
February 9, 2017 13:57 IJFCS S0129054116500398 page 965

International Journal of Foundations of Computer Science
Vol. 27, No. 8 (2016) 965–979
c© World Scientific Publishing Company
DOI: 10.1142/S0129054116500398

State Complexity of Regular Tree Languages for Tree Matching∗

Sang-Ki Ko

Department of Computer Science, University of Liverpool

Ashton Street, Liverpool, L69 3BX, United Kingdom

sangkiko@liverpool.ac.uk

Ha-Rim Lee† and Yo-Sub Han‡

Department of Computer Science, Yonsei University

50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea
†hrlee@yonsei.ac.kr

‡emmous@yonsei.ac.kr

Received 6 November 2014
Accepted 3 May 2016

Communicated by Arto K. Salomaa

We study the state complexity of regular tree languages for tree matching problem. Given
a tree t and a set of pattern trees L, we can decide whether or not there exists a subtree
occurrence of trees in L from the tree t by considering the new language L

′ which accepts
all trees containing trees in L as subtrees. We consider the case when we are given a set
of pattern trees as a regular tree language and investigate the state complexity. Based
on the sequential and parallel tree concatenation, we define three types of tree languages
for deciding the existence of different types of subtree occurrences. We also study the
deterministic top-down state complexity of path-closed languages for the same problem.

Keywords: State complexity; tree matching; regular tree languages; path-closed
languages.

1. Introduction

State complexity is one of the most interesting topics in automata and formal

language theory [10, 12, 26, 27]. The state complexity of finite automata has been

studied since the 60’s [13, 16, 17]. Maslov [15] initiated the problem of finding the

operational state complexity and Yu et al. [27] investigated the state complexity for

basic operations. Later, Yu and his co-authors [4,7,24,25] initiated the study on the

state complexity of combined operations such as star-of-union, star-of-intersection

∗A preliminary version appeared in Proceedings of the 16th International Workshop on Descrip-

tional Complexity of Formal Systems, DCFS 2014, LNCS 8614, 246–257, Springer-Verlag, 2014.
‡Corresponding author.

965

http://dx.doi.org/10.1142/S0129054116500398

February 9, 2017 13:57 IJFCS S0129054116500398 page 966

966 S.-K. Ko, H.-R. Lee & Y.-S. Han

and so on. Moreover, Yu and his co-authors studied the state complexity of com-

bined Boolean operations including multiple unions and multiple intersections [4–6].

Recently, the state complexity problem has been extended to regular tree lan-

guages. Regular tree languages and tree automata theory provide a formal frame-

work for XML schema languages such as XML DTD, XML Schema, and Relax

NG [18]. XML schema languages can process a set of XML documents by specify-

ing the structural properties. Martens and Niehren [14] considered the problem of

efficiently minimizing unranked tree automata. Piao and Salomaa [20,21] considered

the state complexity between different models of unranked tree automata. They also

investigated the state complexity of concatenation [23] and star [22] for regular tree

languages. Two of the authors studied the state complexity of subtree-free regular

tree languages, which are a proper subclass of regular tree languages [11].

Since a regular tree language is a set of trees, it is suitable for representing

a set of structural documents such as XML documents, web documents, or RNA

secondary structures. This implies that a regular tree language can be used as a

theoretical toolbox for processing of the structured documents. When it comes to

the string case, many researchers often use regular languages to process a set of

strings efficiently. Consider the case that we have a set of strings which is a regular

language L. Now we want to find any occurrence of strings in L from a text T . The

most common way is to construct an FA A that accepts a regular language Σ∗L [3].

Then, we read T using A and check whether or not A reaches a final state. When A

reaches a final state, we find that there is an occurrence of a matching string of L

in T. We extend this approach to the tree matching problem [9]. First, we formally

define the tree matching problem to be the problem of finding subtree occurrences

of a tree in L from a set of trees T . Since a tree can be processed in a bottom-up

or a top-down fashion, we need to consider different types of tree languages for the

tree matching problem.

Here we consider three types of tree substructures called a subtree, a topmost

subtree and an internal subtree. Given a tree language L, we construct three types of

tree languages recognizing trees which contain the trees in L as subtrees, topmost

subtrees and internal subtrees. Note that these tree languages can be used for

the tree matching problem as we have used Σ∗L for the string pattern matching

problem. In particular, we tackle the deterministic state complexity of regular tree

languages and path-closed languages. Interestingly, the tree language consisting

of trees that have a subtree belonging to a path-closed language language need

not be path-closed and therefore cannot recognized by deterministic top-down tree

automata (DTTAs).

We give basic notations and definitions in Sec. 2. We define the three types

of tree languages for tree matching in Sec. 3. We present the results on the state

complexity of regular tree languages and path-closed languages in Secs. 4 and 5,

and conclude the paper in Sec. 6.

February 9, 2017 13:57 IJFCS S0129054116500398 page 967

State Complexity of Regular Tree Languages for Tree Matching 967

2. Preliminaries

We briefly recall definitions and properties of finite tree automata and regular tree

languages. We refer the reader to the books [2,8] for more details on tree automata.

