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We introduce subtree-free regular tree languages that are closely related to XML schemas
and investigate the state complexity of basic operations on subtree-free regular tree
languages. The state complexity of an operation for regular tree languages is the number
of states that are sufficient and necessary in the worst-case for the minimal deterministic
ranked tree automaton that accepts the tree language obtained from the operation. We
establish the precise state complexity of (sequential, parallel) concatenation, (bottom-
up, top-down) star, intersection and union for subtree-free regular tree languages.
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1. Introduction

State complexity is one of the most interesting topics in automata and formal lan-

guage theory [2, 13, 17, 18, 29, 35, 36]. We can use the state complexity for measuring

the descriptional complexity of finite automata and regular languages. Maslov [20]

obtained the state complexity of catenation and Yu et al. [36] investigated the

state complexity for basic operations. Later, Yu and his co-authors [7, 11, 32, 33]

initiated the study on the state complexity of combined operations such as star-

of-union, star-of-intersection and so on. Gao et al. [7, 9, 10] studied the state com-

plexity of combined Boolean operations including multiple unions and multiple

intersections. Researchers also considered the state complexity of multiple opera-

tions such as several catenations, intersections, unions or intersections [4, 6, 7, 31].

∗A preliminary version of this paper appeared in Proceedings of the 15th International Workshop
on Descriptional Complexity of Formal Systems, DCFS 2013, LNCS 8031, Springer-Verlag, 2013,
pp. 66–77.
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Han et al. [5, 14, 15] observed that prefix-free and suffix-free regular languages have

unique structural properties in their DFAs, which are crucial to obtain the precise

state complexity. Based on the structural properties for such DFAs, they obtained

the precise state complexity for prefix-free and suffix-free regular languages. For

instance, the state complexities of catenation and Kleene-star are both at most

linear for prefix-free regular languages due to the restrictions on the structures of

DFAs [15].

Regular tree languages and tree automata theory provide a formal framework for

XML schema languages such as XML DTD, XML Schema, and Relax NG [21, 23].

In other words, a set of XML documents generated from a given XML schema is

a regular tree language since a XML document is a tree-based structural docu-

ment. Piao and Salomaa [25, 26] examined the state complexities between different

models of unranked tree automata. They also investigated the state complexities of

concatenation [28] and star [27] for regular tree languages.

We consider a proper subfamily of regular tree languages, called subtree-free

regular tree languages. A subtree of a tree t is a tree consisting of a node in t and all

of its descendants in t. We say that a tree t1 is a supertree of a tree t2 if t2 is a subtree

of t1. We define a set T of trees to be subtree-free if a tree in T is not a subtree of

another tree in T . We observe that the subtree-freeness is often well-preserved in

practice: XML documents always have a single root element called the document

element. The document element is, therefore, the very first element of an XML

document and encloses all other elements [19]. Moreover, the document element

does not appear elsewhere in many XML documents. For example, consider an XML

Schema instance, which itself is an XML document. All XML Schemas should have

the following start and end tags according to the XML Schema specification [8]:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

...

</xs:schema>

Note that all XML Schemas should have the xs:schema element as its root

element and xs:schema cannot be used elsewhere in XML Schemas [8]. Namely, a

set of XML Schemas is a subtree-free regular tree language.

We can estimate the space requirement for manipulating sets of XML documents

under basic operations that satisfy the subtree-freeness by investigating the state

complexity of regular tree languages with the same property. Notice that we consider

state complexity of regular tree languages on ranked trees whereas XML schemas

correspond to unranked tree automata. This is because it is difficult to compute

the state complexity of unranked tree automata directly and, thus, researchers

often rely on the state complexity of ranked tree automata for estimating the state

complexity for unranked tree automata [24].

In Sec. 2, we define some basic notions. We define the subtree-free regular tree

languages in Sec. 3 and identify the structural properties of their tree automata.
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We obtain the state complexity for sequential and parallel concatenation in Sec. 4,

bottom-up and top-down star in Sec. 5, and the intersection and union in Sec. 6.

We conclude the paper in Sec. 7.

2. Preliminaries

We briefly recall definitions and properties of finite tree automata and regular

tree languages. We refer the reader to the books [3, 12] for more details on tree

automata.

For a Cartesian product S = S1× · · ·×Sn, the ith projection, where 1 ≤ i ≤ n,

is the mapping πi : S −→ Si defined by setting πi(s1, . . . , sn) = si. A ranked

alphabet Σ is a finite set of characters and we denote the set of elements of rank

m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of Σ-labeled trees, where a node

labeled by σ ∈ Σm always has m children. We use FΣ to denote a set of trees over

Σ that is the smallest set S satisfying the following condition: if m ≥ 0, σ ∈ Σm

and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S. Let t(u← s) be the tree obtained from

a tree t by replacing the subtree at a node u of t with a tree s. The notation is

extended for a set U of nodes of t and S ⊆ FΣ : t(U ← S) is the set of trees obtained

from t by replacing the subtree at each node of U by some tree in S.

A nondeterministic bottom-up tree automaton (NTA) is specified by a tuple A =

(Σ, Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states, Qf ⊆ Q is

a set of final states and g associates each σ ∈ Σm to a mapping σg : Qm −→ 2Q,

where m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ, we define inductively the set

tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g, for 1 ≤ i ≤ m, such

that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states of Q that A may reach

by reading the tree t. Thus, the tree language accepted by A is defined as follows:

L(A) = {t ∈ FΣ | tg ∩Qf 6= ∅}.

The intermediate stages of a computation, or configurations, of A are trees where

some leaves may be labeled by states of A. We denote the set of Σ-labeled trees

where exactly one leaf is labeled by a special symbol x /∈ Σ by FΣ[x]. Thus the set of

configurations of A consists of Σ′-trees, where Σ′
0 = Σ0 ⊔ {Q} and Σ′

m = Σm when

m ≥ 1. Note that we use ⊔ for denoting the disjoint union. The set of configurations

is denoted as FΣ[Q]. The automaton A is a deterministic bottom-up tree automaton

(DTA) if, for each σ ∈ Σm, where m ≥ 0, σg is a partial function Qm −→ Q.

The nondeterministic (bottom-up or top-down) and deterministic bottom-up tree

automata accept the family of regular tree languages.

