complexity of Lc∗

and L∗ ∩ Lc∗ for prefix-free regular languages, respectively, in Secs. 3 and 4. We

summarize the results and conclude the paper in Sec. 5.

2. Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings

over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is any

subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ denotes

the null string. Let |w|b be the number of occurrences of symbol b ∈ Σ in the string

w. For strings x, y and z, we say that x is a prefix of z, if z = xy. We define a

language L to be prefix-free if for any two distinct strings x and y in L, x is not

a prefix of y. For a DFA A, we say that A is prefix-free if A accepts a prefix-free

regular language.

A DFA A is specified by a tuple (Q,Σ, δ, s, F), where Q is a finite set of states, Σ

is an input alphabet, δ : Q×Σ → Q is a transition function, s ∈ Q is the start state

and F ⊆ Q is a set of final states. Given a DFA A, we assume that A is complete;

October 14, 2015 9:2 IJFCS S0129054115500392 page 699

State Complexity of Boundary of Prefix-Free Regular Languages 699

namely, each state has |Σ| out-transitions and, therefore, A may have a dead state

(a non-final state where all out-transitions are self-loops). We assume that A has

a unique dead state since all dead states are equivalent and can be merged into

a single state. Let |Q| be the number of states in Q. We define the size |A| of A

to be |Q|. For a transition δ(p, a) = q in A, we say that p has an out-transition

and q has an in-transition. Furthermore, p is a source state of q and q is a target

state of p. We say that A is non-returning if the start state of A does not have any

in-transitions and A is non-exiting if all out-transitions of any final state in A go

to the dead state.

A nondeterministic finite-state automaton (NFA) is a tuple A = (Q,Σ, δ, Q0, F)

where Q,Σ, F are as in a DFA, Q0 is the set of start states, and δ : Q × Σ → 2Q

is the transition function. Every NFA A can be converted to an equivalent DFA

A′ = (2Q,Σ, δ′, Q0, F
′) by the subset construction. If A = (Q,Σ, δ, s, F) is an

NFA, where δ : Q × Σ → 2Q is nondeterministic transition function, which can be

naturally extended to the domain 2Q × Σ∗, then the subset automaton of A gives

rise to a DFA A′ = (2Q,Σ, δ′{s}, F ′), where δ′(R, a) = δ(R, a) for each R in 2Q and

each a in Σ, and F ′ = {R ∈ 2Q | R ∪ T 6= ∅}. The subset automaton may not be

minimal since some of its states may be unreachable or equivalent.

A string x over Σ is accepted by A if there is a labeled path from s to a final

state such that this path spells out x. We call this path an accepting path. The

language L(A) of A is the set of all strings spelled out by accepting paths in A.

For a minimal DFA A, L(A) is prefix-free if and only if A has exactly one accept

state and all transitions from the accept state go to the dead state, that is, A is

non-exiting. We define a state q of A to be reachable (respectively, co-reachable)

if there is a path from the start state to q (respectively, a path from q to a final

state). In the following, unless otherwise mentioned, we assume that all states are

reachable and all states except the dead state are co-reachable and a DFA has at

most one dead state. The state complexity SC(L) of a regular language L is defined

to be the size of the minimal DFA recognizing L.

For more background in automata theory, the reader may refer to the text-

books [20, 21].

3. State Complexity of Lc∗

The state complexity is a good measurement for the size of a regular language.

There are two well-known observations on state complexity:

(1) The state complexities for combined operations are usually smaller than

the composition of the state complexity function for individual operations

[6, 7, 17, 19].

(2) The state complexity of subfamilies of regular languages is usually smaller than

the state complexity of regular languages [3, 9, 10].

With respect to the boundary of a regular language L∗∩Lc∗, these observations

lead us to expect that

October 14, 2015 9:2 IJFCS S0129054115500392 page 700

700 H.-S. Eom & Y.-S. Han

(1) The state complexity of Lc∗ would be smaller than the composition of the state

complexity of Lc and L∗.

(2) The state complexity of the boundary operation L∗∩Lc∗ for prefix-free regular

languages would be smaller than the general regular language case.

The state complexity of L∗ for prefix-free regular languages is already studied

but the state complexity of Lc∗ has been not proved yet. Thus, before we tackle

the state complexity of boundary of prefix-free regular languages, we investigate

the state complexity of Lc∗. For simplicity, let an n-state prefix-free minimal DFA

mean a DFA that is prefix-free, minimal, and has exactly n states.

