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Abstract. We study the edit-distance of regular tree languages. The
edit-distance is a metric for measuring the similarity or dissimilarity
between two objects, and a regular tree language is a set of trees ac-
cepted by a finite-state tree automaton or described by a regular tree
grammar. Given two regular tree languages L and R, we define the edit-
distance d(L,R) between L and R to be the minimum edit-distance be-
tween a tree t1 ∈ L and t2 ∈ R, respectively. Based on tree automata for
L and R, we present a polynomial algorithm that computes d(L,R). We
also suggest how to use the edit-distance between two tree languages for
identifying a special common string between two context-free grammars.

Keywords: tree edit-distance, regular tree languages, tree automata,
dynamic programming.

1 Introduction

It is an important problem to measure the similarity or dissimilarity between
data in many applications [14,22,24]. For example, there are several similarity
measures between two strings [7,11,21] and one of the most well-known measures
is is the Levenshtein distance [11], which is often called the edit-distance in the
literature. The edit-distance problem is, then, to compute the shortest distance
between inputs. Researchers extended the edit-distance problem between strings
into the edit-distance problem between a string and a language, or between two
languages [3,8,9,12,13,19,20]. Another extension of the string edit-distance prob-
lem is the tree edit-distance problem [5,10,16,17,23]. The tree edit-distance prob-
lem is to find the minimum number of edit operations required to transform one
tree into the other. The tree edit-distance plays an important role for calculating
the similarity between structural data such as XML documents [18].
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Consider a tree t of size m (namely, there are m nodes in t) and let mh and
ml be the height and the number of leaves of t. Tai [17] considered the problem
of computing the tree edit-distance as a generalization of the string edit-distance
problem and designed an O(m2

l n
2
lmn) algorithm, where m and n are the sizes

of input trees. Later, Shasha and Zhang [23] improved Tai’s algorithm and pre-
sented an O(mn ·min{mh,ml} ·min{nh, nl}) algorithm, which runs in O(m2n2)
time in the worst-case. Klein [10] further improved this algorithm and obtained
an O(m2n logn) algorithm, where n ≥ m. Recently, Demaine et al. [5] suggested
an O(m2n(1 + log n

m )) time algorithm, for n ≥ m, using an optimal decomposi-
tion strategy. Note that all these algorithms allows both insertion or deletion of
internal nodes in a tree.

Selkow [16] considered the tree edit-distance model that requires insertion
and deletion to be allowed only at leaf nodes and called this problem the top-
down tree edit-distance problem. Then, he designed an O(mn) algorithm for the
problem. Researchers successfully applied the top-down tree edit-distance to sev-
eral applications [2,14,15]. For instance, Nierman and Jagadish [14] considered
several tree edit-distance definitions for clustering XML documents and demon-
strated that top-down tree edit-distance guarantees less mis-clusterings than the
general tree edit-distance and, thus, is a better clustering scheme.

We examine the top-down tree edit-distance of two regular tree languages
accepted by tree automata. There are many results on the problem of computing
the distance between languages [1,3,8,9,12]. A regular tree language is a set of
trees, and is specified by either a regular tree grammar or a finite-state tree
automaton. We propose an O(m2n2) algorithm for computing the edit-distance
between two regular tree languages of k-bounded trees and an O(m2n2 logmn)
algorithm for the edit-distance between two regular tree languages of unbounded
trees, where m and n are sizes of two input tree automata.

In Section 2, we give basic definitions and notations. Then, we introduce the
tree edit-distance problem in Section 3. We propose an algorithm for the edit-
distance between two regular tree languages of k-bounded trees in Section 4. We
also consider the unranked case in Section 5. Then, we show that our result can
be applied to the problem of measuring the similarity between two context-free
string languages in Section 6 and conclude the paper in Section 7.

2 Preliminaries

A ranked alphabet Σ is a pair of a finite set of characters and a function r : σ →
N∪{0}. We denote the set of elements of rank m by Σm ⊆ Σ, where m ≥ 0. The
set FΣ consists of Σ-labeled trees, where a node labeled by σ ∈ Σm form ≥ 0 has
exactlym children. We denote the set of trees overΣ by FΣ , which is the smallest
set S satisfying the following condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S,
then σ(t1, . . . , tm) ∈ S. In an unranked tree each node has a finite number of
children but the label of a node does not determine the number of children and
there is no apriori upper bound on the number of children. Unranked trees can
be defined as above by replacing the condition “σ ∈ Σm” by “σ ∈ Σ”.
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A finite-state automaton (FA) A is specified by a tuple A = (Σ,Q, F, δ), where
Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a set of final states, and δ
is a transition function. Given an FA A = (Q,Σ, F, δ), we define the size |A| of
A to be |Q|+ |dom(δ)|. Note that an FA accepts a regular language.

