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Abstract. We investigate the state complexity of combined operations
for prefix-free regular languages. Prefix-free minimal deterministic finite-
state automata have a unique structural property that plays an impor-
tant role to obtain the precise state complexity of basic operations. Based
on the same property, we establish the precise state complexity of four
combined operations: star-of-union, star-of-intersection, star-of-reversal
and star-of-catenation.

1 Introduction

Regular languages are widely used in many applications such as text searching,
speech processing or software engineering [1,2,3]. Given a regular language L,
researchers often use the number of states in the minimal DFA for L to represent
the complexity of L. Based on this notation, we, then, define the state complex-
ity of an operation for regular languages to be the number of states that are
necessary and sufficient in the worst-case for the minimal DFA that accepts the
language obtained from the operation [4]. The state complexity of an operation
is calculated based on the the structural properties of given regular languages
and the function of a given operation. Recently, due to large amount of memory
and fast CPUs, many applications using regular languages require huge size of
finite-state automata (FAs). This makes the estimated upper bound of the state
complexity useful in practice since it is directly related to the efficient resource
management in applications. Moreover, it is a challenging quest to verify whether
or not an estimated upper bound can be reached.

Yu [5] gave a comprehensive survey of the state complexity of regular lan-
guages. Salomaa et al. [6] studied classes of languages for which the reversal
operation reaches the exponential upper bound. As special cases of the state
complexity, researchers examined the state complexity of finite languages [7,8],
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the state complexity of unary language operations [9] and the nondetermin-
istic descriptional complexity of regular languages [10]. For regular language
codes, Han et al. [11] studied the state complexity of prefix-free regular lan-
guages. They tackled the problem based on the structural property of prefix-free
DFAs: A prefix-free DFA must be non-exiting assuming all states are useful [11].
Similarly, based on suffix-freeness, Han and Salomaa [12] looked at the state
complexity of suffix-free regular languages. There are several other results with
respect to the state complexity of different operations [13,14,15,16,17,18].

While people mainly looked at the state complexity of single operations
(union, intersection, catenation and so on), Yu and his co-authors [19,20,21]
recently started investigating the state complexity of combined operations (star-
of-union, star-of-intersection and so on). They showed that the state complexity
of a combined operation is usually not equal to the composition of the state
complexities of the participating individual operations. On the other hand, they
also observed that in a few cases, the state complexity of a combined operation
is very close to the composition of the state complexities. This leads us to study
the state complexity of combined operations and examine the cases that give a
similar state complexity to the composition of the state complexities of single
operations.

We choose prefix-free regular languages for the state complexity of combined
operations. Note that state complexity of prefix-free regular languages is very
different from the state complexity of regular languages because prefix-freeness
gives a unique structural property in a prefix-free minimal DFA [11,22]. More-
over, prefix-free languages are used in many coding theory applications (Huffman
coding is an example), and for this reason results on state complexity of combined
operations for prefix-free regular languages may be useful. Furthermore, deter-
mining the state complexity of combined operations on fundamental subfamilies
of the regular languages can provide valuable insights on connections between
restrictions placed on language definitions and descriptional complexity.

In Section 2, we define some basic notions. Then, we present the state com-
plexities of four combined operations in Section 3. We compare the state com-
plexity of basic operations and the state complexity of combined operations for
prefix-free regular languages, and conclude the paper in Section 4.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is
any subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. For strings x, y and z, we say that x is a prefix of y if
y = xz. We define a (regular) language L to be prefix-free if for any two distinct
strings x and y in L, x is not a prefix of y. Given a string x in a set X of strings,
let xR be the reversal of x, in which case XR = {xR | x ∈ X}.