A ranked alphabet Σ is a finite set of characters and we denote the set of

elements of rank m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of Σ-labeled trees,

where a node labeled by σ ∈ Σm always has m children. We use FΣ to denote a

set of trees over Σ that is the smallest set S satisfying the following condition: if

m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S. Let t(u← s) be the tree

obtained from a tree t by replacing the subtree at a node u of t with a tree s. The

notation is extended for a set U of nodes of t and S ⊆ FΣ : t(U ← S) is the set of

trees obtained from t by replacing the subtree at each node of U by some tree in S.

A nondeterministic bottom-up tree automaton (NBTA) is specified by a tu-

ple A = (Σ, Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states,

Qf ⊆ Q is a set of final states and g associates each σ ∈ Σm to a mapping

σg : Qm → 2Q, where m ≥ 0. Assume A has a transition σg(q1, . . . , qm) = P .

In this case, A moves to the set P of states by reading a sequence q1, . . . , qm of

states and a character σ of rank m. We say that each element of P is a target state

of the sequence q1, . . . , qm of states. For each tree t = σ(t1, . . . , tm) ∈ FΣ, we define

inductively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g, for

1 ≤ i ≤ m, such that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states of Q

that A may reach by reading t. Thus, the tree language accepted by A is defined

as follows: L(A) = {t ∈ FΣ | tg ∩ Qf 6= ∅}. The automaton A is a deterministic

bottom-up tree automaton (DBTA) if, for each σ ∈ Σm, where m ≥ 0, σg is a partial

function Qm → Q.

A nondeterministic top-down tree automaton (NTTA) is specified by a tuple A =

(Σ, Q,Q0, g), where Σ is a ranked alphabet, Q is a finite set of states, Q0 ⊆ Q is a

set of initial states, and g associates each σ ∈ Σm,m ≥ 0, a mapping σg : Q→ 2Q
m

.

As a convention, we denote the m-tuples q1, . . . , qm by [q1, . . . , qm]. A top-down tree

automaton A is deterministic if Q0 is a singleton set and for all q ∈ Q, σ ∈ Σm, and

m ≥ 1, σg is a partial function Q→ Qm.

The nondeterministic (bottom-up or top-down) and deterministic bottom-up

tree automata accept the family of regular tree languages whereas the deterministic

top-down tree automata accept a proper subfamily of regular tree languages —

path-closed languages [2, 8].

3. Tree Languages for Tree Pattern Matching

Pattern matching is the problem of finding occurrences of a pattern in a text. The

regular expression matching problem is defined as follows: given a pattern regular

expression E and an input text T , we want to identify all substrings of T that are in

L(E) [3]. Similar to the regular expression matching problem, we consider a pattern

given as a set of trees with a tree automaton (TA) A for the tree pattern matching

problem. Here we construct a new TA A′ from A as we put Σ∗ to the pattern

February 9, 2017 13:57 IJFCS S0129054116500398 page 968

968 S.-K. Ko, H.-R. Lee & Y.-S. Han

language L(A) to make the new FA A′ to simulate all the possible prefixes before

simulating the matching substrings of L(A) [1]. This means that, given A, we need

to construct a new TA A′ that simulates all the possible prefixes before simulating

the matching subtrees of L(A). Since a tree can be processed in a bottom-up way

with a bottom-up TA or a top-down way with a top-down TA, we need to consider

three types of tree languages for the tree pattern matching problem.

First we define three different tree substructures. If a tree t′ consists of a node

in a tree t and all of its descendants, we call t′ a subtree of t. If a tree t′ is a subtree

of t, then we call t a supertree of t′. We also define the topmost subtree of a tree t

as a tree consisting of a set of nodes in t including the root node such that from

any node in the set, there exists a path to the root node through the nodes in the

set. An internal subtree of a tree t can be defined as a topmost subtree of a subtree

of t. We give graphical examples for the definitions in Fig. 1.

t

(a) A subtree t

t

(b) A topmost subtree t

t

(c) An internal subtree t

Fig. 1. We define three types of subtrees called a subtree, a topmost subtree and an internal
subtree. These figures depict the examples.

Given a tree t and a regular tree language L, we first compute a new regular

tree language L′ that accepts all possible supertrees of trees in L. Then, we decide

whether or not a tree in L occurs as a subtree of the given tree t by deciding t ∈ L′.

Recall that we build a new FA that accepts Σ∗L, which is a concatenation of a

universal language Σ∗ and a given language L, for matching a language L of string

patterns. For tree pattern matching problem, we need to consider how to define

the concatenation of trees properly. Recently, Piao and Salomaa [23] studied the

state complexity of the concatenation of regular tree languages. They defined the

sequential σ-concatenation and parallel σ-concatenation where the substitutions

can occur at σ-labeled leaves.

We consider a more generalized operation that allows substitution to occur at

all leaves regardless of labels. We denote the set of leaves of a tree t by leaf(t).

Then, for T1 ⊆ FΣ and t2 ∈ FΣ, we define the sequential concatenation of T1 and

t2 to be

T1 ·
s t2 = {t2(u← t1) | u ∈ leaf(t2), t1 ∈ T1}.