Lemma 1. Given an n-state prefix-free minimal DFA for L, 2n−3 + 2 states are

sufficient for a DFA to accept Lc∗, where n ≥ 3.

Proof. Let a prefix-free language L be accepted by a DFA A =

({s, q1, q2, . . . , qn−3, f, d},Σ, δ, s, {f}) with a dead state d. We can construct an

NFA N for Lc∗ from the DFA A by exchanging the final and non-final states,

and by adding a transition on a from a state q to the state s whenever δ(q, a) ∈

{q1, q2, . . . , qn−3} (notice that there is no need to add a new transition if δ(q, a) = d).

Now, consider the subset automaton of the NFA N :

• the empty set is unreachable since A is deterministic and complete;

• each reachable non-empty subset of {s, q1, q2, . . . , qn−3} must contain the state s;

• each set S ∪ {d} is equivalent to the state {d};

• if S is a non-empty subset of {s, q1, q2, . . . , qn−3}, then S ∪ {f} is equivalent to

the state {d}.

This guarantees that there are at most 2n−3 + 2 reachable and pairwise distin-

guishable subsets in the subset automaton of N as follows:

• 2n−3 subsets of {s, q1, q2, . . . , qn−3} containing s;

• {d};

• {f}.

Lemma 2. Given an n-state prefix-free minimal DFA for L, 1 state is necessary

in the worst-case for a DFA that accepts Lc∗ for n = 1, 2.

Proof. Since we consider prefix-free regular languages, L1 = ∅ (when n = 1) or

L2 = {λ} (when n = 2). Note that Lc∗
1 = Σ∗ and Lc∗

2 = (Σ+)∗ = Σ∗. Therefore,

the state complexity is 1 for n = 1, 2.

Lemma 3. Given an n-state prefix-free minimal DFA for L, 2n−3 + 2 states are

necessary in the worst-case for a DFA to accept Lc∗, where n ≥ 3.

Proof. We define a prefix-free minimal DFA A such that the state complexity of

Lc∗ reaches the upper bound in Lemma 1.

October 14, 2015 9:2 IJFCS S0129054115500392 page 701

State Complexity of Boundary of Prefix-Free Regular Languages 701

Let A = (Q,Σ, δ, 0, {n− 2}), where Q = {0, 1, 2, . . . , n− 1}, Σ = {a, b, c, d}, and

δ is defined as follows (see Fig. 1 for illustration):

(1) δ(i, a) = i+ 1, for 0 ≤ i ≤ n− 4, and δ(n− 3, a) = 0,

(2) δ(i, b) = i+ 1, for 1 ≤ i ≤ n− 4, δ(0, b) = 0, and δ(n− 3, b) = 0,

(3) δ(0, c) = n− 2,

(4) δ(i, d) = i+ 1, for 0 ≤ i ≤ n− 4,

(5) all transitions not defined above go to the dead state n− 1.

a, b

a, b, d a, b, d a, b, da, d

b c

0 1 2 n−3

n−2
Σ

n−1
Σ

Fig. 1. The prefix-free DFA of a language L with SC(Lc∗)= 2n−3 + 2. The state n − 1 is the
dead state.

Note that the unique final state n−2 always goes to the dead state n−1. Thus,

A is prefix-free.

Now we show that the state complexity 2n−3 + 2 is reachable. Let a DFA D =

(QD,Σ, δD, {0}, QD\{n−2}) be the resulting DFA constructed from a DFA A as in

the proof of Lemma 1. We first show that all states of D are pairwise inequivalent

and then reachable.

Inequivalence: We consider three types of states separately:

(1) Let P1 and P2 be two distinct states in QD \ {{n− 2}, {n− 1}}. Since P1 6= P2,

we can choose a state j 6= 0 that is in P1 but not in P2. While P1 reaches the

final state by the string bn−3−jdbn−2c, P2 cannot reach the final state by the

same string. Thus all states in QD \ {{n− 2}, {n− 1}} are inequivalent.

• P1

bn−3−j

−→ P ′

1

dbn−2

−→ {0, n− 1}
c
→ {n− 2, n− 1},

• P2

bn−3−j

−→ P ′

2

dbn−2

−→ {0}
c
→ {n− 2},

where n− 3 ∈ P ′

1 and n− 3 /∈ P ′

2. Note that {n− 2, n− 1} is a final state of D

and {n− 2} is not a final state of D. Thus, P1 and P2 are inequivalent.