For tree languages, there are two types of concatenations and two types of

Kleene-star: sequential concatenation, parallel concatenation, bottom-up Kleene-

star and top-down Kleene-star. We follow the definitions and notations of the op-

erations from the prior work [27, 28]. For any σ ∈ Σ0 and t ∈ FΣ, leaf(t, σ) is the

set of leaf nodes labeled by σ. For σ ∈ Σ0, T1 ⊆ FΣ and t2 ∈ FΣ, we define the

sequential σ-concatenation of T1 and t2 as follows:

T1 ·
s
σ t2 = {t2(u← t1) | u ∈ leaf(t2, σ), t1 ∈ T1}.
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Therefore, T1 ·sσ t2 is the set of trees obtained from t2 by replacing a leaf labeled

by σ with a tree in T1. We extend the sequential σ-concatenation operation to the

tree languages T1, T2 ⊆ FΣ as follows:

T1 ·
s
σ T2 =

⋃

t2∈T2

T1 ·
s
σ t2.

The parallel σ-concatenation of T1 and t2 is defined as

T1 ·
p
σ t2 = t2(leaf(t2, σ)← T1).

Thus, T1 ·pσ t2 is the set of trees obtained from t2 by replacing all leaves labeled

by σ with a tree in T1. Note that the parallel σ-concatenation can also be extended

to the tree languages.

We observe that the sequential σ-concatenation is not associative whereas the

parallel version is associative. Due to the non-associativity of the sequential con-

catenation, we have two variants of iterated sequential concatenations: sequential

top-down σ-star and sequential bottom-up σ-star. We only consider the sequential

σ-star operations since the iterated parallel concatenation does not preserve regu-

larity [27]. For σ ∈ Σ0 and T ⊆ FΣ, we define the sequential top-down σ-star of T

to be

T s,t,∗
σ =

⋃

k≥0

T s,t,k
σ

by setting T s,t,0
σ = {σ} and T s,t,k

σ = T ·sσ T
s,t,k−1
σ for k ≥ 1. Similarly, we define the

sequential bottom-up σ-star of T to be

T s,b,∗
σ =

⋃

k≥0

T s,b,k
σ

by setting T s,b,0
σ = {σ}, T s,b,1

σ = T and T s,b,k
σ = T s,b,k−1

σ ·sσ T for k ≥ 2. Since

we only consider the sequential σ-star operations, we call the sequential top-down

(bottom-up, respectively) σ-star the top-down (bottom-up, respectively) σ-star and

denote it by T t,∗
σ (T b,∗

σ , respectively) instead of T s,t,∗
σ (T s,b,∗

σ , respectively) in the

remaining sections.

3. Subtree-Free Regular Tree Language

There are several subfamilies of (regular) languages such as prefix-free, suffix-free

and infix-free (regular) languages. For regular languages, some of these subfamilies

have unique structural properties in their minimal DFAs and these properties often

make the state complexity of the considered subfamilies different from that of gen-

eral regular languages. For regular tree languages, we can similarly define proper

subfamilies by adding some restrictions on the structure of minimal DTAs. We con-

sider subtree-freeness in a tree language and define a subtree-free tree language as

follows:

Definition 1. We define a tree language L to be subtree-free if, for any two dis-

tinct trees t1 and t2 in L, t1 is not a subtree of t2.
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We can extend the subtree-freeness to the family of regular tree languages and

define subtree-free regular tree languages. Then, the minimal DTAs recognizing the

family have the following structural properties.

Lemma 2. A regular tree language L is subtree-free if and only if its minimal

DTA A for L has only one final state and there are no transitions whose left-hand

sides contain the final state.

Proof. We say that a DTA A is a subtree-free DTA if L(A) is subtree-free. Suppose

that A = (Σ, Q, qf , g) is a subtree-free minimal DTA. We first prove that if A has no

transitions whose left-hand sides contain the final state, then L(A) is subtree-free.

Assume that L(A) recognizes two trees t and t′, where t′ is a subtree of t. Since A

accepts t = σ(t1, . . . , tm), σg(q1, . . . , qm) should be defined as qf , where qi = (ti)g
for 1 ≤ i ≤ m. Note that t′ must be ti itself or a subtree of ti for 1 ≤ i ≤ m. By the

assumption, A also accepts t′ and, thus, qf = (t′)g holds. This follows that t′ 6= ti
since there are no transitions containing qf on the left-hand side. Using a similar

argument, it is easy to show that t′ cannot be a subtree of ti.

Now we prove the other direction: If L(A) is subtree-free, then A has no transi-

tions whose left-hand sides contain the final state. Assume that there is a transition

q′ = σg(q1, . . . , qf , . . . , qm) and A accepts t. This means that A reaches qf by recog-

nizing t and then A reaches another state q′ by reading σ(q1, . . . , t, . . . , qm), which

is a supertree of t. Note that every state in Q except qf can move to the final

state. Thus, A can reach the final state qf from q′ as well and accept a supertree of

t — contradiction.

It is interesting to note that the subtree-freeness of the tree language corresponds

to the prefix-freeness of the string language since tree automata operate in the

bottom-up direction. Recall that a regular language is prefix-free if and only if the

unique final state of its minimal DFA does not have any out-transitions [1].a The

properties of subtree-free regular tree languages in Lemma 2 are similar to that

of prefix-free regular languages. This leads us to study the following question: Are

the state complexities for subtree-free regular tree languages similar to those for

prefix-free regular languages.

4. State Complexity of Concatenation

There are two types of concatenation operations for regular tree languages. Piao

and Salomaa [28] gave formal definitions of sequential and parallel concatenations

and established two state complexities of regular tree languages for both operations.

Note that the state complexity of regular tree languages considers incomplete min-

imal DTAs [27, 28].

aWe assume that there is no sink state in a minimal DFA.



November 7, 2016 17:33 IJFCS S0129054116500246 page 710

710 S.-K. Ko, H.-S. Eom & Y.-S. Han

4.1. Sequential concatenation

We first consider the state complexity of the sequential concatenation operation for

subtree-free regular tree languages.

Lemma 3. Let A and B be subtree-free minimal DTAs with n1 and n2 states,

respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + 2n2 − 1) − 1 states are

sufficient for the minimal DTA of L(A) ·sσ L(B).

Proof. We show the sufficient number of states for the minimal DTA of L(A) ·sσ
L(B) by the DTA construction for the desired operation. Let A = (Σ, QA, qA,F , gA)

and B = (Σ, QB, qB,F , gB) be two subtree-free DTAs. Let Q′
A = QA ⊔ {qsink} and

Q′
B = QB ⊔ {psink}. Note that qA,F and qB,F are the unique final states of A and

B, respectively. Without loss of generality, assume that σgB is defined. We define a

new DTA C = (Σ, QC , QC,F , gC), where

QC = Q′
B × 2QB ×Q′

A and QC,F = {q ∈ QC | π2(q) ∩QB,F 6= ∅}.