In other words, T1 ·s t2 is a set of trees obtained from t2 by replacing a leaf

with a tree in T1. We extend the sequential concatenation operation to the tree

February 9, 2017 13:57 IJFCS S0129054116500398 page 969

State Complexity of Regular Tree Languages for Tree Matching 969

languages T1, T2 ⊆ FΣ as follows:

T1 ·
s T2 =

⋃

t2∈T2

T1 ·
s t2.

The parallel concatenation of T1 and t2 is

T1 ·
p t2 = {t2(leaf(t2)← t1) | t1 ∈ T1}.

Thus, T1 ·p t2 is a set of trees obtained from t2 by replacing all leaves with a tree

in T1. We can also extend the parallel concatenation to tree languages. Note that

we can say that a tree t2 is a topmost subtree of t1 if t1 ∈ FΣ ·p t2.

LFΣFΣ FΣ FΣ

FΣ

(a) L ·s FΣ

L

FΣFΣ FΣ FΣFΣ

(b) FΣ ·p L

LFΣFΣ FΣ FΣ

FΣ

FΣFΣ FΣ FΣFΣ

(c) FΣ ·p L ·s FΣ

Fig. 2. Three types of tree languages for the tree pattern matching problem.

Relying on the sequential and parallel tree concatenations, we construct three

types of tree languages from a regular tree language L for the tree pattern matching

problem. See Fig. 2. Given a tree language L,

(1) L ·s FΣ is a set of trees where a tree in L occurs as a subtree of each tree in the

set,

(2) FΣ ·p L is a set of trees where a tree in L occurs as a topmost subtree of each

tree in The set, and

(3) FΣ ·p L ·s FΣ is a set of trees where a tree in L occurs as an internal subtree of

each tree in the set.

Notice that a leaf node of a tree can be replaced with any other nodes for the

topmost subtree occurrence and the internal subtree occurrence.

4. State Complexity of DBTAs

First we study the state complexity of FΣ ·pL which can be used for finding subtree

occurrences of a tree in L.

Lemma 1. Given a DBTA A = (Σ, Q,QF , g) with n states for a regular tree

language L, 2n−k states are sufficient for recognizing FΣ ·p L if |{σg | σ ∈ Σ0}|=k.

February 9, 2017 13:57 IJFCS S0129054116500398 page 970

970 S.-K. Ko, H.-R. Lee & Y.-S. Han

Proof. Without loss of generality, we assume QF ∩ {σg | σ ∈ Σ0} = ∅ because

otherwise FΣ ·pL(A) = FΣ. We present an upper bound construction of a DBTA B

for FΣ ·p L(A). We define B = (Σ, Q′, Q′
F , g

′), where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\{σg |σ∈Σ0}}, Q′
F = {q ∈ Q′ | q ∩QF 6= ∅},

and the transitions of g′ are defined as follows:

For τ ∈ Σ0, τg′ = {σg | σ ∈ Σ0}. For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′,

τg′ (P1, P2, . . . , Pm) = τg(P1, P2, . . . , Pm) ∪ {σg | σ ∈ Σ0}.

Now we explain how B recognizes the tree language FΣ ·p L. Note that we define

every target state of g′ to be the union of the set of states reachable by g and the

set of states reachable by reading leaf nodes. Since every target state of g′ is not

empty, a new DBTA B is complete although A may not be complete. Note that

{σg | σ ∈ Σ0} is a set of states that are reachable by reading a leaf node. This

implies that all states of B contain the states in {σg | σ ∈ Σ0}. After reading any

tree in FΣ, the state of B contains {σg | σ ∈ Σ0} by the construction. Therefore, B

can start a simulation of a tree in L(A) after reading any trees in FΣ by regarding

the trees as leaf nodes. Since FΣ ·p L(A) is a set of trees where all the leaf nodes of

each tree can be substituted by any trees in FΣ, B accepts FΣ ·p L(A).

The upper bound in Lemma 1 is reachable when a DBTA accepts a set of unary

trees. If a DBTA accepts a set of unary trees, then we can regard the DBTA as

a DFA with multiple initial states. Since the upper bound reaches the maximum

when k = 1, we consider the state complexity of catenation of L and Σ∗. Let L be

a regular language whose state complexity is n. Then, the state complexity of Σ∗L

is 2n−1 [27] which is the same as the bound in Lemma 1. Furthermore, we show

that the upper bound is tight for any 1 ≤ k ≤ n.

Let Σ = Σ0 ∪ Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b}. We define a

DBTA C1 = (Σ, QC1
, QC1,F , gC1

), where QC1
= {0, 1, . . . , n− 1}, QC1,F = {n− 1}

and the transition function gC1
is defined by setting:

• (σi)gC1
= i− 1 (1 ≤ i ≤ k),

• agC1
(i) = i+ 1 mod n,

• bgC1
(i) = i (0 ≤ i < k),

• bgC1
(i) = i+ 1 mod n (k ≤ i < n).