(2) The state {0, n− 1} is inequivalent to the states above since it goes to the final

state by the string bnc while all the states as described above go to non-final

state.

October 14, 2015 9:2 IJFCS S0129054115500392 page 702

702 H.-S. Eom & Y.-S. Han

(3) The state {n − 2} is the unique non-final state in D. Thus, it is inequivalent

with any other states of D.

Therefore all states in D are pairwise inequivalent.

Reachability: We consider four types of states separately:

(1) The start state {0} is reachable.

(2) Let P = {0, i1, i2, . . . , ik} be a state inQD, where 0 < i1 < i2 < · · · < ik < n−2.

Let us prove by induction on the size of subsets that P is always reachable in

D. Every set {0, i} is reached from the start state {0} by abi−1. Assume that

2 ≤ k ≤ n− 1 and that every set P of size k is reachable. Then, every set P of

size k + 1 is reached from the set {0, i2 − i1, i3 − i1, . . . , ik − i1} by the string

abi1−1.

(3) The state {n− 2} is reachable from the start state by c.

(4) The state {0, n− 1} is reachable from the start state by ca.

Therefore, all states in D are reachable.

Theorem 1. Let L be a prefix-free regular language over an alphabet Σ with SC(L)

= n for n ≥ 3. Then SC(Lc∗) ≤ 2n−3 + 2, and the bound is tight if |Σ| ≥ 4.

4. State Complexity of the Boundary of Prefix-Free Regular

Languages

We now consider the state complexity of L∗ ∩Lc∗ for prefix-free regular languages.

Lemma 4. Given an n-state prefix-free minimal DFA for L, (n− 1)(2n−4 + 1) +

2 states are sufficient for a DFA to accept L∗ ∩ Lc∗, where n ≥ 4.

Proof. Let A = (Q,Σ, δ, s, {f}) be a DFA for L with the state set Q =

{s, q1, q2, . . . , qn−3, f, d}. Let d be the dead state of A and f be the unique final

state of A.

From A, we construct an NFA N for the language Lc∗ as described in the proof

of Lemma 1. We obtain an NFA D for L∗ by adding several transitions and changing

the start state. Before adding transitions, we remove the transition from f to d.

For all transitions from s to q ∈ Q on a ∈ Σ, we add a new transition from f to q

by a. Next we change the start state from s to f . Then, we obtain a DFA D that

accepts L∗. Since a state always goes to only one state in D, D is deterministic.

Now we obtain a DFA D′ that recognizes Lc∗ using the subset construction of N

as described in the proof of Lemma 1. Then, L∗ ∩ Lc∗ is accepted by the product

automaton D×D′. Let us count the number of reachable and distinguishable states

in D ×D′.

The start state of D ×D′ is (f, {s}). Let a be a character in Σ. If δ(s, a) = d,

then (f, {s}) goes on a to (d, {d}) which is a dead state of D ×D′. If δ(s, a) = f,

October 14, 2015 9:2 IJFCS S0129054115500392 page 703

State Complexity of Boundary of Prefix-Free Regular Languages 703

then (f, {s}) goes on a to (f, {f}). If δ(s, a) = p /∈ {f, d}, then (f, {s}) on a goes

to (p, {p, s}). That is, we either go to a dead state, or to a state (p, P) such that

p ∈ P.

Now let (p, P) with p ∈ P be a reachable state. If δ(p, a) = d, then (p, P) goes

by a to a state (d, P ′) with d ∈ P ′, and such a state is equivalent to (d, {d}). If

δ(p, a) = f, then (p, P) goes by a to (f, P ′) where f ∈ P ′. The state (f, {f}) is

equivalent to (s, {d}), and each state (f, P ′ ∪ {f}) with P ′ nonempty is equivalent

to (f, {d}). If δ(p, a) = p′ which is not in {f, d}, then (p, P) goes by a to a state

(p′, P ′) with p′ ∈ P ′ and s ∈ P ′. Now if d ∈ P ′ or f ∈ P ′, then (p′, P ′) is equivalent

to (p′, {d}). Otherwise, P ′ is a subset of {s, q1, q2, . . . , qn−3} containing p′ and s.

