
Parallel CYK Membership Test on GPUs

Kyoung-Hwan Kim1, Sang-Min Choi1, Hyein Lee1, Ka Lok Man2,
and Yo-Sub Han1,�

1 Department of Computer Science, Yonsei University, Seoul, Republic of Korea
{kyounghwan,jerassi,hyein,emmous}@cs.yonsei.ac.kr

2 Department of Computer Science and Software Engineering,
Xian Jiaotong-Liverpool University, Suzhou, China

ka.man@xjtlu.edu.cn

Abstract. Nowadays general-purpose computing on graphics process-
ing units (GPGPUs) performs computations what were formerly handled
by the CPU using hundreds of cores on GPUs. It often improves the per-
formance of sequential computation when the running program is well-
structured and formulated for massive threading. The CYK algorithm is
a well-known algorithm for the context-free language membership test
and has been used in many applications including grammar inferences,
compilers and natural language processing. We revisit the CYK algo-
rithm and its structural properties suitable for parallelization. Based on
the discovered properties, we then parallelize the algorithm using differ-
ent combinations of memory types and data allocation schemes using a
GPU. We evaluate the algorithm based on real-world data and herein
demonstrate the performance improvement compared with CPU-based
computations.

Keywords: Parallel Computing, Context-Free Language Membership
Test, CYK Algorithm, GPU Programming, CUDA.

1 Introduction

Graphics Processing Unit (GPU) computing involves the use of a GPU to im-
prove general-purpose scientific applications, that were formerly handled by
a CPU. A GPU consists of processors with different instruction set architec-
tures (ISAs). GPUs designed with massively parallel single instruction multiple
threads (SIMT) are many-core processors that provide an effective performance
through low-latency and high-bandwidth. The limits of program scalability are
often related to some combination of memory bandwidth saturation, memory
contention, imbalanced data distribution or data structure/algorithm interac-
tions. For a better performance, researchers and developers have therefore
suggested particular data structures and formulated problems specifically for
massive threading. They executed massive threads by leveraging shared mem-
ory resources including [7,23]. There are a few tools that support general pur-
pose computing for GPUs such as the Compute Unified Device Architecture

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 157–168, 2014.
c© IFIP International Federation for Information Processing 2014

158 K.-H. Kim et al.

(CUDA) [18] and Open Computing Language (OpenCL) [13]. We considered the
Cocke-Younger-Kasami (CYK) algorithm [6,12,22], which is popular for several
application domains such as RNA secondary structure prediction [4] and gram-
matical inference [17], and implement parallel CYK algorithms using GPUs. Note
that the runtime of the CYK algorithm is O(|G|n3), where n is the length of
an input string and |G| is the size of the input context-free grammar (CFG) [1].
Namely, the runtime of the CYK algorithm is closely related to the size of the
grammar and the length of the input string. We investigated the possible gram-
mar mapping methods for hundreds of cores in a GPU, which may give rise to
an overall performance improvement of the CYK algorithm. In particular, we
considered three mapping methods: rule-based, left-variable sorting and right-
variable sorting mappings. We applied each mapping to different architectural
features of GPUs such as zero-copy host memory, page-locked memory, shared
memory and texture memory. We then evaluated the algorithm for different
combinations of mapping methods and features. We ran our experiments on
NVIDIA GPUs (GTX560Ti) with 384 cores using the dataset from the Berkeley
parser [16] and Penn Treebank [14].

In Section 2, we revisit previous research on the parallelization of the CYK
algorithm. We then recall CFG and the CYK algorithm in Section 3. We de-
scribe three mapping methods and four memory structures in Section 4. We
then present our experimental results and an analysis from applying the four
memory structures to each mapping method in Section 5. Finally, some conclud-
ing remarks regarding this research are given in Section 6.

2 Related Work

The CYK algorithm allows us to determine whether an input string is in an
input context-free language. The algorithm has been widely used in several do-
mains such as parsing, grammatical inference and bioinformatics. The CYK algo-
rithm is a classical dynamic programming algorithm and there have been many
attempts to parallelize it depending on the applications used. Table 1 shows
previous studies.

3 CFG Membership Test

We briefly recall the definition of context-free languages and the CYK algo-
rithm. For more details on these topics, the reader is referred to Hopcroft and
Ullman [10].