A nondeterministic ranked tree automaton (NTA) A is specified by a tu-
ple (Q,Σ, F, δ), where Q is a finite set of states, Σ is a ranked alphabet, F ⊆ Q
is a set of final states, and δ associates to each σ ∈ Σm a mapping σδ : Qm →
2Q,m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define inductively the set
tδ ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)δ, for 1 ≤ i ≤ m, such
that q ∈ σδ(q1, . . . , qm). Intuitively, tδ consists of the states of Q that A may
reach by reading the tree t. Thus, the tree language accepted by A is defined
as follows: L(A) = {t ∈ FΣ | tδ ∩ Qf 	= ∅}. We define the size |A| of a ranked
TA A to be |Q|+∑

σδ(q1,...,qm)→q(r(σ)+1). The automaton A is a deterministic

ranked tree automaton (DTA) if, for each σ ∈ Σm, where m ≥ 0, σδ is a partial
function Qm → Q. The nondeterministic (bottom-up or top-down) and deter-
ministic bottom-up tree automata accept the family of regular tree languages of
ranked trees.

A nondeterministic unranked tree automaton is specified by a tuple A =
(Σ,Q, F, δ), where Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a
set of final states, and δ is a transition relation. For each q ∈ Q and σ ∈ Σ, we
define δ(q, σ) to be the horizontal language associated with q and σ. We denote
an FA for the horizontal language δ(q, a) of A by HA

q,σ. Then, according to the
transition relation δ, each σ ∈ Σ defines a partial function σδ : Q∗ → Q, where,
for w ∈ Q∗, q ∈ Q, q ∈ σδ(w) if w ∈ HA

q,σ. The tree language accepted by A

is defined as follows: L(A) = {t ∈ TΣ | t ∗→ qf ∈ F}. We define the size |A| of
an unranked TA A to be |Q| +∑

q∈Q,σ∈Σ(|HA
q,σ | + 1). Naturally a ranked tree

automaton is a special case of an unranked tree automaton, where for σ ∈ Σm

and q ∈ Q we have always HA
q,σ ⊆ Qm.

For a tree t, we assume that all nodes are ordered in postorder and, thus, t
is an ordered tree. Let t[i] be the ith node of t and des(t[i]) be the set of all
descendants of t[i] including t[i] itself. Thus, t[l(i) . . . i] is the subtree rooted at
t[i], that is the subtree consisting of node i and all its descendants. Similarly, we
define anc(t[i]) to be the set of all ancestors of t[i] including t[i]. The size |t| of
t is the number of nodes in t. We denote the character labeling a node t[i] by
σ(i). Let θ be the empty tree. We say that yield(t) is a sequence of leaves in
t. A forest is a sequence of trees and ordered when it has a left-to-right order
among the trees. We only consider the ordered trees and the ordered forests in
this paper. We refer the reader to the literature [4,6] for more details on tree
automata.

3 Tree Edit-Distance

Given an alphabet Σ, let Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} \ {(λ, λ)} be a set of
edit operations. There are three edit operations: deletions (a → λ), insertions
(λ → a) and substitutions (a → b) for a 	= b. We associate a non-negative edit
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cost to each edit operation ωi ∈ Ω as a function C : Ω → R+. We assume that C
is a distance metric satisfying the following conditions:

(i) C(a → b) ≥ 0, C(a → a) = 0,
(ii) C(a → b) = C(b → a) and
(iii) C(a → c) ≤ C(a → b) + C(b → c), where a, b, c ∈ Σ ∪ {λ}.
An edit script S ∈ Ω∗ between two trees t1 and t2 is a sequence of edit

operations transforming t1 into t2. The cost C(S) of S = s1s2 · · · sn is C(S) =∑n
i=1 C(si). An optimal edit script between t1 and t2 is an edit script of minimum

cost and the minimum cost is the tree edit-distance between t1 and t2.