An FA A is specified by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is the
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start state and F ⊆ Q is a set of final states. If F consists of a single state f ,
then we use f instead of {f} for simplicity. Given a DFA A, we assume that A is
complete; namely, each state has |Σ| out-transitions and, therefore, A may have
a sink state. We assume that A has a unique sink state since all sink states are
equivalent and can be merged into a single state. Let |Q| be the number of states
in Q. The size |A| of A is |Q|. For a transition δ(p, a) = q in A, we say that p has
an out-transition and q has an in-transition. Furthermore, p is a source state of
q and q is a target state of p. We say that A is non-returning if the start state
of A does not have any in-transitions and A is non-exiting if all out-transitions
of any final state in A go to the sink state.

A string x over Σ is accepted by A if there is a labeled path from s to a final
state such that this path reads x. We call this path an accepting path. Then,
the language L(A) of A is the set of all strings spelled out by accepting paths
in A. We say that a state of A is useful if it appears in an accepting path in A;
otherwise, it is useless . Unless otherwise mentioned, in the following we assume
that all states are useful.

A regular expression E is prefix-free if L(E) is prefix-free and an FA A is
prefix-free if L(A) is prefix-free. Moreover, if L(A) is prefix-free, then A must be
non-exiting. We recall that an arbitrary minimal DFA recognizing a prefix-free
language has exactly one final state and all of its out-transitions go to the sink
state [11].

For complete background knowledge in automata theory, the reader may refer
to the textbook [23].

3 State Complexity of Combined Operations

We consider four combined operations of prefix-free regular languages: star-
of-union, star-of-reversal, star-of-catenation and star-of-intersection. For each
operation, we compare the state complexity of a combined operation and the
composition of the state complexities of two individual operations. In the fol-
lowing section, let SC(L) denote the state complexity of L.

3.1 Star of Union

First we give an upper bound construction for the state complexity of star-of-
union of two prefix-free languages. Let Ai = (Qi, Σ, δi, q0,i, fi), |Qi| = mi, i =
1, 2 be arbitrary minimal DFAs recognizing prefix-free languages. Here fi ∈ Qi

is the unique final state and we can assume that fi �= qi,0. (If the final state is
the start state, Ai must recognize {λ}.) We denote by di ∈ Qi the sink state of
Ai, Q′

i = Qi \ {fi, di} is the set of states of Ai excluding the final state and the
sink state. Without loss of generality we assume that Q1 ∩ Q2 = ∅.

We construct a DFA

A = (Q, Σ, δ, {q0, q0,1, q0,2}, F ) (1)
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for the language (L(A1) ∪ L(A2))∗. We choose Q to be the collection of subsets
of P ⊆ {q0} ∪ Q′

1 ∪ Q′
2 such that

if q0 ∈ P, then q0,1, q0,2 ∈ P. (2)

The set of final states F consists of all elements of Q that contain q0 and the
transition function δ is defined as follows. Let P = X ∪ P1 ∪ P2, where Pi ⊆ Q′

i,
i = 1, 2, X is {q0} or ∅, and c ∈ Σ. Then we define:

δ(P, c) =
{

δ1(P1, c) ∪ δ2(P2, c), if f1 �∈ δ1(P1, c) and f2 �∈ δ2(P2, c),
δ1(P1, c) ∪ δ2(P2, c) ∪ {q0,1, q0,2, q0}, otherwise.

The transitions defined above clearly preserve the property (2), that is, for any
P ∈ Q, δ(P, c) ∈ Q.

The construction of A can be viewed as constructing an NFA for the star-
of-union of the original languages, and performing a subset construction on the
NFA. In the subset construction, we can merge the final states of the original
DFAs. The construction is illustrated in Fig. 1.

A1

A2

q0,1

q0,2

f1

f2

A1

A2

q0,1

q0,2

d1

d2

Σ

Σ

Σ

Σ d1
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Σ

Σ

Σ

Σ

q0

Fig. 1. Construction of an NFA for the star-of-union. Note that the merged state q0,
which is a final state as well, is the start state.