3.1 Context-Free Languages

A CFG G is specified by the tuple G = (V,Σ, P, S), where V is a set of variables,
Σ is a set of terminals, P is a set of production rules and S is the start symbol.
Given a CFG G = (V,Σ, P, S) , let αAβ be a string derived from S where A ∈ V

Parallel CYK Membership Test on GPUs 159

Table 1. Related work on the parallel CYK implementation

Authors Year Summary

Takashi et al. [19] 1997 They suggested an agenda-based parallel CYK parser on
a distributed-memory parallel machine that consists of 256
nodes (single processors). This approach uses a specific par-
allel language and parallelizes the CYK algorithm by allo-
cating each cell of the CYK matrix into a processor.

Bordim et al. [3] 2002 They studied the CYK algorithm on field programmable gate
arrays (FPGAs) and developed a hardware generator that
creates a Verilog HDL source performing CYK parsing for a
given CFG. Their approach considers 2,048 production rules
and 64 variables in an input CFG and shows a speedup factor
of almost 750×.

Johnson [11] 2011 The author examined the CYK algorithm for a dense prob-
abilistic context-free grammars (PCFG) and constructed a
dense PCFG with 32 variables and 32,768 production rules
with random probability. The author reported an 18.4×
speedup obtained on NVIDIA Fermi s2050 GPUs, and sug-
gested a reduction method in one block for calculating the
probability.

Dunlop et al. [8] 2011 They presented a matrix encoding of CFGs using a multi-
plication method for a matrix low-latency parallelized CYK
algorithm. They encoded the grammars of CFG in a ma-
trix form in which the rows are the left-hand side variable
of the production and the columns are the right-hand side
variables (pairs in CNF).

Yi et al. [21] 2014 They proposed an efficient parallel CYK algorithm for natu-
ral language parsing of PCFG on GPUs. A PCFG is a CFG
in which each production is augmented with the probabil-
ity. Their algorithm assigns each production rule of an input
PCFG to each core in a GPU and finds the valid parsing
rules quickly.

and α and β are strings from (V ∪Σ)∗. When A → γ, we say that A is rewritten
to γ and denote this derivation step by ⇒ symbol: namely, αAβ ⇒ αγβ. When
there are zero or more steps of derivation, we denote this step by

∗⇒ symbol. The
language L(G) of G is then a set of terminal strings derived from the start symbol

S; namely, L(G) = {w ∈ Σ∗ | S ∗⇒ w}. We can say that a CFG G = (V,Σ, P, S)
is in Chomsky Normal Form (CNF) if every production rule in P is either of
form A → BC or A → a, where A,B,C ∈ V and a ∈ Σ [5]. It is well-known
that every CFG can be transformed in to CNF [10]. From now on, we assume
that an input CFG is in CNF.

160 K.-H. Kim et al.

Procedure 1. CYK Algorithm

1: procedure CYK Algorithm(G = (V,Σ, P, S), w)
2: initialize table M [n][n + 1][|V |]; � |V | is size of variables
3: n = length of input string w
4: for i = 0 to n− 1
5: if {A ∈ V | A → wi ∈ P}
6: M [i][i + 1][A] = T � Initialize with terminal rules
7: end for
8: for len = 2 to n
9: transitionRule(M,n, len,G); � Procedure 2
10: end for
11: if M [0][n][S] = T

12: return true
13: else
14: return false
15: end if
16: end procedure

3.2 CYK Algorithm

Given an input string w = w1w2 · · ·wn ∈ Σ∗ and a CFG G = (V,Σ, P, S),
the CYK algorithm, which is based on the bottom-up dynamic programming,
determines whether w is in L(G). The algorithm constructs a triangular table M

in which each cell M [i−1][j][A], for A ∈ V , is T if A
∗⇒ wiwi+1 · · ·wj in G. Once

all of M is computed, the algorithm checks whether M [0][n][S] = T.

Procedure 2. transitionRule
1: procedure transRule(M,n, len, G = (V,Σ, P, S))
2: for i = 0 to n− len do � Start Index
3: j = i+ len; � End Index
4: foreach production A → BC ∈ P
5: for split = i+ 1 to j − 1
6: if M [i][split][B] =T do
7: if M [split][j][C] =T do
8: M [i][j][A] =T;
9: end foreach
10: end for
11: end procedure

First, we initialize the bottom level of the table using the terminal rules (line
5 and 6). The algorithm then proceeds to repeatedly apply all binary rules and
builds up for the table using Procedure 2. As illustrated in Procedure 1, the
algorithm fills up M and checks whether M [0][n][S] is T.