Definition 1. The tree edit-distance d(t1, t2) of two trees t1 and t2 is

d(t1, t2) = min{C(S) | S is an edit script transforming t1 into t2}.
That is, if S is an optimal edit script that transforms t1 into t2, then C(S) =
d(t1, t2). We, in particular, consider the top-down tree edit-distance, which allows
deletions and insertions of nodes only at leaves; namely, a node can be inserted or
deleted only at leaf level. Thus, when an edit script S consists of edit operations
where insertions or deletions occur only at leaf level, we say that S is a top-down
edit script. We define the top-down tree edit-distance as follows:

Definition 2. The top-down tree edit-distance d(t1, t2) of two trees t1 and t2 is

d(t1, t2) = min{C(S) | S is a top-down edit script transforming t1 into t2}.

i
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Fig. 1. A (top-down) mapping example between two trees t1 and t2

The example mapping in Fig. 1 depicts an edit script S that transforms t1
into t2 by deleting a node d, inserting two nodes j and e, and substituting a
node h with k. Thus, the corresponding edit script S is

S = (a → a)(λ → j)(b → b)(d → λ)(c → c)(λ → e)(f → f)(h → k)(i → i).

Let T1 and T2 be the sets of nodes in t1 and t2, respectively. We define a
triple (M, t1, t2) to be a mapping from t1 to t2, where M ⊆ T1 × T2 is a set
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of pair of nodes (i, j) for 1 ≤ i ≤ |t1| and 1 ≤ j ≤ |t2|. We use M instead of
(M, t1, t2) for simplicity when there is no confusion. We assume that trees are
ordered in postorder. For any pair of (i1, j1) and (i2, j2) in M , the mapping M
has the following restrictions:

(i) i1 = i2 if and only if j1 = j2 (one-to-one)
(ii) i1 < i2 if and only if j1 < j2 (sibling order preserved)
(iii) t1[i1] ∈ anc(t1[i2]) if and only if t2[j1] ∈ anc(t2[j2]) (ancestor order pre-

served)

We say that a node t1[i] is touched by a line if there exists a pair (i, j) ∈ M .
Let I and J be the sets of nodes in t1 and t2, respectively, that are not touched
by any line in M . Then, we define the cost C(M) of M to be

C(M) =
∑

(i,j)∈M

C(σ(i) → σ(j)) +
∑

i∈I

C(σ(i) → λ) +
∑

j∈J

C(λ → σ(j)).

Next we extend the concept of the edit-distance as a distance metric between
a tree and a tree language.

Definition 3. We define the edit-distance d(t, L) between a tree t and a tree
language L over Σ to be

d(t, L) = inf{d(t, t′) | t′ ∈ L}.
Then, we define the edit-distance between two tree languages as follows:

Definition 4. We define the edit-distance d(L,R) between two tree languages L
and R over Σ to be

d(L,R) = inf{d(t, t′) | t ∈ L and t′ ∈ R}.
In other words, the edit-distance between L and R is the minimum edit-

distance between the most similar pair of trees from two tree languages. Note that
these distance measures are symmetric. Thus, d(t, t′) = d(t′, t), d(t, L) = d(L, t),
and d(L,R) = d(R,L).

4 Edit-Distance of Regular Tree Languages

Before we tackle the main problem, we introduce k-bounded tree automata, which
have more expressive power than ranked TAs. Note that if we insert or delete
a node in a ranked tree, then it does not preserve its rank anymore. Therefore,
instead of considering ranked TAs, we use TAs that allow only a finite number
of children.

Definition 5. A k-bounded tree automaton is specified by a tuple

A = (Σ,Q, F, δ),

where Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a set of final states,
and δ associates to each σ ∈ Σ a mapping σg : Q≤k → 2Q.
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We define the size |A| of a k-bounded TA A to be |Q|+∑
σδ(q1,...,ql)→q(l+1).

A k-bounded TA is, thus, an unranked TA where there exists a constant k such
that any node can have at most k children. Note that a ranked TA is a restricted
variant of a k-bounded TA. If Σ is a ranked alphabet and k = max{r(σ) | σ ∈ Σ},
then any ranked TA over Σ is k-bounded.

We introduce a polynomial algorithm for computing the tree edit-distance be-
tween two regular tree languages L and R described by k-bounded TAs. By Def-
inition 4, the edit-distance between L and R is the edit-distance between two
closest pair of trees t ∈ L and t′ ∈ R.

Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded TAs accepting
regular tree languages L and R, respectively. From A, let Aq be a new TA that
has a unique final state q ∈ Q. For simplicity, we denote d(L(Aq), L(Bq′)) by
d(q, q′). Then, we have the following statement.