Thus, there are at most 1 + n + 2n−3 + (n − 3) · 2n−4 = (n − 1) · 2n−4 + n + 1

reachable and pairwise distinguishable states:

• the start state (f, {s});

• the n states (p, {d}) with p ∈ Q;

• the 2n−3 states (s, P), where P is a subset of {s, q1, q2, . . . , qn−3} containing s;

• the (n− 3) · 2n−4 states (p, P), where p ∈ {q1, q2, . . . , qn−3} and P is a subset of

{s, q1, q2, . . . , qn−3} such that s ∈ P and p ∈ P.

In Lemma 4, we compute the upper bound for L∗ ∩Lc∗. Now, we present lower

bound examples that reach the upper bound.

Lemma 5. Given an n-state prefix-free minimal DFA for L, 2 states are necessary

in the worst-case for a DFA that accepts L∗ ∩ Lc∗ for n = 1, 2.

Proof. Since we consider prefix-free regular languages, L = ∅ (when n = 1) or L =

{λ} (when n = 2). This follows that, for n = 1, L∗∩Lc∗ = ∅∗∩Σ∗ = {λ}∩Σ∗ = {λ},

and, thus the state complexity is 2. For n = 2, L∗ ∩ Lc∗ = {λ}∗ ∩ (Σ \ {λ})∗ =

{λ} ∩ Σ∗ = {λ}, and, thus the state complexity is 2.

Lemma 6. Given an n-state prefix-free minimal DFA for L, (n− 1)(2n−4+1)+2

states are necessary in the worst-case for a DFA that accepts L∗ ∩ Lc∗ for n ≥ 4.

Proof. We define a prefix-free minimal DFA A such that state complexity of L∗ ∩

Lc∗ reaches the upper bound in Lemma 4. Let A = (Q,Σ, δ, 0, {n − 2}), where

Q = {0, 1, 2, . . . , n − 1}, for Σ = {a, b, c, d}, and δ is defined as follows (see Fig. 2

for illustration):

(1) δ(i, a) = i+ 1, for 0 ≤ i ≤ n− 4, and δ(n− 3, a) = 0,

(2) δ(i, b) = i+ 1, for 1 ≤ i ≤ n− 4, δ(0, b) = 0, and δ(n− 3, b) = 0,

(3) δ(0, c) = n− 2,

(4) δ(n− 3, c) = n− 2,

(5) δ(i, d) = i+ 1, for 0 ≤ i ≤ n− 4,

(6) all transitions not defined above go to the dead state n− 1.

October 14, 2015 9:2 IJFCS S0129054115500392 page 704

704 H.-S. Eom & Y.-S. Han

a, b

a, b, d a, b, d a, b, da, d

b

0 1 2 n−3
c

n−2
Σ

n−1

Σ

c

Fig. 2. The prefix-free DFA of a language L with SC(L∗ ∩ Lc∗)= (n − 1)(2n−4 + 1) + 2. The
state n− 1 is the dead state.

Note that the unique final state n− 2 has no out-transitions whose target state

is not the dead state n− 1. Thus, A is prefix-free.

Now we show that the state complexity (n− 1)(2n−4+1)+2 is reachable. From

A, we construct a DFA D×D′ = (QD,Σ, δD, (n− 2, {0}), F) for L∗ ∩Lc∗ as in the

proof of Lemma 4. We first show that all states of D are pairwise inequivalent and

then show that all states are reachable.

Inequivalence: Let (k1, P1) and (k2, P2) be two distinct states in QD. Since

(k1, P1) 6= (k2, P2), either k1 6= k2 or P1 6= P2 holds:

(1) k1 6= k2: By the string an−k1−3c, the state (k1, P1) does not go to a final state

while the state (k2, P2) goes to a final state.

(2) P1 6= P2: Since P1 6= P2, without loss of generality, we can choose a state

j ∈ P1 \ P2. There are two possibilities. If k1 > j, then let t1 = 0, otherwise,

let t1 = k1 + n − 3 − j. Similarly, if k2 > j, then let t2 = 0, otherwise, let

t2 = k2 + n− 3− j. Then,

• (k1, P1)
bn−3−j

−→ (t1, P
′

1)
dbn−2

−→ (0, {0, n− 1})
c
→ (n− 2, {n− 2, n− 1}),

• (k2, P2)
bn−3−j

−→ (t2, P
′

2)
dbn−2

−→ (0, {0})
c
→ (n− 2, {n− 2}),

where n−3 ∈ P ′

1 and n−3 /∈ P ′

2. Note that (n−2, {n−2, n−1}) is a final state

of D and (n− 2, {n− 2}) is not a final state of D. Thus, (k1, P1) and (k2, P2)

are inequivalent.