Fig. 1 illustrates the CYK table M for the string w = cabac with respect to
a CFG G = {{S,A,B,C}, {a, b, c}, P, S}, where P = {S → AB | b, A → CB |
AA | a,B → AS | b, C → BS | c}.

Parallel CYK Membership Test on GPUs 161

T

0

T

0

0
T

0
0

0
T

0
0

0
0

0
0

T

0

0
0

0
0

0
T

0
0

T

0

T

0

T

0

0
T

0
0

0
0

0
T

0
0

0
0

T

0

T

0

T

0

T

0

0
T

0
0 T

0

T

0

c a b a b

Execution order

S
A

B

C

1

2

3

4

5

y

4

3

2

1

0

x

Fig. 1. An example of the CYK table for an input string, cabab

4 Our Approaches and Implementations

We next discuss the different implementations of Procedure 2 that account for
the bulk of the overall execution time for the CYK algorithm. We consider three
thread mappings, memory types for data access, and two data transfer methods.

4.1 Three Types of Thread Mappings

One of the important factors for designing parallel algorithms is how to map the
input data to the threads for fast parallel processing. We consider the possible
mappings of the grammar rules to the threads for the table cells or variables
of the CYK algorithm. We select grammar rules for thread mapping instead of
variables. Since the number of variables is usually fewer than the number of
threads, it is possible to fail to provide enough parallelism to fully utilize the
massive number of threads in GPUs. In addition, a load imbalance exists because
of differences in the number of rules for each variables and it leads to different
branches and degrades the performance. We can reduce the load imbalance by
mapping the rules to the threads. There are three mapping methods used: rule-
based, left-variable sorting (LVS) and right-variable sorting (RVS) mappings.

1. Rule-Based Mapping: We noticed that the foreach (line 4) loop in Pro-
cedure 2 is suitable for parallelization. We therefore simply map all rules in
the input grammar to all available threads as described in Procedure 3.

2. RVS Mapping: The RVS mapping is to sort the production rules in a
CFG, according to the first variable of the right-hand side (RHS) in the pro-
duction rules. The left figure in Fig. 2 shows an example of RVS. The main
reason for introducing RVS mapping is to reduce the thread divergence. In
Procedure 2, we first check whether the two variables on the RHS exist in
each cell. If they exist, we store them in the current cell. Thread-divergence
occurs since each rule has different first variables in the RHS. For example,
when some threads that have the first RHS variable satisfying an if-condition
to enter the if-statement, other threads must wait until the statement ends.

162 K.-H. Kim et al.

Procedure 3. RuleandRVSTR
1: procedure RuleandRVSTR(M,n, len,G = (V,Σ, P, S))
2: for i = 0 to n− len do in parallel � Mapping to Thread Block
3: j = i+ len;
4: shared bool shVar[|V |];
5: foreach production A → BC ∈ P in parallel
6: � Mapping to Thread
7: for split = i+ 1 to j − 1
8: if M [i][split][B] = T do
9: if M [split][j][C] = T do
10: shVar[|A|]= T;
11: end foreach
12: for A ∈ V in parallel
13: M [i][j][A] =shVar[|A|];
14: end for
15: end procedure

This situation degrades the performance since some threads must wait for
the others. Thus, in the variable-based mapping of algorithm, we avoid this
type of divergence by sorting the first-right variables in the production rules.

Fig. 2. An example of RVS and LVS

3. LVS Mapping: The LVS mapping first sorts all production rules in a CFG,
to the left-hand side (LHS) variable of the rules. The right figure in Fig. 2
shows examples of LVS: (a) and (b) are the production rules before and after
LVS, respectively. We group the rules that have the same LHS variables. The
purpose of LVS is to concurrently access variables with a set of rules that
have the same LHS value. When we store the variables in Procedure 4, we
aim to improve the performance by storing the sorted variables into single
variable.

4. Adding Dummy: If we use dummy rules in RVS mapping, we could im-
prove the overall performance since some threads may not need to wait on
line 6 in Procedure 2. In LVS mapping, we use dummies because each warp
has only one LHS value, which allows us to save a LHS value to one memory