Proposition 6. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded
TAs accepting two tree languages L and R. Then,

d(L,R) = min{d(q, q′) | q ∈ F, q′ ∈ F ′}.
Proposition 6 states that we can compute the edit-distance between two regular
tree languages by computing the minimum edit-distance between a pair (q, q′)
of states q, q′, where q is a final state of A and q′ is a final state of B. We show
that it is possible to compute such distances in polynomial time by recursively
computing the distance between all pairs of states from A and B. Before we give
the main algorithm, we first define the edit-distance between two sequences of
states. We denote the minimum edit-distance between two forests from two se-
quences of states q1q2 . . . qi and q′1q

′
2 . . . q

′
j by d(q1q2 . . . qi, q

′
1q

′
2 . . . q

′
j). From now,

we denote the sequence q1q2 . . . qi of states by S1,i and the sequence q′1q
′
2 . . . q

′
j

by S
′
1,j . In other words, Sm,n ∈ Q≤k and S

′
m,n ∈ (Q′)≤k for m ≤ n.

Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′), we define
the following sets for the edit-distance d(S1,i, S

′
1,j) between two sequences of

states.

(i) I(S1,i, S
′
1,j) = {d(S1,i, S′1,j−1) + d(λ,T′) + C(λ, σ′) | σ′

δ′(T
′) = q′j},

(ii) D(S1,i, S
′
1,j) = {d(S1,i−1, S

′
1,j) + d(T, λ) + C(σ, λ) | σδ(T) = qi}, and

(iii) S(S1,i, S
′
1,j) = {d(S1,i−1, S

′
1,j−1)+ d(T,T′)+ C(σ, σ′) | σδ(T) = qi, σ

′
δ′(T

′) =
q′j},

where T ∈ Q∗ and T
′ ∈ (Q′)∗. Let I, D, and S denote insertion, deletion

and substitution, respectively. Based on the three sets, we present a recursive
equation for computing the edit-distance between two forests accepted by two
sequences of states from A and B as follows:

Lemma 7. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the edit-distance d(S1,i, S

′
1,j) is defined as

min[I(S1,i, S
′
1,j) ∪D(S1,i, S

′
1,j) ∪ S(S1,i, S

′
1,j)],

where S1,i ∈ Q≤k and S
′
1,j ∈ (Q′)≤k.
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We observe that the computation of d(S1,i, S
′
1,j) may have a self-dependency

problem in the computation. For example, consider the set S(S1,i, S
′
1,j), which

is the 3rd case in the proof of Lemma 7.

S(S1,i, S
′
1,j) = {d(S1,i−1, S

′
1,j−1) + d(T,T′) + C(σ, σ′) | σδ(T) = qi, σ

′
δ′(T

′) = q′j}.
Then, the computation of S(S1,i, S

′
1,j) requires the value of d(S1,i, S

′
1,j) when

T = S1,i and T
′ = S

′
1,j . This implies that we need the value of d(S1,i, S

′
1,j)

for computing the value of d(S1,i, S
′
1,j). We solve this dependency problem by

using induction on the height of the optimal mapping. Assume that we have
two trees t1, t2 and an optimal mapping M ⊆ t1 × t2. We construct a new
mappingM ′ fromM by removing all insertions and deletions. Then, the resulting
mapping M ′ consists of the pairs (i, j) ∈ t1 × t2 such that i 	= λ and j 	= λ. We
call M ′ the trimmed mapping. Now we define the height n edit-distance to be the
edit-distance between two trees, where the height of the corresponding optimal
trimmed mapping for the edit-distance is at most n. Let dn(q, q

′) be the height
n edit-distance between two states q and q′. Note that the similar notation can
be used for the height n edit-distance between two sequences of states such as
dn(S1,i, S

′
1,j).

Then we define the following sets for recurrence of the height n edit-distance
between two sequences of states.

(i) In(S1,i, S
′
1,j) = {dn(S1,i, S′1,j−1) + d0(λ,T

′) + C(λ, σ′) | σ′
δ′(T

′) = q′j},
(ii) Dn(S1,i, S

′
1,j) = {dn(S1,i−1, S

′
1,j) + d0(T, λ) + C(σ, λ) | σδ(T) = qi}, and

(iii) Sn(S1,i, S
′
1,j) = {dn(S1,i−1, S

′
1,j−1) + dn−1(T,T

′) + C(σ, σ′) | σδ(T) = qi,
σ′
δ′ (T

′) = q′j}.
Then, dn(q, q

′) should be the minimum of the following sets:

(i) In(q, q
′) = {d0(q, λ) + d0(λ,T

′) + C(λ, σ′) | σ′
δ′(T

′) = q′},
(ii) Dn(q, q

′) = {d0(λ, q′) + d0(T, λ) + C(σ, λ) | σδ(T) = q}, and
(iii) Sn(q, q

′) = {dn−1(T,T
′) + C(σ, σ′) | σδ(T) = q, σ′

δ′(T
′) = q′}.