Based on the construction of the proof of Lemma 1, we construct a DBTA D1 =

(Σ, QD1
, QD1,F , gD1

) recognizing FΣ ·pL(C1), where QD1
= {P | {0, 1, . . . , k− 1} ⊆

P, P ⊆ QC1
}, QD1,F = {P | P ∈ QD1

, P ∩QC1,F 6= ∅}, and the transition function

gD1
is defined as follows:

• (σi)gD1
= {0, 1, . . . , k − 1} (0 ≤ i ≤ k),

• agD1
(P) = agC1

(P) ∪ {0, 1, . . . , k − 1},

• bgD1
(P) = bgC1

(P) ∪ {0, 1, . . . , k − 1}.

February 9, 2017 13:57 IJFCS S0129054116500398 page 971

State Complexity of Regular Tree Languages for Tree Matching 971

Notice that L(D1) = FΣ ·p L(C1). In the following lemma, we establish that D1

is a minimal DBTA by showing that all states of D1 are reachable and pairwise

inequivalent.

Lemma 2. All states of D1 are reachable and pairwise inequivalent.

Proof. First, we prove the reachability of all states of D1. Note that each state of

D1 is a set of states in C1. By the construction, the size of a state P in QD1
satisfies

k ≤ |P | ≤ n since {0, 1, . . . , k − 1} ⊆ P . Using the induction on |P |, we show that

all states of D1 are reachable.

• Basis: We have a state {0, 1, . . . , k − 1} of size k that is reachable by reading a

leaf node.

• Inductive Hypothesis:Assuming that all states P are reachable for |P | ≤ x, we

will show that any state P ′ is reachable when |P ′| = x+1. Let P ′ = {0, 1, . . . , k−

1, qk, qk+1, . . . , qx} be a state of size x+1. The state P ′ is reachable from a state

{0, 1, . . . , k − 1, qk+1 − qk + k − 1, . . . , qx − qk + k − 1} by reading a sequence of

unary symbols abqk−k. Therefore, all states are reachable by induction.

Next we prove that all states of D1 are pairwise inequivalent. Pick any two

distinct states P1 and P2. Assume p ∈ P1 \P2. (The other possibility is completely

symmetric.) After reading a sequence of unary symbols an−p−1, a final state is

reached from state P1 whereas P2 reaches a non-final state. Therefore, all states of

D1 are pairwise inequivalent.

Since we have shown that there exists a corresponding lower bound for the upper

bound, the bound is tight.

Theorem 3. Given a DBTA A with n states for a regular tree language L,

2n−k states are necessary and sufficient in the worst-case for the minimal DBTA

of FΣ ·
p L if |{σg | σ ∈ Σ0}| = k.

Now we consider L ·s FΣ — a tree language consists of all trees that have trees

in L as subtrees. In other words, for any tree t in L, we have all possible supertrees

of t in L′. Given a regular tree language L, it is known that L ·s FΣ is also a regular

tree language [23]. We study the state complexity of L ·s FΣ.

Lemma 4. Given a DBTA A = (Σ, Q,QF , g) with n states for a regular tree

language L, n+ 1 states are sufficient for recognizing L ·s FΣ.

Proof. We construct a new DBTA B = (Σ, Q′, Q′
F , g

′) for L ·s FΣ, where Q′ =

Q ∪ {qnew}, Q′
F = QF , and the transition function g′ is defined as follows:

For τ ∈ Σ0,

τg′ =

{
τg if τg is defined,

qnew otherwise.

February 9, 2017 13:57 IJFCS S0129054116500398 page 972

972 S.-K. Ko, H.-R. Lee & Y.-S. Han

For τ ∈ Σm,m ≥ 1, q1, q2, . . . , qm ∈ Q′, and qf ∈ Q′
F ,

τg′ (q1, q2, . . . , qm) =







τg(q1, q2, . . . , qm) if τg(q1, q2, . . . , qm) is defined and

{q1, q2, . . . , qm} ∩Qf = ∅,

qf if {q1, q2, . . . , qm} ∩Qf 6= ∅,

qnew otherwise.

Now we explain how B accepts a set of all trees that are supertrees of trees in L.

We define the transition function g′ to be complete by setting the target state of

the undefined transition as a new state qnew. Then, B moves to qnew by reading

trees in the complement of L and moves to one of its final states by reading trees

in L. Assume that B accepts a tree in L and arrives at a final state qf . After then,

B stays in qf by reading any sequence of states including qf . This implies that B

accepts all supertrees of trees in L(A).

We cannot reach the upper bound n + 1 with any DFA in this case since the

state complexity of LΣ∗ is n, which is the same as that of L, even for incomplete

DFAs. Thus, we show that there exists a lower bound DBTA of n + 1 states for

accepting L ·sFΣ, where the state complexity of L is n to prove the tightness of the

upper bound.

Let Σ = Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = {c}, Σ1 = {a} and Σ2 = {b}. We define a

DBTA C2 = (Σ, QC2
, QC2,F , gC2

), where QC2
= {0, 1, . . . , n− 1}, QC2,F = {n− 1},

and the transition function gC2
is defined by setting:

• cgC2
= 0,

• agC2
(i) = bgC2

(i, i) = i+ 1 mod n.