Parallel CYK Membership Test on GPUs 163

Procedure 4. LVSTR
1: procedure LVSTR(M,n, len, G = (V,Σ, P, S))
2: for i = 0 to n− len do in parallel � Mapping to Thread Block
3: j = i+ len;
4: shared int shVar[|W |]; � |W | is size of warps
5: foreach production A → BC ∈ P in parallel
6: � Mapping to Thread
7: for split = i+ 1 to j − 1
8: if M [i][split][B] = T do
9: if M [split][j][C] = T do
10: shVar[w]= T; � w is warp number
11: end foreach
12: for thread tw ∈ each warp w in parallel
13: M [i][j][shV ar[|w|]]=T;
14: end for
15: end procedure

storage. By adding dummies, the memory access may be increased. However,
we obtain performance improvement by reducing thread divergence and shar-
ing one LHS value in each thread blocks. If the grammars are not ordered
by LHS or RHS, the adding dummies is effective, since the performance im-
provement is greater than the overhead from the additional memory access.
We describe this tendency and the results of adjusting this method to our
implementation in the experimental results, in Section 5

4.2 Two Types of Memory for Data Access

In GPU programming, data are usually allocated and accessed in global memory.
Since the access speed of global memory is slow, reducing access is important
for high-performance. We therefore use texture memory and shared memory to
reduce access.

– Texture Memory: Texture memory is read-only memory and is allocated
by calling a binding API in CUDA. Unlike global memory, texture memory
provides caching and reads all threads in a kernel. If the memory is frequently
accessed, it becomes more efficient since it has a faster access speed than
global memory. On the other hand, it has an overhead caused from binding
the device data after the memory allocation is initiated from the host.

– Shared Memory: Shared memory is a memory block that can be accessed
by all threads within a block. It is much faster than local and global memory.
We use this memory in rule-based and RVS mapping by following two steps:
First, we allocate the variables and their number to the shared memory and
store them before saving them directly to the table. We then restore these
variables to the global memory. These steps differ from those of Procedure 3.
Since all threads in the same warp have the same LHS variable because of
deploying dummy rules, we can save one variable instead of all variables in

164 K.-H. Kim et al.

the shared memory. Therefore, LVS mapping need smaller space than rule-
based and RVS mapping. We add the following processes to Procedure 3 in
order to implement LVS mapping; we allocate the shared memory based on
the number of threads in a block and warp, and save the variables in the
memory and restore them into the global memory.

4.3 Two Types of Data Transfer Methods

We transfer the input grammar from the host to the device before we start the
membership test. After computation, we need to transfer the top cell of table,
which is a set of variables deriving the input string, from device to host to
verify the test. The data transfer between two devices often causes the degraded
performance in GPU programming. It is crucial to reduce the data transfer time
between the devices. We use the following two methods to improve the speed:

– Page-locked Host Memory: We generally allocate the data to the page-
locked host memory. A page-locked buffer, also called pinned memory, save
all data in physical memory. We can improve the speed of the data movement
using page-locked host memory since this memory does not use paging.

– Zero-copy Host Memory: The zero-copy host memory enables GPUs
to access host memory directly without transferring data to the device. In
addition, GPUs can read and write data simultaneously in the host memory,
which is not possible in a traditional PCI bus.

5 Experimental Results

We apply previous approaches to GPU. The details of the experimental platform
are as follows: CPU is Core i3 3.10Ghz, RAM is 8GB, GPU is GTX 560 Ti and
its memory is 1GB. The number of SM and SP are respectively 8 and 384. Shared
Memory/SM is up to 48KB and L1 cache/SM is up to 512KB.

We use grammars by Petrov et al. [16] for our experiment. These gram-
mars have been widely used for evaluating the performance of parsing with
CFGs [2,9,20]. They suggested various methods such as splitting and merging
variables for a high parsing performance. Because of splitting and merging rules,
there are 1,043 variables and 1,725,570 binary rules for parsing in the resulting
CFGs.

Since we only consider CFGs instead of PCFGs for the CYK algorithm, we
ignore these splitting and merging variables in the experiment. We merge the
same word class variables into a single variable. Therefore, we have 98 variables
and 3,840 binary rules. We use Section 23 of the WSJ portion of the Penn Tree-
bank [14] as our benchmark set.1 The sequential version of the CYK algorithm
was written in C. It requires 53, 987 ms per sentence. We compare the execution
time of various implementations of the CYK algorithm in CUDA based on the
thread mapping methods and different memory access patterns.

1 In the benchmark set, an input string is a sentence, and the length of the input
string is the number of words in the sentence.

Parallel CYK Membership Test on GPUs 165

 3.5

 4.5

 5.5

 6.5

 7.5

 8.5

+

+

+ +
+

+

+

+

+ +

+

+

+

+

+

+

+

Sp
ee

du
p

Different thread mappings, data access methods, and data transfer methods

Fig. 3. Speedup of different implementations of a parallel CYK algorithm using differ-
ent thread mapping methods, data access methods, and data transfer methods

Fig. 3 and Table 2 shows the speedup of the different parallel CYK algorithm
implementations on a GTX 560 Ti.