The DFA A uses the symbol q0 to represent the merging of the two final states
f1 and f2 of the original DFAs. The start state of A is {q0, q0,1, q0,2} which means
that the computation begins by simulating both the computation of A1 and the
computation of A2. Whenever one of the simulated computations enters the final
state, the computation of A adds both q0,1 and q0,2 to the current set of states
and begins new computations simulating A1 and A2. Namely, q0 in the current
set indicates that the previously simulated computation step is accepted either
in A1 or in A2. Note that the presence of q0,1 or q0,2 in the current state of A is
not sufficient to guarantee this property. The choice of the final states guarantees
that A recognizes exactly the language (L(A1) ∪ L(A2))∗.

Assuming, q0,i, fi, and di are all distinct, for i = 1, 2, the set Q of states
defined by (2) contains 2m1+m2−4 subsets of Q′

1 ∪ Q′
2 that do not contain the
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merged final state q0. Additionally, Q contains 2m1+m2−6 subsets of the form
{q0, q0,1, q0,2}∪P where P ⊆ (Q1 \ {q0,1, f1, s1})∪ (Q2 \ {q0,2, f2, s2}). Note that
if q0,i, fi and di, i ∈ {1, 2}, are not distinct, then Ai recognizes one of the trivial
languages {λ} or ∅.

Now we obtain the following upper bound for the state complexity of star-of-
union of prefix-free regular languages from the construction.

Lemma 1. Let Li be a prefix-free regular language with SC(Li) = mi, mi ≥ 3,
i = 1, 2. Then

SC((L1 ∪ L2)∗) ≤ 5 · 2m1+m2−6.

In the following, we give a worst-case construction that reaches the upper bound
of Lemma 1. Let Σ = {a, b, c, d, e} and m, n ≥ 3. We define

A1 = (R, Σ, δ1, r0, {rm−2}), (3)

where R = {r0, . . . , rm−1}, and the transitions of δ1 are defined as:

– δ1(ri, a) = ri+1, i = 0, . . . , m − 4, δ1(rm−3, a) = r0.
– δ1(ri, b) = δ1(ri, d) = ri, i = 0, . . . , m − 3.
– δ1(r0, c) = rm−2, δ1(ri, c) = ri, i = 1, . . . , m − 3.

The state rm−1 is the sink state of A1 and above all undefined transitions go to
rm−1. In particular, note that all transitions of A1 on input symbol e go to the
sink state. The language L(A1) is prefix-free since all out-transitions from the
final state rm−2 go to the sink state.

We define the second DFA as

A2 = (S, Σ, δ2, s0, {sn−2}), (4)

where S = {s0, . . . , sn−1}, and δ2 is defined by setting:

– δ2(si, b) = si+1, i = 0, . . . , n − 4, δ2(sn−3, b) = s0.
– δ2(si, a) = δ2(si, e) = si, i = 0, . . . , n − 3.
– δ2(s0, c) = sn−2, δ2(si, c) = si, i = 1, . . . , n − 3.

Again, sn−1 is the sink state of A2 and all above undefined transitions go to the
sink state. In particular, any state of A2 transitions with input symbol d to the
sink state.

The DFAs A1 and A2 are depicted in Fig. 2.
We show that the DFAs in Fig. 2 reach the upper bound of Lemma 1 when

m, n ≥ 3. Note that any complete DFA recognizing a prefix-free language that
is not {λ} or ∅ has to have at least three states.

Lemma 2. Let m, n ≥ 3 and let A1 and A2 be DFAs as defined in (3) and (4),
respectively.

We claim that SC((L(A1) ∪ L(A2))∗) is 5 · 2m+n−6.

By Lemmas 1 and 2 we get a precise bound for the state complexity of star-of-
union of prefix-free regular languages.
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Fig. 2. The DFAs A1 and A2. The figure does not show the sink states rm−1 and sn−1

and their in-transitions.

Theorem 1. The worst-case state complexity of the star-of-union of an m1-
state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
5 · 2m1+m2−6, where |Σ| ≥ 5.

Theorem 1 implies that the upper bound can be reached for all values m1, m2 ≥
3. If, for example, m2 = 2, the state complexity is m1. The result follows from
the state complexity of star for prefix-free languages [11] because with m2 =
2, the worst-case example corresponds to the case where L(A2) = {λ} and
(L(A1) ∪ L(A2))∗ = L(A1)∗.