For τ ∈ Σm,m ≥ 0, q1, . . . , qm ∈ Q′
A, we define

τgA(q1, . . . , qm) =

{

τgA(q1, . . . , qm) if τgA(q1, . . . , qm) is defined,

qsink, otherwise.

We define τgB (p1, . . . , pm) analogously. For τ ∈ Σ0, we define

τgC =















(τgB , {σgB}, τgA) if τgA = qA,F ,

(τgB , ∅, τgA) if τgA or τgB is defined, τgA 6= qA,F ,

undefined, if τgB and τgA are both undefined.

For τ ∈ Σm and (pi, Pi, qi) ∈ QC , where m ≥ 1, pi ∈ Q′
B,Pi ⊆ QB, qi ∈ Q′

A and

1 ≤ i ≤ m, we define τgC ((p1, P1, q1), . . . , (pm, Pm, qm)) to be one of the following

three:

(i) (τgB (p1, . . . , pm), X, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) = qA,F , where

X =

m
⋃

i=1

(

⋃

x∈Pi

τgB (p1, . . . , pi−1, x, pi+1, . . . pm)

)

∪ {σgB}.

(ii) (τgB (p1, . . . , pm), Y, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) 6= qA,F and [Y 6= ∅, or

at least one of τgB (p1, . . . , pm) and τgA(q1, . . . , qm) is defined]. Here,

Y =

m
⋃

i=1

(

⋃

x∈Pi

τgB (p1, . . . , pi−1, x, pi+1, . . . pm)

)

.

(iii) undefined, otherwise.
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The first component of a state in QC simulates the computation of B assuming

that there is no occurrence of σ-substitution below the current node and the third

component simulates the computation of A. The second component simulates B

assuming that a σ-substitution has occurred below the current node. When the

third component arrives at the final state of A, we add the state that can be reached

by reading a leaf labeled by σ ∈ Σ0 to the second component. Then, the DTA C

simulates the computation of B with a state from the second component and the

other states from the first component. If the second component has a final state of

B, this implies that the DTA C has simulated a tree ofB, where a σ-substitution has

occurred. Therefore, the construction guarantees that C recognizes the sequential

concatenation of A and B.

Now from the construction, we know that (n2 + 1) · 2n2 · (n1 + 1) states

are sufficient for simulating the sequential concatenation. However, any two

states (p, P, q1), (p, P, q2) ∈ QC are always equivalent if q1 is final and q2 is qsink
since there is no transition defined for the only final state of QA. This implies that

we can merge (n2 + 1) · 2n2 states. Now we consider the states where the third

component is neither the sink state qsink nor the final state of A. For a state q that

is not the sink state or the final state of A, we observe that a state (p, P, q) ∈ QC

is unreachable if P 6= ∅. Furthermore, we remove one more state (psink, ∅, qsink) and

establish an upper bound of

(n2+1) ·2
n2 · (n1+1)−(n2+1) ·2

n2−(n2+1)(2
n2−1)(n1−1)−1=(n2+1)(n1+2

n2−1)−1

states.

For the tight bound, we present two subtree-free DTAs A and B whose state

complexity of L(A) ·sσ L(B) reaches the upper bound in Lemma 3. We choose

Σ = Σ0 ⊔ Σ1 ⊔ Σ2, where Σ0 = {d},Σ1 = {a, b} and Σ2 = {c, e, f}. Let

A = (Σ, QA, qA,F , gA), where QA = {0, 1, . . . , n1 − 1}, qA,F = n1 − 1 and the

transition function gA is defined as follows:

• dgA = 0,

• agA(i) = i+ 1, 0 ≤ i ≤ n1 − 2,

• bgA(i) = i, 0 ≤ i ≤ n1 − 2.

Similarly, we define B = (Σ, QB, qB,F , gB), where QB = {0, 1, . . . , n2 − 1}, qB,F =

n2 − 1 and the transition function gB is defined as follows:

• dgB = 0,

• agB (i) = i, 0 ≤ i ≤ n2 − 2,

• bgB (i) = i+ 1, 0 ≤ i ≤ n2 − 2,

• cgB (i, j) = (i− j) (mod n2), 0 ≤ i, j ≤ n2 − 1,

• egB (0, 0) = 0 and egB (i, j) = n2 − 1, i 6= j, 0 ≤ i, j ≤ n2 − 2,

• fgB (i, 0) = 0, 0 ≤ i ≤ n2 − 2 and fgB (i, 1) = i+ 1, 0 ≤ i ≤ n2 − 2.

Note that both the final states of A and B do not have any out-transitions

and, thus, L(A) and L(B) are subtree-free regular tree languages by Lemma 2.
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We show that the upper bound in Lemma 3 is reached using A and B. Let

C = (Σ, QC , QC,F , gC) be a new DTA constructed from A and B as in the

proof of Lemma 3. Note that here a symbol d is used to sequentially concatenate

two trees.

Lemma 4. All states of C are reachable and pairwise inequivalent.

Proof. First, we show that all states of C are reachable. Note that a state n1 is a

sink (undefined) state of A and a state n2 is a sink state of B. Before we consider

the reachability of states, we remind that any two states (i, P, n1− 1) and (i, P, n1)

are equivalent since there is no transition defined for the final state n1−1.

The computation of C assigns the state (0, ∅, 0) to a leaf labeled by d. From

(0, ∅, 0), we reach (i, ∅, j) by reading a sequence of unary symbols ajbi, where 0 ≤

i ≤ n2 and 0 ≤ j ≤ n1−2. Choose a state q = (i, ∅, 0), 0 ≤ i ≤ n2−1 and a

tree t = c(q, x) ∈ FΣ′ [x]. Then, the computation of C on t(x ← (0, ∅, 0)) assigns

the state (i, ∅, n1).

Now we show that all the states (i, P, j), 0 ≤ i ≤ n2, 0 ≤ j ≤ n1, P ⊆

{0, . . . , n2−1} are reachable by induction. First we show that any state (i, P, n1), 0 ≤

i ≤ n2−1, |P | = 1 is reachable. Note that if the second component P is not

empty, namely |P | 6= 0, then the third component of states of C is always n1.