All transitions of gC2
not listed above are undefined. Based on the construction of

the proof of Lemma 4, we construct a DBTA D2 = (Σ, QD2
, QD2,F , gD2

) recognizing

L(C2) ·s FΣ, where QD2
= QC2

∪ {n}, QD2,F = QC2,F and the transition function

gD2
is defined as follows:

• cgD2
= 0,

• agD2
(i) = bgD2

(i, i) = i+ 1 (0 ≤ i ≤ n− 2),

• agD2
(n− 1) = bgD2

(n− 1, i) = bgD2
(i, n− 1) = n− 1 (0 ≤ i ≤ n− 1),

• agD2
(n) = bgD2

(i, j) = n (i 6= j, i 6= n− 1, j 6= n− 1).

Notice that L(D2) = L(C2) ·
s FΣ. In the following lemma, we establish that D2

is a minimal DBTA by showing that all states in QD2
are reachable and pairwise

inequivalent.

Lemma 5. All states of D2 are reachable and pairwise inequivalent.

Proof. First, we prove the reachability of all states of D2. It is easy to verify that

the state i (0 ≤ i ≤ n−1) is reachable from the state cgC2
= 0 by reading a sequence

of unary symbols ai. Then, the state n is reachable by reading a binary symbol b

with two states i and j (0 ≤ i, j ≤ n− 2, i 6= j) since bgD2
(i, j) = n by construction.

February 9, 2017 13:57 IJFCS S0129054116500398 page 973

State Complexity of Regular Tree Languages for Tree Matching 973

We prove that all states are pairwise inequivalent. We consider two distinct

states i and j such that i < j. There are two possible cases:

• 0 ≤ i < j < n: From the state j, we arrive at a final state n − 1 by reading a

sequence of unary symbols an−1−j. However, the state i arrives at n− 1 − j + i

by reading the same sequence and the state n− 1− j + i is not final.

• 0 ≤ i < n and j = n: From the state i, we arrive at a final state by reading a

sequence of unary symbols an−1−i whereas the state j stays at the state n, which

is not final.

We have shown that all states are pairwise inequivalent in all possible cases.

Based on Lemma 4 and Lemma 5, we establish the following statement.

Theorem 6. Given a DBTA A with n states for a regular tree languages L, n +

1 states are necessary and sufficient in the worst-case for the minimal DBTA of

L ·s FΣ.

We lastly consider the state complexity of FΣ ·pL ·sFΣ. Note that the sequential

catenation of trees is not associative whereas the parallel catenation of trees is

associative. That means that there exist trees t1, t2 and t3 such that (t1 ·st2)·s t3 and

t1 ·s(t2 ·st3) do not coincide. This also applies to the catenation of tree languages and

thus, leads to (L1 ·sL2)·sL3 6= L1 ·s (L2 ·sL3) for some regular tree languages L1, L2,

and L3. However, for the case when L1 and L3 are FΣ,

(FΣ ·
s L2) ·

s FΣ = FΣ ·
s (L2 ·

s FΣ)

holds. Thus, we simply denote the language by FΣ ·pL·sFΣ instead of (FΣ ·sL2)·sFΣ

or FΣ ·s (L2 ·s FΣ). Now we tackle the state complexity of FΣ ·p L ·s FΣ.

Lemma 7. Given a DBTA A = (Σ, Q,QF , g) with n states for a regular tree

language L, 2n−t−k +1 states are sufficient for recognizing FΣ ·p L ·s FΣ if |QF | = t

and |{σg | σ ∈ Σ0}| = k.

Proof. Without loss of generality, we assume QF ∩ {σg | σ ∈ Σ0} = ∅ because

otherwise FΣ ·pL(A) ·sFΣ = FΣ. We give an upper bound construction of DBTA B

that recognizes FΣ ·p L(A) ·s FΣ. We define B = (Σ, Q′, Q′
F , g

′), where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\(QF∪{σg |σ∈Σ0})} ∪ {QF}, Q′
F = {QF },

and the transitions of g′ are defined as follows:

For τ ∈ Σ0, τg′ = {σg | σ ∈ Σ0}. For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′,

τg′(P1, P2, . . . , Pm) =







τg(P1, P2, . . . , Pm) if
⋃m

i=1 Pi ∩QF = ∅

∪{σg | σ ∈ Σ0} and τg(P1, P2, . . . , Pm) ∩QF = ∅,

QF otherwise.

February 9, 2017 13:57 IJFCS S0129054116500398 page 974

974 S.-K. Ko, H.-R. Lee & Y.-S. Han

Now we explain how B recognizes FΣ ·p L(A) ·s FΣ. Note that we define every

target state of g′ to be the union of the set of states reachable by g and the set of

states reachable by reading leaf nodes. This implies that B can start simulation of

a tree in L after reading any trees in FΣ. Therefore, we know that B arrives at a

final state of A by reading any trees in FΣ ·pL(A). By the construction, B moves to

QF which is the single final state of B by reading trees in FΣ ·p L(A). After then,

B stays in QF by reading any sequence of states including QF . This implies that

B accepts all possible supertrees of trees in FΣ ·p L(A). Since a set of all supertrees

of trees in FΣ ·p L(A) is FΣ ·p L(A) ·s FΣ, B accepts FΣ ·p L(A) ·s FΣ.

Next we present a lower bound example that reaches the upper bound 2n−t−k+1.