Note that the state complexity of the union of two prefix-free regular languages
is m1m2 − 2 [11] and the state complexity of the star of an m-state regular
language is 3 ·2m−2 [4]. Thus, the composition of two complexities is 3 ·2m1m2−4.
Therefore, the state complexity of the star-of-union is much lower (one has a
linear exponent and the other has a quadratic exponent) than the composition
of two complexities.

The lower bound construction of Lemma 2 uses an alphabet of size five. It
remains an open question whether the worst-case bound can be reached by prefix-
free regular languages over alphabets of size 2, 3 or 4.

3.2 Star of Reversal

Let A be a minimal DFA for a regular language and |A| = m. Since the state
complexity of L(A) is m, the reversal L(A)R of L(A) can be accepted by an
NFA AR with m states, where AR can have multiple start states. We, then, use
the subset construction on AR and the resulting DFA can have at most 2m states.
Thus, the upper bound for the reversal of regular languages is 2m. Leiss [24]
demonstrated that some classes of languages can reach the upper bound. Later,
Salomaa et al. [6] showed the conditions for such regular languages and obtained
the following result.

Proposition 1 (Salomaa et al. [6]). Let Σ be an alphabet with at least 2
characters. There exists a minimal DFA A that has a maximal blow-up, 2m,
in the transition to its reversal L(A)R, where the transition function of A is
functionally complete, L(A) �= ∅, Σ∗ and m = |A|.
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Given a minimal prefix-free DFA A = (Q, Σ, δ, s, f), we can obtain an FA for
L((A)R)∗ as follows: We first flip all transition directions in A such that f is the
start state and s is the final state. Then, the resulting FA AR = (Q, Σ, δR, f, s)
is the reversal of A; L(A)R = L(AR). The sink state d of A is now unreachable
from f in AR and, thus, we remove it. Next, we add all out-transitions of f to s
and make f to be final in AR. Note that we keep original out-transition of s in
AR as well. Therefore, we have an FA A′ = (Q \ {d}, Σ, δ′, f, {s, f}), where

δ′(q, a) =
{

δR(q, a) if q �= s,
δR(q, a) ∪ δR(f, a) otherwise.

It is clear from the construction that L(A′) = L((A)R)∗. Note that A′ is not
necessarily deterministic since we have flipped transition directions. Fig. 3 illus-
trates this construction.

s f

d

Σ

Σ d

Σ

Σ

s f

Fig. 3. Construction of an NFA for the star-of-reversal

Lemma 3. Let L be a prefix-free regular language with SC(L) = m. Then,

SC((LR)∗) ≤ 2m−2 + 1.

Next, we demonstrate that 2m−2 + 1 states are necessary for the star-of-reversal
of an m-state prefix-free regular language L. Given a (regular) language L over
Σ, L# is prefix-free if the character # is not in Σ. Our approach is an extension
of the method used by Han et al. [11] for computing the reversal of prefix-free
minimal DFAs.

Let A = (Q, Σ, δ, s, F ) be a minimal DFA in Proposition 1 over Σ, which
is not prefix-free in general. We construct a prefix-free minimal DFA A# =
(Q′, Σ ∪ {#}, δ′, s, f ′) that requires m states as follows:

Q′ = Q ∪ {d, f ′},
for q ∈ Q and a ∈ Σ ∪ {#},

δ′(q, a) =

⎧⎨
⎩

δ(q, a) if q ∈ Q and a �= #,
f ′ if q ∈ F and a = #,
d otherwise.

Namely, we introduce a new final state f ′ and connect all states in F of A
to f ′ with label #. We also introduce a sink state d. Since A is functionally
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complete, that is, the transition function of A consists of all mappings from Q
to Q, A cannot have a sink state, and consequently, d is not equivalent with
any of the states of A. Note that by the construction, A# is deterministic and
minimal. Furthermore, L(A#) is prefix-free. Thus, if A has m − 2 states, then
A# has m states.