We now consider the state (k, {0, n−1}). For 0 ≤ k ≤ n−3, a state (k, {0, n−1})

goes to a final state by the string bn−2c while other states considered in Case (1) and

Case (2) cannot reach a final state. For two arbitrary states k1 and k2, where k1 6=

k2, (k1, {0, n− 1}) reaches a final state by the string an−2−k1c, but (k2, {0, n− 1})

goes to a non-final state by the same string. Notice that the state (n−2, {0, n−1}) is

inequivalent with states (k, {0, n−1}), where 1 ≤ k ≤ n−3, because (n−2, {0, n−1})

is a final state. It is also inequivalent with other states considered above by the same

reason. Therefore, all states in D are pairwise inequivalent.

October 14, 2015 9:2 IJFCS S0129054115500392 page 705

State Complexity of Boundary of Prefix-Free Regular Languages 705

Reachability: We consider five types of states separately:

(1) The start state (n− 2, {0}) is reachable.

(2) Let a state (0, P) ∈ QD, where P = {0, i1, i2, . . . , it} and 0 < i1 < i2 < · · · <

it < n−2. If t > 1, then from the start state, we can reach a state (k, P) by the

string abn−3−itabit−it−1−1abit−1−it−2−1 · · · abi2−i1−1abi1−1. If t = 1, then from

the start state, we can reach a state (k, P) by the string abn−3−i1abi1−1.

(3) Let a state (k, P) ∈ QD, where k ∈ Q \ {0, n− 2, n− 1}, P = {0, i1, i2, . . . , it}

and 0 < i1 < i2 < · · · < it < n − 2, where k ∈ P . If t >

1, then from the start state, we can reach a state (k, P) by the string

abn−it+k−3abit−it−1−1abit−1−it−2−1 · · · abi2−i1−1abi1−1. If t = 1, then from the

start state, we can reach a state (k, P) by the string abn−i1+k−3abi1−1.

(4) If P = {n− 1}, then we can reach the state (k, {n− 1}), where 0 ≤ k ≤ n− 3

by ccak from the start state. We can reach the state (n− 2, {n− 1}) by cc from

the start state.

(5) From the start state, the dead state is reachable by dn−2. The character d is

only used at this place.

Therefore, all states in D are reachable.

Theorem 2. Let L be a prefix-free regular language over an alphabet Σ with SC(L)

= n for n ≥ 4. Then SC(L∗ ∩ Lc∗) ≤ (n− 1)(2n−4 + 1) + 2, and the bound is tight

if |Σ| ≥ 4.

5. Conclusions

We have examined the state complexity of two operations, Lc∗ and L∗ ∩ Lc∗, for

prefix-free regular languages and established the tight state complexity bound for

Lc∗ and L∗ ∩ Lc∗ using a quaternary alphabet. The state complexity of subfami-

lies of regular languages (such as finite regular languages, unary regular languages,

prefix-free or suffix-free regular languages) is often smaller than the state complex-

ity of regular languages [1, 8–10, 16]. Our results are also smaller than the state

complexities for general regular languages as summarized in Table 1.

Table 1. Comparison table between the state complexity of Lc∗ and L∗∩Lc∗ for
prefix-free regular languages.

operation prefix-free general [12]

Lc∗ 2n−3 + 2 (3/4) · 2n

L∗ ∩ Lc∗ (n− 1)(2n−4 + 1) + 2 (3/8) · 4n + 2n−2 − 2 · 3n−2 − n+ 2

For both operations, we obtain smaller bounds than the general case. Table 2

represents the state complexities of intersection, complement, star for prefix-free

regular languages and general case.

October 14, 2015 9:2 IJFCS S0129054115500392 page 706

706 H.-S. Eom & Y.-S. Han

Table 2. The state complexities of intersection, com-
plement, star for prefix-free regular languages and
general case.

operation prefix-free [10] general [23]

L1 ∩ L2 mn− 2(m + n)− 3 mn

Lc n n

L∗ n 2n−1 + 1

Note that the state complexity of Lc∗ is smaller than the composition of the

state complexity of Lc for prefix-free regular languages and the state complexity

of L∗ for general case. Since a language Lc may not be prefix-free, we consider the

state complexity of L∗ for general case. It is easy to know that the state complexity

of boundary of prefix-free regular languages is also smaller than the composition of

results in Table 2.