Consider a state (i1, {i2}, n1), 0 ≤ i1, i2 ≤ n2−1. For n2 − 1 > i1 − i2 ≥ 0, any

state (i1, {i2}, n1), 0 ≤ i2 ≤ i1 ≤ n2−2 is reachable from (i1−i2, ∅, n1−2) by read-

ing a sequence of unary symbols abi2 . For the case when i1 − i2 = n2 − 1, the

state (n2, {0}, n1) is reachable from (n2, ∅, n1−2) by reading a unary symbol a.

For n2− 1 > i2− i1 > 0, choose a state q = (i2−i1, {0}, n1) which is already shown

to be reachable and a tree t = bi1(c(x, q)) ∈ FΣ′ [x]. Then, the computation of C on

t(x← (i2−i1, ∅, n1)) reaches the state (i1, {i2}, n1). Lastly, the state (0, {n2−1}, n1)

is the case when i2− i1 = n2−1. Choose a state q = (0, ∅, n1) and a tree t = e(x, q).

Then, the computation of C on t(x← (0, {1}, n1)) assigns the state (0, {n2−1}, n1).

Consider a non-negative integer z ≥ 1, and inductively assume that all the

states (i, P, n1), 0 ≤ i ≤ n2, |P | ≤ z are reachable. Now we prove that any

state (i′, P ′, n1), 0 ≤ i′ ≤ n2, |P ′| = z+1 is reachable. Let P ′ = {s1, s2, . . . , sz, sz+1}

and P = P ′ \ {sz+1}. From the inductive assumption, we know that the state

q = (i′, P, n1) is reachable. We choose a tree t = c(q, x) ∈ FΣ′ [x]. First we

consider the case when i′ < n2 − 1. If i′ ≥ sz+1, the computation of C on

t(x ← (0, {i′−sz+1}, n1)) reaches the state (i′, P ′, n1). Otherwise, we consider the

computation of C on t(x← (0, {n2+i′−sz+1}, n1)) that assigns the state (i
′, P ′, n1)

to the root of t. Now we consider the case when i′ = n2−1, namely (n2−1, P ′, n1).

Suppose that 0 /∈ P ′ and let P ′′ = {s1 − 1, s2 − 1, . . . , sz − 1, sz+1 − 1}. We choose

a state q = (n2−2, P ′′, n1) and a tree t = f(q, x). Then, the computation of C

on t(x ← (1, ∅, n1)) reaches the state (n2−1, P ′, n1). If 0 ∈ P ′, let s1 = 0 and

P ′′ = {s2−1, s3−1 . . . , sz−1, sz+1−1}. We choose a state q = (n2−2, P ′′, n1) and

a tree t = f(q, x). Then, the computation of C on t(x ← (1, {0}, n1)) reaches the
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state (n2−1, P
′, n1). This completes the proof of the inductive step and, therefore,

all states of C are reachable.

Next, we show that all states of C are inequivalent with respect to the Myhill-

Nerode equivalence relation [22, 30]. Let (i1, P1, j1) and (i2, P2, j2) be two distinct

states of C. Then, there are three possible cases to consider:

(i) Case P1 6= P2: Without loss of generality, we assume that p ∈ P1 \ P2. The

state (i1, P1, j1) reaches the final state by reading a sequence of unary sym-

bols bn2−1−p whereas the state (i2, P2, j2) does not.

(ii) Case i1 6= i2: Since i1 6= i2, one of i1, i2 has to be distinct from n2 and we

assume that 0 ≤ i1 < i2 ≤ n2 without loss of generality. In order to establish

that (i1, P1, j1) and (i2, P2, j2) are inequivalent, it is sufficient to give a tree

t ∈ FΣ′ [x] such that the computation of C on t(x← (i1, P1, j1)) (respectively,

t(x ← (i2, P2, j2))) reaches a final state (respectively, a non-final state). We

can assume that P1 = P2 since otherwise, the two states should be inequivalent

from the previous case.

Let q′ = (n2, {0}, n1) and choose a tree t = c(bn2−i2(x), q′). First, consider

the computation of C on t(x ← (i1, P1, j1)). By reading a sequence of unary

symbols bn2−i2 , the first component i1 reaches n2 − i2 + i1 and by reading

a binary symbol c, the state reaches the state (n2, {n2 − i2 + i1}, n1). Now,

consider the computation on t(x← (i2, P2, j2)). The first component becomes

the sink state of B by reading a sequence of unary symbols bn2−i2 . Then,

the state reaches (n2, ∅, n1), which is the sink state of C, by reading a binary

symbol c. Now the case reduces to the previous case.

(iii) Case j1 6= j2: Without loss of generality, we assume that 0 ≤ j1 < j2 ≤ n1.

Since any two states (i, P, n1), (i, P, n1−1), 0 ≤ i ≤ n2, P ⊆ {0, . . . , n2−1} are

equivalent, we can assume that 0 ≤ j1 < j2 < n1.

First, we empty P1, P2 and make i1, i2 to be sink states by reading a se-

quence of unary symbols bn2 . Then, the final state is reached from (n2, ∅, j1)

after reading a sequence of unary symbols an1−j1−1bn2−1. On the other

hand, we cannot reach the final state by reading a sequence of unary sym-

bols an1−j1−1bn2−1 from (n2, ∅, j2).

Therefore, all states of C are pairwise inequivalent.

From Lemmas 3 and 4, we establish the following result.

Theorem 5. Let A and B be subtree-free minimal DTAs with n1 and n2 states,

respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + 2n2 − 1) − 1 states are

sufficient and necessary in the worst-case for the minimal DTA of L(A) ·sσ L(B).

We note that the state complexity of sequential concatenation obtained here

differs from the state complexity of string concatenation since we need to remember

the node where the σ-substitution has occurred.
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4.2. Parallel concatenation

The parallel concatenation L1 ·pσ L2 is called the σ-product of L1 and L2 [12]. Piao

and Salomaa [28] investigate the state complexity of parallel concatenation, which

is similar to that of catenation for regular string languages. The state complexity of

subtree-free regular tree languages for parallel concatenation turns out to be similar

to the DFA state complexity of prefix-free regular languages for concatenation [15].

Theorem 6. Let A and B be subtree-free minimal DTAs with n1 and n2 states,

respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n1 − 1)(n2 + 1) + 2n2 − 1 states are

sufficient and necessary in the worst-case for the minimal DTA of L(A) ·pσ L(B).