Let Σ = Σ0 ∪ Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b, c}. We define

a DBTA C3 = (Σ, QC3
, QC3,F , gC3

), where QC3
= {0, 1, . . . , n − 1}, QC3,F = {n −

t, n− t+ 1, . . . , n− 1} and the transition function gC3
is defined by setting:

• (σi)gC3
= i− 1 (1 ≤ i ≤ k),

• agC3
(i) = i+ 1 mod n,

• bgC3
(i) = i (0 ≤ i ≤ k),

• bgC3
(i) = i+ 1 mod n (k ≤ i < n),

• cgC3
(i) = i+ 1 mod n if i 6= n− t− 1, cgC3

(n− t− 1) = 0.

Based on the construction in the proof of Lemma 7, we construct a DBTA D3 =

(Σ, QD3
, QD3,F , gD3

) recognizing FΣ ·pL(C3) ·sFΣ, where QD3
= {P | {0, 1, . . . , k−

1} ⊆ P, P ⊆ QC3
\QC3,F }, QD3,F = {QC3,F }, and the transition function gD3

is

defined as follows:

• (σi)gD3
= {0, 1, . . . , k − 1},

• agD3
(P) = agC3

(P)∪{0, 1, . . . , k− 1} if agC3
(P)∩QC3,F = ∅ and P ∩QC3,F = ∅,

• agD3
(P) = {QC3,F } if agC3

(P) ∩QC3,F 6= ∅,

• bgD3
(P) = bgC3

(P)∪ {0, 1, . . . , k− 1} if bgC3
(P)∩QC3,F = ∅ and P ∩QC3,F = ∅,

• bgD3
(P) = {QC3,F } if bgC3

(P) ∩QC3,F 6= ∅,

• cgD3
(P) = cgC3

(P)∪ {0, 1, . . . , k− 1} if cgC3
(P)∩QC3,F = ∅ and P ∩QC3,F = ∅,

• agD3
({QC3,F }) = bgD3

({QC3,F }) = cgD3
({QC3,F }) = {QC3,F }.

Notice that L(D3) = FΣ ·
pL(C3)·

sFΣ. In the following lemma, we establish that D3

is a minimal DBTA by showing that all states in QD3
are reachable and pairwise

inequivalent.

Lemma 8. All states of D3 are reachable and pairwise inequivalent.

Proof. We prove the reachability of all non-final states of D3 using induction on

the size of P . Note that any non-final state P ∈ QD3
satisfies k ≤ |P | ≤ m − t

because QC3,F ∩ P = ∅ and {σc | σ ∈ Σ0} ⊆ P by the construction. A state

{0, 1, . . . , k− 1} of size k is reachable by reading a leaf node. Assume that all states

P is reachable for |P | ≤ x. Then, we show that any state P ′ of size x+1 is reachable.

February 9, 2017 13:57 IJFCS S0129054116500398 page 975

State Complexity of Regular Tree Languages for Tree Matching 975

Let P ′ = {0, 1, . . . , k − 1, qk, qk+1, . . . , qx} be a state of size x + 1. Then, the state

P ′ is reached from a state {0, 1, . . . , k − 1, qk+1 − qk + k − 1, . . . , qx − qk + k − 1}

after reading a sequence of unary symbols abqk−k. From the induction, it is easy to

verify that all states except QC3,F are reachable. Furthermore, the only final state

QC3,F is reachable from a non-final state {0, 1, . . . , n − t − 1} by reading a unary

symbol a.

Next we prove that all states of D3 are pairwise inequivalent. Pick any two

distinct states P1 and P2. Assume p ∈ P1 \P2. (The other possibility is symmetric.)

From P1, a final state is reached by reading a sequence of unary symbols cn−t−1−pa

whereas P2 does not reach a final state. Therefore, any two states in QD3
are

pairwise inequivalent.

Theorem 9. Given a DBTA A = (Σ, Q,QF , g) with n states for a regular tree

language L, 2n−t−k +1 states are necessary and sufficient in the worst-case for the

minimal DBTA of FΣ ·p L ·s FΣ if |QF | = t and |{σg | σ ∈ Σ0}| = k.

5. State Complexity of DTTAs

It is well known that every NBTA can be converted into an equivalent NTTA [2,8].

On the other hand, not all regular tree languages are recognized by DTTAs. In other

words, a class of regular tree languages accepted by DTTAs is a proper subclass of

regular tree languages accepted by NBTAs or NTTAs. Note that DTTAs recognize

exactly the class of path-closed languages that is a proper subclass of regular tree

languages [2,8]. This leads us to study the state complexity of path-closed languages

for tree matching — the state complexity of DTTAs.

We again consider three types of tree languages FΣ ·pL, L ·sFΣ, and FΣ ·pL ·sFΣ,

where L is a tree language. However, given a path-closed language L, L ·s FΣ and

FΣ ·p L ·s FΣ are not necessarily path-closed languages. Nivat and Podelski [19]

argued that path-closed languages can be characterized by a property called the

subtree exchange property as follows:

Proposition 10 (Nivat and Podelski [19]). A regular tree language L is path-

closed if and only if, for every t ∈ L and every node u ∈ t, if t(u← a(t1, . . . , tm)) ∈

L and t(u ← a(s1, . . . , sm)) ∈ L, then t(u ← a(t1, . . . , si, . . . , tm)) ∈ L for each

i = 1, . . . ,m.