– M: Three thread mapping methods
– R: Rule-based mapping
– D: Deploying dummy rules to RVS and LVS mapping
– P : Page-locked host memory
– Z: Zero-copy host memory
– SH: Storing data in shared memory
– T : Placing grammar rules in texture memory

For each test, we randomly selected 1,000 sentences for the benchmark set and
measure the runtime. We repeated this test 100 times and computed the average
runtime for each case.

– Five Mapping Methods: We first implement rule-based, LVS and RVS
mappings. We then add dummy rules to LVS and RVS mappings.

1. R: Rule-based mapping shows an 8.20× speedup.
2. RVS: The use of RVS shows an 8.18× speedup, which is similar to the

result of rule-based mapping.
3. RVS +D: Once we add dummies to RVS, the size of the grammar in-

creases by 46% to 5,632 compared with the original size of 3,840. Since
the size of grammar increases, there might be a more frequent memory
accesses in the kernel. However, we achieved a slightly improved per-
formance of 8.26×, because of reducing thread divergence. Note that
an advantage is achieved from all threads passing the first if-statement
without any idle time.

166 K.-H. Kim et al.

4. LVS: LVS shows a poorer performance than R, with an 8.10× speedup.
Since we sort the production rules according to the LHS variables, some
rules that have different first RHS variables are processed in the same
warp concurrently, which causes frequent thread divergences than R.

5. LVS +D: When we add dummy rules, the grammar size increases by
21% to 4,630 compared with 3,840. The overhead becomes signification,
so it shows only an 8.08× speedup, which is slower than M.

Table 2. Speedups of different implementations of a parallel CYK algorithms by dif-
ferent thread mapping methods, data access methods, and data transfer methods

M M + P M + Z M + SH M + SH + P M + SH + Z
R 8.20 7.58 3.77 7.85 8.06 4.02

RVS 8.19 7.98 3.90 7.92 8.16 4.05
LVS 8.10 8.06 3.89 7.52 8.14 3.95

RVS + D 8.26 7.63 3.90 7.93 7.68 3.96
LVS + D 8.08 7.82 3.85 8.42 7.29 3.63

M + S M + T + P M + T + SH M + T + SH + P
R 7.38 7.00 8.04 6.48

RVS 7.38 7.00 7.65 6.48
LVS 7.47 7.01 7.64 6.57

RVS + D 7.45 7.45 7.58 6.45
LVS + D 7.40 7.07 7.56 6.48

– Page-Locked Host Memory: Since our program uses a relatively small
amount of memory, the page-locked host memory method shows a slower
runtime compared with the memory allocation without a page-lock. This
is because the paged-locked host memory has its own memory allocation
function, which is slower than the traditional memory allocation function.

– Zero-Copy Host Memory: M+ Z and M+ SH + Z show speedup of
4×, which is worse than M, since the use of zero-copy host memory is very
costly in our implementation as small amount of data are frequently moved.

– Shared Memory: In the case of shared memory, only LVS +D + SH shows
a performance improvement. Since LVS +D + SH allocates shared memory
according to the number of warps in each block, it can effectively utilize
shared memory. This gives rise to a speedup of 8.42× at maximum. Note
that the GTX 560 Ti has an L1 cache with a Fermi architecture [15]. We
also observe that the other mappings have a shared memory table array in
L1 cache and they also need more shared memory in proportion to the size
of the variables and more access to the memory than those for LVS +D
mapping. The other mappings using shared memory therefore degrade the
performance.

– Texture Memory: For texture memory, we observe a slower speed than
the case without texture mapping for two reasons: First, the GPUs must
fetch data from texture memory by calling a special fetch operation, which
delays the process overall. Second, the texture memory is optimized for 2D
data [18], whereas our data is a 1D string.

Parallel CYK Membership Test on GPUs 167

We also compared the implementation of a previous study by Yi et al [21]. Since
their implementation is for parsing PCFG, it requires an additional operation to
calculate the probability, atomic operation, and so on. We therefore cannot com-
pare their implementation directly. The speedup of the fastest implementation
of their work is 4.37×. This result is worse than our result 8.42×. This means
that our result is more appropriate for a CFG membership test.