Proof. Let A = (Σ, QA, qA,F , gA) and B = (Σ, QB, qB,F , gB) be two subtree-free

DTAs. Let Q′
A = QA ⊔ {qsink}. We construct a new DTA C = (Σ, QC , QC,F , gC),

where QC = 2QB × Q′
A, QC,F = {q ∈ QC | π1(q) ∩ qB,F 6= ∅}. For τ ∈ Σm,m ≥

0, q1, . . . , qm ∈ Q′
A, we define

τgA(q1, . . . , qm) =

{

τgA(q1, . . . , qm) if τgA(q1, . . . , qm) is defined,

qsink, otherwise.

The transitions of gC are defined as follows. For τ ∈ Σ0, we define

τgC =















({τgB , σgB}, τgA) if τgA =qA,F ,

({τgB}, τgA) if τgA 6=qA,F , and at least one of τgA and τgB is defined,

undefined, otherwise.

For τ ∈ Σm and (Pi, qi) ∈ QC , where m ≥ 1 and 1 ≤ i ≤ m, we define

τgC ((P1, q1), . . . , (Pm, qm)) = (τgB (P1, . . . , Pm) ∪X, τgA(q1, . . . , qm)),

where X = {σgB} if τgA(q1, . . . , qm) = qA,F and X = ∅ otherwise.

Now consider the computation of the new DTA C. The first component of a

state in QC simulates B assuming that every leaf node labeled by σ is substituted

with a tree in L(A). The second component of a state in QC simulates A and adds

σgB into the first component when it becomes the final state of A. Therefore, the

construction guarantees that C simulates the parallel concatenation of A and B.

Next we compute the upper bound by counting the number of sufficient states in

C. Since each state of C is a pair of a set of states of B and a state of A, the total

number of states is (n1 + 1) · 2n2 .

First, any two states (P, qA,F ), (P, qsink), P ⊆ QB, can be merged into one state

since they are equivalent. Therefore, we can subtract 2n2 states. By the construction,

the second component always becomes the sink state qsink when we add a state into

the first component. Thus all the states (P, q), q ∈ QA, P ⊆ QB are unreachable if

q 6= qsink and |P | > 1. Furthermore, we remove the sink state (∅, qsink) because we
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consider the incomplete state complexity. Therefore, the upper bound is

(n1 + 1) · 2n2 − 2n2 − (n1 − 1)(2n2 − n2 − 1)− 1 = (n1 − 1)(n2 + 1) + 2n2 − 1.

For the tight bound, we present two subtree-free DTAs A and B whose state

complexity of L(A) ·pσ L(B) reaches the upper bound. We choose Σ = Σ0 ⊔Σ1 ⊔Σ2,

where Σ0 = {d},Σ1 = {a, b} and Σ2 = {c}. Let A = (Σ, QA, qA,F , gA), where

QA = {0, 1, . . . , n1−1}, qA,F = n1−1 and the transition function gA is defined as

follows:

• dgA = 0,

• agA(i) = i+ 1, 0 ≤ i ≤ n1 − 2,

• bgA(i) = i, 0 ≤ i ≤ n1 − 2.

Similarly, we define B = (Σ, QB, qB,F , gB), where QB = {0, 1, . . . , n2−1}, qB,F =

n2−1 and the transition function gB is defined as follows:

• dgB = 0,

• agB (i) = i, 0 ≤ i ≤ n2 − 2,

• bgB (i) = i+ 1, 0 ≤ i ≤ n2 − 2,

• cgB (i, 0) = cgB (0, i) = i, 1 ≤ i ≤ n2 − 2 and cgB (i, i) = 0, 0 ≤ i ≤ n2 − 2.

Note that both the final states of A and B do not have any out-transitions and,

thus, L(A) and L(B) are subtree-free regular tree languages by Lemma 2. We show

that the upper bound is reached using A and B. Let C = (Σ, QC , QC,F , gC) be a

new DTA constructed from A and B as in the proof of Lemma 3. Note that here a

symbol d is used to concatenate two trees.

We show that all states of C are reachable. Note that n1 and n2 are sink states

of A and B, respectively. Before we consider the reachability of states, we remind

that any two states (i, n1−1) and (i, n1) are equivalent since there is no transition

defined for the final state n1−1. The computation of C assigns the state ({0}, 0)

to a leaf labeled by d. The state (∅, j), 0 ≤ j ≤ n1 − 1 can be reached by reading a

sequence of unary symbols ajbn2 from ({0}, 0).

Now we show that all the states (P, j), P ⊆ QB, 0 ≤ j ≤ n1 are reachable by

induction. From ({0}, 0), we reach the state ({i}, j), 0 ≤ i ≤ n2 − 1, 0 ≤ j ≤ n1 by

reading a sequence of unary symbols ajbi.

Consider a non-negative integer z ≥ 1, and inductively assume that all the

states (P, n1), |P | ≤ z, 0 ≤ j ≤ n1 are reachable. Now we prove that any

state (P ′, n1), |P ′| = z + 1 is reachable. Let P ′ = {s1, s2, . . . , sz , sz+1}, s1 > s2 >

· · · > sz > sz+1 and P = {s1 − sz+1, s2 − sz+1, . . . , sz − sz+1}. From the in-

ductive assumption, we know that the state q = (P, n1) is reachable. We choose

t = bsz+1(c(x, q)) ∈ FΣ′ [x]. Then, the computation of C on t(x ← ({0, sz −

sz+1}, n1)) reaches the state (P ′, n1). Note that the state ({0, sz − sz+1}, n1) is

reachable from ({sz − sz+1}, n1 − 2) by reading a unary symbol a. This completes

the proof of the inductive step and, therefore, all states of C are reachable.
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Next, we show that all states of C are pairwise inequivalent. Let (P1, j1) and

(P2, j2) be two distinct states of C. There are two possible cases to consider:

(i) Case P1 6= P2: Without loss of generality, we assume that p ∈ P1 − P2.

The state (P1, j1) reaches the final state by reading a sequence of unary sym-

bols bn2−1−p whereas the other state (P2, j2) does not.

(ii) Case j1 6= j2: Without loss of generality, we assume that 0 ≤ j1 < j2 ≤ n1.

Note that any two states (P, n1−1), (P, n1), P ⊆ QB are equivalent. Therefore,

we assume that 0 ≤ j1 < j2 < n1.

First, we empty P1 and P2 by reading a sequence of unary symbols bn2 .