Using the subtree exchange property, we prove that given a tree language L,

L ·s FΣ and FΣ ·p L ·s FΣ are not path-closed languages.

Proposition 11. There exists a path-closed language L such that L ·s FΣ or FΣ ·p

L ·s FΣ is not a path-closed language.

Proof. First we show that there exists a path-closed language L such that L ·s FΣ

is not a path-closed language. Let Σ = Σ2 ∪ Σ0, where Σ2 = {b}, and Σ0 =

{a, c}. A singleton language L contains a single-node tree c, namely L = {c}. It is

February 9, 2017 13:57 IJFCS S0129054116500398 page 976

976 S.-K. Ko, H.-R. Lee & Y.-S. Han

straightforward to verify that FΣ contains every binary tree where leaf nodes are

labeled by a or c, and non-leaf nodes are labeled by b.

Then, L ·s FΣ is a set of binary trees where every tree contains at least one leaf

labeled by c. Therefore, b(a, c) ∈ L ·s FΣ, b(c, a) ∈ L ·s FΣ, and b(a, a) /∈ L ·s FΣ

hold. However, if L ·sFΣ is path-closed, b(a, a) should exist in L ·sFΣ by the subtree

exchange property. This implies that L ·s FΣ is not a path-closed language.

Now let us prove that there exists a path-closed language L such that FΣ ·pL·sFΣ

is not a path-closed language. Let Σ = Σ2 ∪ Σ0, where Σ2 = {a, b}, and Σ0 = {c}.

A singleton language L contains a tree a(c, c), namely L = {a(c, c)}. It is easy to

verify that FΣ contains every binary tree where all leaf nodes are labeled by c and

non-leaf nodes are labeled by a or b.

Then, FΣ ·p L ·s FΣ is a set of binary trees where every tree contains at least

one non-leaf node labeled by a. Therefore, b(a(c, c), c) ∈ FΣ ·p L ·s FΣ, b(c, a(c, c)) ∈

FΣ ·p L ·s FΣ, and b(c, c) /∈ FΣ ·p L ·s FΣ. However, due to the subtree exchange

property, b(c, c) should be in FΣ ·p L ·s FΣ if the language FΣ ·p L ·s FΣ is path-

closed. This means that FΣ ·p L ·s FΣ is not a path-closed language.

We define the deterministic top-down state complexity of a path-closed lan-

guage L to be the number of states that are necessary and sufficient in the worst-

case for the minimal DTTA recognizing L.

Theorem 12. Given a DTTA A = (Σ, Q,Q0, g) with n states for a path-closed

language L, n states are necessary and sufficient in the worst-case for the minimal

DTTA of FΣ ·p L.

Proof. We construct a new DTTA B = (Σ, Q′, Q′
0, g

′) for FΣ ·p L, where Q′ = Q,

Q′
0 = Q0, and the transition function g′ is defined as follows:

For τ ∈ Σm,m ≥ 0 and q ∈ Q′, we define

τg′(q) =







τg(q) if σg(q) 6= λ for any σ ∈ Σ0,

[q, q, . . . , q]
︸ ︷︷ ︸

m times

otherwise.

Now we explain how B simulates FΣ ·
p L with n states. Since trees in FΣ ·

p L have

the same topmost parts with trees in L and leaves can be substituted with any

tree in FΣ, B simulates from the same initial state with A. Let us assume that

a state q ∈ Q′ may end the top-down computation with generating a leaf node

since σg(q) = λ. Once B arrives at q, the new transition function g′ continues

the computation by reading a non-leaf label of rank m and generating a sequence

[q, q, . . . , q] of states whose length is m. This makes a new DTTA B to generate any

subtree in FΣ at the point where the computation may end with generating leaves

and, thus, recognize the language FΣ ·p L.

It is easy to see that n states are necessary to recognize FΣ ·pL. Consider a path-

closed language of unary trees whose state complexity correspond to that of regular

February 9, 2017 13:57 IJFCS S0129054116500398 page 977

State Complexity of Regular Tree Languages for Tree Matching 977

string languages. Since the state complexity of LΣ∗ is n if the state complexity of

L is n, this case can be a lower bound for the path-closed language FΣ ·p L.

6. Conclusions

We have considered the state complexity of three types of tree languages FΣ ·p L,

L ·s FΣ, and FΣ ·p L ·s FΣ for tree pattern matching problem. Motivated from

tree pattern matching problem, we have investigate the state complexity of these

languages when they are described by DBTAs and DTTAs. Table 1 summarizes the

established results. Especially, we have shown that L ·s FΣ and FΣ ·pL ·sFΣ are not

recognizable by DTTAs even when L is a path-closed language since they are not

necessarily path-closed languages. We have shown that L ·s FΣ and FΣ ·p L ·s FΣ

need not be path-closed and therefore cannot recognized by DTTAs.