Note that the following equations hold:

– dn(q, q
′) = ∞ if n < 0,

– d0(λ, λ) = 0,
– d0(q, λ) = min{|t| | t ∈ L(Aq)}, and
– d0(q, q

′) = min{|t| | t ∈ L(Aq)} +min{|t′| | t′ ∈ L(Bq′)}.
Now we establish the following lemma.

Lemma 8. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the height n edit-distance dn(q, q

′) is defined as

min[dn−1(q, q
′) ∪ In(q, q

′) ∪Dn(q, q
′) ∪ Sn(q, q

′)],

where q ∈ Q, q′ ∈ Q′ and n ≥ 0.
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Proof. We prove by induction on n. First, we start with the case when n = 0.
Consider a mapping M between two trees t ∈ L(Aq) and t′ ∈ L(Bq′), where
|t| = i and |t′| = j. We construct the mapping M in postorder, therefore, the
mapping between two root nodes of t and t′ should be the last to consider. By
the definition, the height of the trimmed mapping ofM should be 0. This implies
that there is no mapping for substitutions between two trees. Since d−1(q, q

′) is
∞, we compute the case when n = 0 by only considering insertions and deletions.

Assume that the case n = l holds. Then, we prove that the case n = l + 1
also holds. By the assumption, we know that the case when the height of the
trimmed mapping is lower than l+1 is considered by the first term dl(q, q

′). Now
we should prove for the case when the height of the trimmed mapping is l + 1.
There are three cases to consider:

(i) t[i] is not touched by a line in M . Then, we have (i, λ) ∈ M . Note that
insertions and deletions do not change the height of the trimmed mapping.
Therefore,

Dn(q, q
′) = min{d0(λ, q′) + d0(T, λ) + C(σ, λ) | σ(T) = q ∈ δ}.

(ii) t′[j] is not touched by a line inM . Then, we have (λ, j) ∈ M . Symmetrically,

In(q, q
′) = min{d0(q, λ) + d0(λ,T

′) + C(λ, σ′) | σ′(T′) = q′ ∈ δ′}.

(iii) t[i] and t′[j] are touched by lines in M . Thus, (i, j) ∈ M by the mapping
restrictions. That means we need an optimal mapping between two forests
t[1 . . . i − 1] and t′[1 . . . j − 1]. The height of optimal trimmed mapping
between these two forests is l. Therefore,

Sn(q, q
′) = min{dn−1(T,T

′) + C(σ, σ′) | σ(T) = q ∈ δ, σ′(T′) = q′ ∈ δ′}.

Since all possible optimal mappings between two trees can be computed by
the definition, we prove the lemma. �

One remaining issue is how many times we should iterate the computation of
recurrence for computing the correct edit-distance between two regular tree lan-
guages. We can show that |Q||Q′| iterations are enough for computing the edit-
distance between two regular languages as the height of the optimal trimmed
mapping is at most |Q||Q′| to avoid the repetition of the same state pair. We
establish the following result.

Lemma 9. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
dmn(q, q

′) = d(q, q′), where q ∈ Q, q′ ∈ Q′, m = |Q| and n = |Q′|.
We analyze the time complexity of Algorithm 1 for computing the top-down tree
edit-distance between two regular languages given by two k-bounded TAs and
establish the following result.
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Theorem 10. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded
TAs. Then, we can compute the edit-distance d(L(A), L(B)) in O(m2n2) time,
where m = |A| and n = |B|.

Algorithm 1. Computing d(L(A), L(B))

input : Two k-bounded TAs A = (Σ,Q,F, δ) and B = (Σ,Q′, F ′, δ′)
output : d(L(A), L(B))

1 d0(λ, λ) ← 0;
2 for q ∈ Q do
3 d0(q, λ) ← min{|t| | t ∈ L(Aq)};
4 end
5 for q′ ∈ Q′ do
6 d0(λ, q

′) ← min{|t′| | t′ ∈ L(Bq′)};
7 end
8 for i ← 0 to |Q||Q′| do
9 for q ∈ Q do

10 for q′ ∈ Q′ do
11 di(q, q

′) ← min[di−1(q, q
′) ∪ Ii(q, q

′) ∪Di(q, q
′) ∪ Si(q, q

′)];
12 end

13 end

14 end
15 return min{d|Q||Q′|(q, q

′) | q ∈ F, q′ ∈ F ′};

5 Unbounded Case

It is well known that unranked tree automata describe regular tree languages
of unranked and unbounded trees, which are the generalizations of regular tree
languages of ranked and bounded trees [4]. We generalize the edit-distance com-
putation between two regular tree languages accepted by k-bounded TAs to the
unbounded case in this section.