Then, we reach two distinct states ({0}, n1 − 1) and (∅, n1 − j2 + j1 − 1) by

reading a sequence of unary symbols an1−j2−1. Since the first component of

two states are different, this case reduces to the first case.

Therefore, all states of C are pairwise inequivalent.

5. State Complexity of Kleene-Star

Piao and Salomaa [27] gave definitions of two types of Kleene-star operations:

bottom-up star and top-down star operations and obtained the tight state com-

plexities for the operations. Note that they only considered the sequential variants

of iterated concatenation as Kleene-star operation on trees since the parallel version

does not preserve regularity [27].

5.1. Bottom-up star

First we give an upper bound for the state complexity of subtree-free regular tree

languages for bottom-up Kleene-star operation.

Lemma 7. Let A = (Σ, Q, qF , g) be a subtree-free minimal DTA with n states,

where n ≥ 2. For σ ∈ Σ0, 2n states are sufficient for the minimal DTA of L(A)b,∗σ .

Proof. Let Q′ = Q ⊔ {qsink}. We construct a new DTA B = (Σ, QB, QB,F , gB)

recognizing L(A)b,∗σ , where QB = Q′ × Q′ ⊔ {qnew} and QB,F =

{(qF , qsink), (σg , qF ), qnew}. We reach qnew by reading a single node tree labeled

by σ. Therefore, we define the transitions of qnew to be equal to those of (qsink, σg)

except that qnew is a final state and (qsink, σg) is not necessarily a final state. We

assume that σg is defined without loss of generality because otherwise, L(A)b,∗τ =

L(A)b,0τ ∪ L(A)b,1τ = {σ} ∪ L(A). For τ ∈ Σ0 \ {σ}, we define

τgB =















(σg , τg) if τg = qF ,

(qsink, τg) if τg is defined and τg 6= qF ,

undefined, if τg is undefined.

For τ ∈ Σm and (pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define

τgB ((p1, q1), . . . , (pm, qm)) to be
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(i) (σg, τg(q1, . . . , qm)) if τg(q1, . . . , qm) = qF .

(ii) (qsink, τg(q1, . . . , qm)) if τg(q1, . . . , qm) 6= qF is defined.

(iii) (x, qsink) if τg(q1, . . . , qm) is undefined. Here, x is

• τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) if τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) 6= qF and

pj = qsink for all j, j 6= i.

• σg if τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) = qF and pj = qsink for all j, j 6= i.

(iv) undefined, otherwise.

The second component of a state in QB simply simulates A while the first

component of the state in QB simulates A under the assumption that at least a

leaf labeled by σ has been replaced by a tree in L(A)b,kσ , where k ≥ 0. Note that

qnew is one of the final states of B since a single node tree labeled by σ is in L(B).

Moreover, the DTA B accepts trees if either the first component or the second

component is the final state of A. The first component enters the final state of A

if and only if the input tree is a tree of L(A) where at least a leaf of the tree has

been replaced by a tree in L(A)b,kσ for k ≥ 0. The second component enters the final

state of A if the input tree is in L(A). Since L(A) ⊆ L(A)b,∗σ , B accepts L(A)b,∗σ .

Note that the total number of states in QB is (n + 1)2 + 1. When the second

component reaches the final state qF , we should have σg in the first component.

After we reach (σg, qF ), the second component should be qsink since there is no

transition defined for the final state. Thus, a state pair in QB cannot be in a form

of (pi, qi) ∈ Q×Q except (σg, qF ). This implies that there are n2 − 1 unreachable

states. We also note that a state (qsink, qF ) is unreachable since whenever we have

a state qF in the second component, the first component should be σg by the

construction. Moreover, we merge two final states (qF , qsink) and (σg, qF ) into a

single final state while maintaining the transitions of (σg , qF ). Furthermore, we

remove one more state (qsink, qsink), which is a sink state. Therefore, we know that

(n+ 1)2 + 1− (n2 − 1)− 1− 1− 1 = 2n

states are sufficient for L(A)b,∗σ .

Next we present a lower bound example whose state complexity reaches the

upper bound in Lemma 7. Let Σ = Σ0 ⊔Σ1 ⊔Σ2, where Σ0 = {d},Σ1 = {a, b} and

Σ2 = {c}. We define a subtree-free DTA A = (Σ, Q, qF , g), where Q = {0, 1, . . . , n−

1}, qF = n− 1 and the transition function g is defined as follows:

• dg = 0,

• ag(i) = i+ 1, 0 ≤ i ≤ n− 3, ag(n− 2) = 0,

• bg(n− 2) = n− 1,

• cg(n− 2, n− 2) = n− 1.

All transitions of g not defined above are undefined. Using A and the upper

bound construction of the proof of Lemma 7, we construct a new DTA B =

(Σ, QB, QB,F , gB) accepting L(A)b,∗d , namely L(A)b,∗d = L(B). Now we prove that
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the DTA B is the minimal DTA by showing all states of B are reachable and

inequivalent.

Lemma 8. All states of B are reachable and pairwise inequivalent.

Proof. First we show that all states of B are reachable. By the construction, we

can reach qnew after reading a leaf labeled d. Since the transitions of qnew are defined

to be equal to those of (qsink, dg) = (n, 0), the state (n, k) is reached by reading

a sequence of unary symbols ak for 1 ≤ k ≤ n − 2. We can also reach (n, 0) by

reading a unary symbol a from (n, n − 2). The state (0, n − 1) is reachable from

(n, n − 2) by reading a unary symbol b. From (0, n − 1), we can reach (k, n) by

reading a sequence of unary symbols ak for 1 ≤ k ≤ n− 2. We also reach (0, n) by

reading one more unary symbol a from (n − 2, n). Lastly, the state (n − 1, n) can

be reached by reading a unary symbol b from (n− 2, n).

Next we show that all states of B are pairwise inequivalent by showing that any

two distinct states (i1, j1) and (i2, j2) in QB are not equivalent with respect to the

Myhill-Nerode equivalence relation [22, 30]. There are three cases to consider:

(i) Case i1 = i2 = n and j1 6= j2 for 0 ≤ j1, j2 ≤ n− 2: After reading a sequence

of unary symbols an−2−j1 and a unary symbol b, we reach (0, n − 1) from

(n, j1). Then, we reach the final state (n−1, n) by reading a sequence of unary

symbols an−2 and one unary symbol b. On the other hand, (n, j2) does not

reach the final state by reading the same sequence of symbols.