Table 1. A summary table for the state complexity of DBTAs and DTTAs
for the tree languages FΣ ·p L, L ·s FΣ, and FΣ ·p L ·s FΣ.

languages state complexity of DBTAs state complexity of DTTAs

FΣ ·p L 2n−k n

L ·s FΣ n+ 1 not recognizable

FΣ ·p L ·s FΣ 2n−t−k + 1 not recognizable

A possible future direction is to investigate the descriptional complexity of un-

ranked tree automata, which are a more generalized model than tree automata over

ranked alphabet, for recognizing L ·s FΣ and FΣ ·p L ·s FΣ.

Acknowledgments

Ko was partially supported by EPSRC grant “Reachability problems for

words, matrices and maps” (EP/M00077X/1), and Lee and Han were sup-

ported by the Basic Science Research Program through NRF funded by

MEST (2015R1D1A1A01060097) and the Yonsei University Future-leading Re-

search Initiative of 2015.

References

[1] A. V. Aho. Handbook of theoretical computer science (Vol. A). chapter Algorithms
for Finding Patterns in Strings, pages 255–300. 1990.

[2] H. Comon, M. Dauchet, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications. 2007. Electronic book available at
http://www.tata.gforge.inria.fr.

[3] M. Crochemore and C. Hancart. Handbook of formal languages, Vol. 2. chapter
Automata for Matching Patterns, pages 399–462. 1997.

[4] Z. Ésik, Y. Gao, G. Liu, and S. Yu. Estimation of state complexity of combined
operations. Theoretical Computer Science, 410(35):3272–3280, 2009.

[5] Y. Gao and L. Kari. State complexity of star of union and square of union on k

regular languages. Theoretical Computer Science, 499(0):38–50, 2013.

February 9, 2017 13:57 IJFCS S0129054116500398 page 978

978 S.-K. Ko, H.-R. Lee & Y.-S. Han

[6] Y. Gao, L. Kari, and S. Yu. State complexity of union and intersection of square and
reversal on k regular languages. Theoretical Computer Science, 454:164–171, 2012.

[7] Y. Gao, K. Salomaa, and S. Yu. The state complexity of two combined operations:
Star of catenation and star of reversal. Fundamenta Informaticae, 83(1-2):75–89,
2008.

[8] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Vol. 3: Beyond Words, pages 1–68. Springer-Verlag
New York, Inc., 1997.

[9] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal of the

ACM, 29(1):68–95, 1982.
[10] M. Holzer, M. Kutrib, and K. Meckel. Nondeterministic state complexity of star-free

languages. In Proceedings of the 16th International Conference of Implementation

and Application of Automata, pages 178–189. 2011.
[11] S.-K. Ko, H.-S. Eom, and Y.-S. Han. Operational state complexity of subtree-free

regular tree languages. International Journal of Foundations of Computer Science,
In press.

[12] M. Kutrib, G. Pighizzini, and G. Pighizzini. Recent trends in descriptional complexity
of formal languages. Bulletin of the EATCS, 111, 2013.

[13] O. Lupanov. A comparison of two types of finite automata. Problemy Kibernet, 9:321–
326, 1963.

[14] W. Martens and J. Niehren. On the minimization of XML schemas and tree automata
for unranked trees. Journal of Computer System Sciences, 73(4):550–583, 2007.

[15] A. Maslov. Estimates of the number of states of finite automata. Soviet Mathematics

Doklady, 11:1373–1375, 1970.
[16] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,

and formal systems. In Proceedings of the 12th Annual Symposium on Switching and

Automata Theory, pages 188–191. IEEE Computer Society, 1971.
[17] F. Moore. On the bounds for state-set size in the proofs of equivalence between

deterministic, nondeterministic, and two-way finite automata. IEEE Transactions

on Computers, C-20(10):1211–1214, 1971.
[18] F. Neven. Automata theory for XML researchers. ACM SIGMOD Record, 31(3):39–

46, 2002.
[19] M. Nivat and A. Podelski. Minimal ascending and descending tree automata. SIAM

Journal on Computing, 26(1):39–58, 1997.
[20] X. Piao and K. Salomaa. State trade-offs in unranked tree automata. In Proceedings

of the 13th International Workshop on Descriptional Complexity of Formal Systems,
pages 261–274, 2011.

[21] X. Piao and K. Salomaa. Transformations between different models of unranked
bottom-up tree automata. Fundamenta Informaticae, 109(4):405–424, 2011.

[22] X. Piao and K. Salomaa. State complexity of Kleene-star operations on trees. In
Proceedings of the 2012 International Conference on Theoretical Computer Science:

Computation, Physics and Beyond, pages 388–402, 2012.
[23] X. Piao and K. Salomaa. State complexity of the concatenation of regular tree lan-

guages. Theoretical Computer Science, 429:273–281, 2012.
[24] A. Salomaa, K. Salomaa, and S. Yu. State complexity of combined operations. The-

oretical Computer Science, 383(2-3):140–152, 2007.
[25] K. Salomaa and S. Yu. On the state complexity of combined operations and their

estimation. International Journal of Foundations of Computer Science, 18:683–698,
2007.

February 9, 2017 13:57 IJFCS S0129054116500398 page 979

State Complexity of Regular Tree Languages for Tree Matching 979

[26] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[27] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