Proposition 2 (Han et al. [11]). Given a prefix-free minimal DFA A# as
constructed above, 2m−2+1 states are necessary for the minimal DFA of L(A#)R,
where m = |A#| and # /∈ Σ.

s′ s′s′′
#

minimal DFA for L(AR) minimal DFA for L(A#)R

Fig. 4. Construction of the minimal DFA for L(A#)R from the minimal DFA for L(AR).
Note that the left DFA is defined over Σ and the right DFA is defined over Σ ∪ {#}.

The brief sketch of Proposition 2 is that we flip the transition directions of A and
apply the subset construction on AR. Let s′ be the start state of the resulting
DFA. Then, we introduce a new start state s′′ and connect s′′ to s′ with label #.
Then, the new FA is the minimal DFA for L(A#)R and the number of states is
2m−2 + 1 if |A| = m − 2. See Fig. 4.

We are ready to compute the star-of-reversal for A#. From the minimal
DFA M = (Q, Σ, δ, s′′, F ) for L(A#)R as depicted in Fig. 4, we add #-transitions
from all final states in F to s′, which is the only target state of s′′ except for the
sink state d. We also make s′′ to be a final state. Let M# be the resulting FA.
It is easy to verify that L(M#) = (L(A#)R)∗. We only need to show that M#

is a minimal DFA. Since δ(f, #) = d for f ∈ F in M , M# is deterministic.
We show that all states of M# are pairwise inequivalent. First consider two

nonfinal states of M#, r1 and r2. Now since r1 and r2 are inequivalent as states
of M , there exists w ∈ Σ∗ such that δ(r1, w) ∈ F and δ(r2, w) /∈ F . Note that
since r1 and r2 are distinct from s′′, we can assume that w does not contain
occurrences of #, and the same string w distinguishes r1 and r2 as states of M#.

Next, consider two final states of M#. If they are both also final states in M ,
then we can use the same argument as above. It remains to show that s′′ is not
equivalent with any other final state r of M#. We note that since the original
DFA A is functionally complete, r must have an out-transition on a symbol of Σ
to some state of Q. On the other hand, the only out-transition from s′′ (either in
M or M#) whose target state is not the sink state d is on the input symbol #.
This means that s′′ and r are inequivalent. Therefore, M# is minimal.
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Note that, from M , we have constructed the minimal DFA for the star-of-
reversal of A# without adding new states. This implies that we get a precise
bound for the state complexity of star-or-reversal of prefix-free regular languages.

Theorem 2. The worst-case state complexity of the star-of-reversal of an m-
state prefix-free regular language is precisely 2m−2 + 1, where |Σ| ≥ 3.

Note that the state complexity of the reversal of an m-state prefix-free regular
language is 2m−2+1 [11] and the state complexity of the star of an m-state suffix-
free regular language is 2m−2 +1 [12]. Thus, the composition of two complexities
is 22m−2+1−2 + 1. Therefore, the state complexity of the star-of-reversal is much
lower than the composition of two complexities.

3.3 Star of Catenation and Intersection

We examine two operations, star-of-catenation and star-of intersection, based on
the following observations:

1. Prefix-freeness is preserved by catenation and intersection.
2. Given an m-state prefix-free DFA A, SC(L(A)∗) = m [11].

Theorem 3. The worst-case state complexity of the star-of-catenation of an
m1-state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
m1 + m2 − 2.

Theorem 3 shows that the state complexity of the star-of-catenation is equal
to the state complexity calculated by the composition of state complexities of
star and catenation. This is due to the fact that prefix-freeness is closed under
catenation. Since prefix-freeness is also closed under intersection, we expect to
see a similar case for the state complexity of the star-of-intersection.

Theorem 4. The worst-case state complexity of the star-of-intersection of an
m1-state and an m2-state, m1, m2 ≥ 3, prefix-free regular languages is precisely
m1m2 − 2(m1 + m2) + 6, where |Σ| ≥ 4.