(ii) Case j1 = j2 = n and i1 6= i2 for 0 ≤ i1, i2 ≤ n− 2: We should read a sequence

of unary symbols an−2−i1 and one unary symbol b to arrive at the final state

from (i1, n). However, (i2, n) cannot reach the final state by reading the same

sequence. Now we show that the states of (ii) are inequivalent to the states of

(i). We denote q′ = (n− 2, n) and choose a tree t = c(an−k−2(x), q′) ∈ FΣ′ [x].

Consider the computation of B on t(x ← (k, n)) for 0 ≤ k ≤ n− 2. After the

computation, we arrive at the state (n, n), which is a sink state. On the other

hand, the computation of B on t(x← (n, k)) for 0 ≤ k ≤ n− 2 arrives at the

state (n− 1, n), which is a final state. Thus, the states of (i) and the states of

(ii) are inequivalent.

(iii) Case (n−1, n) and qnew: Note that these states are final, thus, they are inequiv-

alent to the other states considered in (i) and (ii). We also notice that the state

(n−1, n) has the transitions of (0, n−1) based on the construction. By the con-

struction ofB, the out-transitions from qnew are the same as the out-transitions

of (n, 0). We denote q′ = (n − 2, n) and choose t = b2(a
n−2(x), q′) ∈ FΣ′ [x].

Then, the computation of B on t(x← (n, 0)) reaches the final state (n− 1, n)

while t(x← (n− 1, n)) goes to the sink state (n, n). Thus, (n− 1, n) and qnew
are inequivalent.

Thus, all states are reachable and inequivalent.

Lemmas 7 and 8 show that 2n is the tight bound for the bottom-up Kleene-star

operation.
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Theorem 9. Let A be a subtree-free minimal DTA with n ≥ 2 states. For σ ∈

Σ0, 2n states are sufficient and necessary in the worst-case for the minimal DTA

of L(A)b,∗σ .

5.2. Top-down star

Now we investigate the state complexity for top-down star of subtree-free regu-

lar tree languages. Note that the state complexity of regular tree languages for

top-down star coincides with the state complexity of regular string languages for

star [27]. We show that the state complexity of subtree-free regular tree languages

for top-down star also coincides with that of prefix-free regular string languages for

star.

Theorem 10. Let A = (Σ, Q, qF , g) be a subtree-free minimal DTA with n ≥ 2

states. For σ ∈ Σ0, n states are sufficient and necessary in the worst-case for the

minimal DTA of L(A)t,∗σ .

Proof. The upper bound construction for the top-down star operation is straight-

forward since it is similar to the construction of the Kleene-star operation for prefix-

free languages [15]. We define B = (Σ, QB, QB,F , gB), where QB = Q⊔ {qnew} and

QB,F = {qnew, qF }. As in the proof of Lemma 7, qnew is defined as a state that is

reached by reading a single node tree labeled by σ. Therefore, we define the tran-

sitions of qnew to be equal to those of σg except that qnew is a final state and σg is

not necessarily a final state.

For τ ∈ Σ0 \ {σ}, we define τgB to be equal to σgB if τg = qF . Otherwise, we

set τgB = τg. For τ ∈ Σm and qi ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define

τgB (q1, . . . , qm) to be

(i) σg if τg(q1, . . . , qm) = qF .

(ii) τg(q1, . . . , qm) if τg(q1, . . . , qm) 6= qF is defined.

(iii) undefined, otherwise.

There are now n+1 states in QB and we merge two states qF and qnew into one

state while maintaining determinism since qF does not have any out-transitions.

Note that L(B) = L(A)t,∗σ since B simulates σg, which is the state reachable by

reading a leaf node labeled by σ whenever A arrives at the final state. By the

construction, the sufficient number of states for L(A)t,∗σ is n.

We show that n states are necessary for recognizing L(A)t,∗σ by a simple

lower bound example. For a unary tree, where the leaf is an element of Σ0,

t = z1(z2(. . . zm(d) . . .)), we define word(t) = zmzm−1 . . . z1. Note that word(t) is

the sequence of symbols labeling the nodes of t except the leaf symbol in bottom-up

direction. Let L be the following unary tree language:

L = {t | word(t) = an−1}.
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Note that the DTA A needs at least n states for recognizing L. We construct a

DTA B for recognizing L(A)t,∗σ according to the upper bound construction. Then,

B accepts L′ = {t | word(t) = (an−1)∗} and it is easy to verify that n states are

necessary for accepting L′. Therefore, n is a tight bound for the minimal DTA of

L(A)t,∗σ .

6. Intersection and Union

For regular languages, the state complexities of intersection and union are trivial.

The upper bound construction is based on the Cartesian product of states and

yields n1n2 states. Yu et al. [36] showed that n1n2 is tight. For regular tree lan-

guages, the tight bounds of intersection and union are similar to the string case.

Since we consider incomplete DTAs, it is easy to verify that the state complexities

for intersection and union are n1n2+n1+n2. The state complexities of subtree-free

regular tree languages for intersection and union operations are the same as those

of prefix-free regular string languages [15]. The exact complexities are slightly dif-

ferent since we consider incomplete DTAs. First, we establish the tight bound of

intersection for subtree-free regular tree languages.

Theorem 11. Let A and B be subtree-free minimal DTAs with n1 and n2 states,

respectively, where n1, n2 ≥ 2. Then, n1n2 − n1 − n2 + 2 states are sufficient and

necessary in the worst-case for the minimal DTA of L(A) ∩ L(B).

Proof. Let A = (Σ, QA, qA,F , gA) and B = (Σ, QB, qB,F , gB) be two subtree-

free DTAs. We construct a new DTA C = (Σ, QC , QC,F , gC), where QC = QA ×

QB, QC,F = {q ∈ QC | π1(q) = qA,F and π2(q) = qB,F }, and gC is defined as

follows. For τ ∈ Σ0, we define τgC = τgA × τgB . For τ ∈ Σm and (pi, qi) ∈ QC ,

where m ≥ 1 and 1 ≤ i ≤ m, we define τgC ((p1, q1), . . . , (pm, qm)) to be

(i) (τgA(p1, . . . , pm), τgB (q1, . . . , qm)) if τgA(p1, . . . , pm) and τgB (q1, . . . , qm) are

both defined.

(ii) undefined, otherwise.