6 Conclusions

We explored a design for parallelizing the CYK algorithm. We analyzed differ-
ent methods for thread mapping, data access using various types of memories
and data transfer based on the memory design concepts. We then compared the
different implementations of the CYK algorithm on a GTX560Ti. Our contribu-
tions can be summarized as follows:

– We evaluated various implementations of CYK on a GPU
– We utilized a memory access pattern in a warp using shared memory

The fastest implementation of the algorithm when using a GPUs is from
LVS +D + SH mapping when the number of rules is relatively small (in our
test case, it was almost 8k), i.e., left-variable sorting while deploying dummy
rules with shared memory. This implementation is 8.42× faster than the se-
quential C version. However, the experimental results showed that except for
LVS +D mapping, using shared memory is slower than using global memory
because the data are already in the L1 cache on the GTX560Ti using the 3, 841
production rules of the benchmark grammar. Using page-locked and zero-copy
host memory results in more overhead, and compared to its benefit, it worsens
the performance. We believe that these observations will be helpful for designing
a fast parallel CYK algorithm for use on GPUs.

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling (1972)
2. Bodenstab, N., Dunlop, A., Hall, K., Roark, B.: Beam-width prediction for efficient

context-free parsing. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 440–449 (2011)

3. Bordim, J.L., Ito, Y., Nakano, K.: Accelerating the CKY parsing using fPGAs.
In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552,
pp. 41–51. Springer, Heidelberg (2002)

4. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling of RNA pseudoknotted
structures: a grammatical approach. Bioinformatics, 66–73 (2003)

5. Chomsky, N.: On certain formal properties of grammars. Information and Control,
137–167 (1959)

6. Cocke, J.: Programming languages and their compilers: Preliminary notes (1969)
7. D’Agostino, D., Clematis, A., Decherchi, S., Rocchia, W., Milanesi, L., Merelli,

I.: Cuda accelerated molecular surface generation. Concurrency and Computation:
Practice and Experience 26(10), 1819–1831 (2014)

168 K.-H. Kim et al.

8. Dunlop, A., Bodenstab, N., Roark, B.: Efficient matrix-encoded grammars and low
latency parallelization strategies for CYK. In: Proceedings of the 12th International
Conference on Parsing Technologies, pp. 163–174 (2011)

9. Foster, J.: “cba to check the spelling” investigating parser performance on discus-
sion forum posts. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 381–384 (2010)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation (1979)

11. Johnson, M.: Parsing in parallel on multiple cores and GPUs. In: Proceedings of the
Australasian Language Technology Association Workshop 2011, pp. 29–37 (2011)

12. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Technical report, Air Force Cambridge Research Laboratory (1965)

13. Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29
(2008), http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

14. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of english: The Penn Treebank. Computational Linguistics 19(2), 313–330
(1993)

15. Nvidia Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. Technical report, Nvidia Corporation (2009)

16. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics, pp. 433–440 (2006)

17. Sakakibara, Y.: Learning context-free grammars using tabular representations.
Pattern Recognition 38(9), 1372–1383 (2005)

18. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (2010)

19. Takashi, N., Kentaro, T., Taura, K., Tsujii, J.: A parallel CKY parsing algorithm
on large-scale distributed-memory parallel machines. In: Proceedings of the 5th
Pacific Association For Computational Lingustics, pp. 223–231 (1997)

20. Weese, J., Ganitkevitch, J., Callison-Burch, C., Post, M., Lopez, A.: Joshua 3.0:
syntax-based machine translation with the thrax grammar extractor. In: Proceed-
ings of the 6th Workshop on Statistical Machine Translation, pp. 478–484 (2011)

21. Yi, Y., Lai, C.-Y., Petrov, S.: Efficient parallel CKY parsing using GPUs. Journal
of Logic and Computation 24(2), 375–393 (2014)

22. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-
formation and Control 10, 189–208 (1967)

23. Vu, V., Cats, G., Wolters, L.: Graphics processing unit optimizations for the dy-
namics of the HIRLAM weather forecast model. Concurrency and Computation:
Practice and Experience 25(10), 1376–1393 (2013)

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

	Parallel CYK Membership Test on GPUs
	1 Introduction
	2 Related Work
	3 CFG Membership Test
	3.1 Context-Free Languages
	3.2 CYK Algorithm

	4 Our Approaches and Implementations
	4.1 Three Types of Thread Mappings
	4.2 Two Types of Memory for Data Access
	4.3 Two Types of Data Transfer Methods

	5 Experimental Results
	6 Conclusions
	References