Proof. Han et al. [11] gave a construction for the intersection of two prefix-free
DFAs based on the Cartesian product of states. The main idea of the construction
is to remove unreachable states and merge equivalent states that are identified
based on the structural properties of prefix-free DFAs. Based on the construction,
they showed that m1m2−2(m1+m2)+6 states are sufficient for the intersection of
an m1-state prefix-free minimal DFA and an m2-state prefix-free minimal DFA.
Since prefix-freeness is closed under intersection, the resulting minimal DFA is
also prefix-free. Therefore, m1m2 − 2(m1 + m2) + 6 states are sufficient for the
star-of-intersection since the state complexity of the Kleene star is m for an
m-state prefix-free minimal DFA [11].

We only need to prove the necessary part. Assume that Σ = {a, b, c, d}. Given
a string w over Σ, let |w|a denote the number of a’s in w. Let A1 be the minimal
DFA for

L(A1) = {wc | |w|a ≡ 0 (mod m1 − 2), for w ∈ {a, b}∗}
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and A2 be the minimal DFA for

L(A2) = {wc | |w|b ≡ 0 (mod m2 − 2), for w ∈ {a, b}∗}.
It is easy to verify that L(A1) and L(A2) are prefix-free and |A1| = m and

|A2| = n. Let L = (L(A1)∩L(A2))∗. We claim that the minimal DFA for L needs
mn− 2(m + n) + 6 states. To prove the claim, it is sufficient to show that there
exists a set R of mn−2(m+n)+6 strings over Σ that are pairwise inequivalent
modulo the right invariant congruence of L, ≡L.

Let R = R1 ∪ R2, where

R1 = {λ, d},
R2 = {aibj | 1 ≤ i ≤ m1 − 2 and 1 ≤ j ≤ m2 − 2}.

Any string aibj from R2 cannot be equivalent with λ since aibj ·λ /∈ L but λ·λ ∈
L. Similarly, aibj cannot be equivalent with d since aibj · am1−2−ibm2−2−jc ∈ L
but d · am1−2−ibm2−2−jc /∈ L. Note that λ and d are not equivalent as well.

Next, consider two distinct strings aibj and akbl from R2. Since aibj �= akbl,
aibj · am1−2−ibm2−2−jc ∈ L but akbl · am1−2−ibm2−2−jc /∈ L. Therefore, any two
distinct strings from R2 are pairwise inequivalent.

Therefore, all mn− 2(m + n) + 6 strings in R are pairwise inequivalent. This
concludes the proof. 
�

4 Conclusions

Recently, researchers started looking at state complexity of combined operations
[19,25,26]. Usually, we can obtain a much lower state complexity for combined op-
erations compared with the composition of state complexities of individual oper-
ations. However, in a few cases, the state complexity of combined operations and
the composition of state complexities are similar. We have examined prefix-free
regular languages and computed the state complexity of combined operations.

operation complexity operation complexity
L1 ∪ L2 m1m2 − 2 (L1 ∪ L2)∗ 5 · 2m1+m2−6

L1 ∩ L2 m1m2 − 2(m1 + m2) + 6 (L1 ∩ L2)∗ m1m2 − 2(m1 + m2) + 6
L1 · L2 m1 + m2 − 2 (L1 · L2)∗ m1 + m2 − 2

LR
1 2m1−2 + 1 (LR

1 )∗ 2m1−2 + 1
L∗

1 m1 (L∗
1)

∗ = L∗
1 m1

The table summaries the state complexity of basic operations and the state
complexity for combined operations of prefix-free regular languages. Note that
prefix-freeness is closed under both intersection and catenation and both oper-
ations have the same state complexity. On the other hand, for union, the state
complexity of the star-of-union is much lower. An interesting case is the reversal
case. We know that prefix-freeness is not closed under reversal since the reversal
of a prefix-free language is suffix-free. However, the complexities of single and
combined operations are the same. We think this is because suffix-free minimal
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DFAs preserve a certain structural property. Therefore, natural future work is
to examine the state complexity of combined operations for suffix-free regular
languages.
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