We use a four-letter alphabet for the tight bounds for Lc∗ and L∗ ∩ Lc∗. Tight

bounds for Lc∗ and L∗ ∩ Lc∗ in the binary or ternary case remain open.

Acknowledgments

We wish to thank the referees for the careful reading of the paper and many valuable

suggestions. As usual, however, we alone are responsible for any remaining sins of

omission and commission.

This research was supported by the Basic Science Research Program through

NRF funded by MEST (2012R1A1A2044562) and the Yonsei University Future-

leading Research Initiative of 2014.

References

[1] C. Câmpeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic op-
erations on finite languages. In Proceedings of WIA’99, Lecture Notes in Computer
Science 2214, pages 60–70, 2001.

[2] C. Câmpeanu, K. Salomaa, and S. Yu. Tight lower bound for the state complexity
of shuffle of regular languages. Journal of Automata, Languages and Combinatorics,
7(3):303–310, 2002.

[3] R. Cmorik and G. Jirásková. Basic operations on binary suffix-free languages. In
Proceeding of MEMICS ’11, Lecture Notes in Computer Science 7119, pages 94–102,
2011.

[4] M. Domaratzki. State complexity of proportional removals. Journal of Automata,

Languages and Combinatorics, 7(4):455–468, 2002.
[5] M. Domaratzki and K. Salomaa. State complexity of shuffle on trajectories. Journal

of Automata, Languages and Combinatorics, 9(2–3):217–232, 2004.
[6] Z. Ésik, Y. Gao, G. Liu, and S. Yu. Estimation of state complexity of combined

operations. Theoretical Computer Science, 410(35):3272–3280, 2009.
[7] Y. Gao, K. Salomaa, and S. Yu. The state complexity of two combined operations:

Star of catenation and star of reversal. Fundamenta Informaticae, 83(1–2):75–89,
2008.

October 14, 2015 9:2 IJFCS S0129054115500392 page 707

State Complexity of Boundary of Prefix-Free Regular Languages 707

[8] Y.-S. Han and K. Salomaa. State complexity of union and intersection of finite lan-
guages. International Journal of Foundations of Computer Science, 19(3):581–595,
2008.

[9] Y.-S. Han and K. Salomaa. State complexity of basic operations on suffix-free regular
languages. Theoretical Computer Science, 410(27–29):2537–2548, 2009.

[10] Y.-S. Han, K. Salomaa, and D. Wood. Operational state complexity of prefix-free
regular languages. In Automata, Formal Languages, and Related Topics — Dedicated

to Ferenc Gécseg on the occasion of his 70th birthday, pages 99–115. Institute of
Informatics, University of Szeged, Hungary, 2009.

[11] M. Hricko, G. Jirásková, and A. Szabari. Union and intersection of regular languages
and descriptional complexity. In Proceedings of DCFS ’05, pages 170–181. Università
degli Studi di Milano, Milan, Italy, 2005.

[12] J. Jirásek and G. Jirásková. On the boundary of regular languages. In CIAA, pages
208–219, 2013.

[13] J. Jirásek, G. Jirásková, and A. Szabari. State complexity of concatenation
and complementation. International Journal of Foundations of Computer Science,
16(3):511–529, 2005.

[14] A. Maslov. Estimates of the number of states of finite automata. Soviet Mathematics

Doklady, 11:1373–1375, 1970.
[15] C. Nicaud. Average state complexity of operations on unary automata. In Proceedings

of MFCS ’99, Lecture Notes in Computer Science 1672, pages 231–240, 1999.
[16] G. Pighizzini and J. Shallit. Unary language operations, state complexity and

Jacobsthal’s function. International Journal of Foundations of Computer Science,
13(1):145–159, 2002.

[17] A. Salomaa, K. Salomaa, and S. Yu. State complexity of combined operations. The-
oretical Computer Science, 383(2–3):140–152, 2007.

[18] A. Salomaa, D. Wood, and S. Yu. On the state complexity of reversals of regular
languages. Theoretical Computer Science, 320(2–3):315–329, 2004.

[19] K. Salomaa and S. Yu. On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science, 18:683–698,
2007.

[20] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York, NY, USA, 2008.

[21] D. Wood. Theory of Computation. John Wiley & Sons, Inc., New York, NY, 1987.
[22] S. Yu. State complexity of regular languages. Journal of Automata, Languages and

Combinatorics, 6(2):221–234, 2001.
[23] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations

on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