Unlike in a k-bounded or ranked TA, we have a regular language over the
state set Q called a horizontal language instead of a sequence of states in an
unranked TA. Therefore, we compute the minimum edit-distance between two
forests accepted by two sequences of states from two horizontal languages. Let
A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two unranked TAs. Then, the edit-
distance between two states q ∈ Q and q′ ∈ Q′ is defined as the minimum of the
following three sets.

(i) I(S1,i, S
′
1,j) = {d(S1,i, S′1,j−1) + d(λ,T′) + C(λ, σ′) | σ′

δ′ (T
′)=q′j ,T

′∈L
(HB

q′,σ′)},
(ii) D(S1,i, S

′
1,j) = {d(S1,i−1, S

′
1,j)+d(T, λ)+C(σ, λ) | σδ(T) = qk,T ∈ L(HA

q,σ)},
and

(iii) S(S1,i, S
′
1,j) = {d(S1,i−1, S

′
1,j−1) + d(T,T′) + C(σ, σ′) | σδ(T) = q, σ′

δ′(T
′) =

q′,T ∈ L(HA
q,σ),T

′ ∈ L(HB
q′,σ′)}.
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Similarly to the bounded case, we define the recurrence for the edit-distance
between two forests accepted by two sequences of states from A and B as follows:

Lemma 11. Given two unranked TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the height n edit-distance d(S1,i, S

′
1,j) is defined as

min[I(S1,i, S
′
1,j) ∪D(S1,i, S

′
1,j) ∪ S(S1,i, S

′
1,j)],

where S1,i ∈ Q∗ and S
′
1,j ∈ (Q′)∗.

Now we consider the runtime for computing the edit-distance between two un-
ranked TAs. The main difference compared with the bounded case is that we
need to compute the edit-distance between two forests accepted by two regular
horizontal languages instead of two fixed sequences of states.

Corollary 12 (Mohri [12]). Given two FAs A and B, we can compute the edit-
distance d(L(A), L(B)) in O(mn · logmn) time, where m = |A| and n = |B|.

Theorem 13. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two unranked
TAs. Then, we can compute the edit-distance d(L(A), L(B)) in O(m2n2 · logmn)
time, where m = |A| and n = |B|.

6 An Application of the Tree Edit-Distance Problem

It is known that the edit-distance between two context-free languages is not
computable [12]. Moreover, the emptiness of the intersection of two context-free
languages is also undecidable. Now we show that it is possible to check whether
or not two CFGs have a common string whose derivation trees are structurally
equivalent by relying on the edit-distance computation between two regular tree
languages.

Proposition 14 (Comon et al. [4]). The following statements hold.

– Given a context-free grammar G, the set of derivation trees of L(G) is a
regular tree language.

– Given a regular tree language L, yield(L) is a context-free language.

– There exists a regular tree language that is not a set of derivation trees of a
context-free language.

Based on Proposition 14, we establish the following result.

Lemma 15. Given two CFGs G and G′, we can determine whether or not there
exists a common string w ∈ L(G)∩L(G′) whose derivation trees from G and G′

are structurally equivalent.



476 S.-K. Ko, Y.-S. Han, and K. Salomaa

7 Conclusions

We have studied the top-down tree edit-distance between two regular tree lan-
guages. The tree edit-distance between two tree languages is the minimum tree
edit-distance between two trees from two languages. We, in particular, have con-
sidered the restricted version of the general tree edit-distance problem called
the top-down tree edit-distance. We have proposed an O(m2n2) algorithm for
computing the edit-distance between two regular tree languages given by two
k-bounded TAs of sizes m and n. For the edit-distance between two unranked
TAs of sizes m and n, we have designed an O(m2n2 logmn) algorithm.

Given two CFGs G and G′, we have also shown that it is decidable to deter-
mine whether or not there exists a common string whose derivation trees from
G and G′ are structurally equivalent using the proposed algorithm.
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