Note that C has n1n2 states. We assume that a state in QC contains qA,F or

qB,F , which is the final state of A or B, respectively. Since A and B have no out-

transitions defined for their final states, there are no transitions defined for the

corresponding states in C, either. Note that the number of states containing qA,F

or qB,F is n1 + n2 − 1. Among these states, (qA,F , qB,F ) is the final state while the

others are non-final. We remove n1+n2−2 non-final states since they are all the sink

states. Then, the sufficient number of states for intersection is n1n2 − n1 − n2 + 2.

For the lower bound, we choose Σ = Σ0⊔Σ1, where Σ0 = {d} and Σ1 = {a, b, c}.

Let L1 and L2 be subtree-free unary tree languages as follows:

L1 = {t1 | word(t1) = wc, 0 ≡ |w|a (mod n1 − 1), and w ∈ {a, b}∗},

L2 = {t2 | word(t2) = wc, 0 ≡ |w|a (mod n2 − 1), and w ∈ {a, b}∗}.
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Then the two DTAs A and B need at least n1 and n2 states for recognizing L1

and L2, respectively. Let C be a new DTA recognizing L1 ∩ L2. and assume that

n1 − 1 and n2 − 1 are relatively prime. Then,

L1 ∩ L2 = {t | word(t) = wc, 0 ≡ |w|a (mod (n1 − 1)(n2 − 1)), and w ∈ {a, b}∗}

and thus, requires at least (n1 − 1)(n2 − 1) + 1 = n1n2 − n1 − n2 + 2 states. It is

easy to verify that all states are reachable and inequivalent.

Next, we examine the state complexity of union.

Theorem 12. Let A and B be subtree-free minimal DTAs with n1 and n2 states,

respectively, where n1, n2 ≥ 2. Then, n1n2 + n1 + n2 − 2 states are sufficient and

necessary in the worst-case for the minimal DTA of L(A) ∪ L(B).

Proof. Let A = (Σ, QA, qA,F , gA) and B = (Σ, QB, qB,F , gB) be two subtree-

free DTAs. Let Q′
A = QA ⊔ {qsink} and Q′

B = QB ⊔ {qsink}. We construct a new

DTA C = (Σ, QC , QC,F , gC), where QC = Q′
A × Q′

B, QC,F = {q ∈ QC | π1(q) =

qA,F or π2(q) = qB,F }, and gC is defined as follows. For τ ∈ Σ0, we define τgC =

τgA × τgB . For τ ∈ Σm and (pi, qi) ∈ QC , where m ≥ 1 and 1 ≤ i ≤ m, we define

τgC ((p1, q1), . . . , (pm, qm)) to be

(i) (τgA(p1, . . . , pm), τgB (q1, . . . , qm)) if either τgA(p1, . . . , pm) or τgB (q1, . . . , qm) is

defined.

(ii) undefined, otherwise.

Note that we have (n1 + 1)(n2 + 1) states. First, we remove the sink state

(qsink, qsink) and merge three final states (qsink, qB,F ), (qA,F , qsink) and (qA,F , qB,F )

into one final state since they are all equivalent. Thus, the number of states for C

is n1n2 + n1 + n2 − 2.

For the lower bound, we choose Σ = Σ0 ⊔Σ1, where Σ0 = {d} and Σ1 = {a, b}.

Let L1 and L2 be subtree-free unary tree languages as follows:

L1 = {t1 | word(t1) = w1a and |w1|a = n1 − 2},

L2 = {t2 | word(t2) = w2b and |w2|b = n2 − 2}.

Note that there are the minimal DTAs of size n1 and n2 for L1 and L2,

respectively.

Let C be a new DTA recognizing L1 ∪ L2. Then, C should count both a’s and

b’s simultaneously. Since the number of a’s can be from 0 to n1− 2 and the number

of b’s can be from 0 to n2 − 2, C requires (n1 − 1)(n2 − 1) states. Assume that C

reads (n1 − 1)’th a, then C should be in one of n2 − 1 final states depending on

the number of b’s that we have read. Similarly, C reaches n2− 1 non-final states by

reading more a’s from the final states. Analogously, C reaches n1 − 1 final states

and n1 − 1 non-final states by reading (n2 − 1)’th and n2’th b. Now the number of

necessary states is n1n2+n1+n2− 3. We have one more final state that is reached
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by reading a unary tree t such that word(t) = an1−1bn2−1. It is easy to verify that

all states of C are inequivalent. Therefore, n1n2 + n1 + n2 − 2 states are necessary

for union.

7. Conclusions

People rely on regular tree languages for defining a formal framework for XML

schema languages [21, 23] and recently research revisited regular tree automata

both from the practical side [16, 34] and from the theoretical side [25, 26].

We notice that regular tree languages in practice are often subtree-free, which

is very similar to prefix-freeness in string languages. For instance, a set of XML

Schemas is subtree-free since all XML Schemas should start with the unique root

element xs:schema by the XML Schema specification [8]. Based on this observation,

we have defined a set of trees T to be subtree-free if a tree t ∈ T is not a subtree

of any other trees in T . Then, we have introduced a family of subtree-free regular

tree languages, which is a proper subfamily of regular tree languages and identified

the structural properties of the family. We have investigated the state complexity

of subtree-free regular tree languages and established the precise state complexity.

Table 1. Comparison between the state complexity of basic operations for subtree-free
and general regular tree languages.

operations subtree-free general [27, 28]

L1 ·sσ L2 (n+ 1)(m + 2n − 1)− 1 (n+ 1)(m · 2n + 2n−1)− 1
L1 ·

p
σ L2 (m − 1)(n + 1) + 2n − 1 m · 2n + 2n−1 − 1

L
b,∗
σ 2n (n+ 1) · 2n−1 + 2n−2

L
t,∗
σ n 2n−1 + 2n−2

L1 ∩ L2 mn−m − n+ 2 mn+m+ n

L1 ∪ L2 mn+m + n− 2 mn+m+ n

Table 2. Comparison between the state complexity of basic operations for subtree-free
regular tree languages and prefix-free regular string languages.

operations subtree-free prefix-free (string) [15]

L1 ·sσ L2 (n+ 1)(m + 2n − 1)− 1
m+ n− 2

L1 ·
p
σ L2 (m − 1)(n + 1) + 2n − 1

L
b,∗
σ 2n

n
L
t,∗
σ n

L1 ∩ L2 mn−m − n+ 2 mn− 2(m + n) + 6

L1 ∪ L2 mn+m + n− 2 mn− 2

We have summarized the tight bounds and compared with that of general regular

tree languages in Table. 1. We have also compared the state complexity of subtree-

free regular tree languages with the state complexity of prefix-free regular string

languages in Table. 2.
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