
Pseudoknot-Generating Operation

Da-Jung Cho1, Yo-Sub Han1(B), Timothy Ng2, and Kai Salomaa2

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajung,emmous}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

{ng,ksalomaa}@cs.queensu.ca

Abstract. A pseudoknot is an intra-molecular structure formed primar-
ily in RNA strands and much research has been done to predict efficiently
pseudoknot structures in RNA. We define an operation that generates
all pseudoknots from a given sequence and consider algorithmic and lan-
guage theoretic properties of the operation. We give an efficient algorithm
to decide whether a given string is a pseudoknot of a regular language
L—the runtime is linear if L is given by a deterministic finite automaton.
We consider closure and decision properties of the pseudoknot-generating
operation. For DNA encoding applications, pseudoknot structures are
undesirable. We give polynomial-time algorithms to decide whether a
regular language L contains a pseudoknot or a pseudoknot generated by
some string of L. Furthermore, we show that the corresponding questions
for context-free languages are undecidable.

Keywords: Pseudoknots · Pseudoknot-generating operation · Closure
and decision properties · Formal languages

1 Introduction

A ribonucleic acid (RNA) often forms secondary structures according to the
base-pairing with Adenine (A), Uracil (U), Guanine (G) and Cytosine (C) [5].
These bases A,G,C and U complementarily bind and form a double helix called
stem, and double helix with unpaired loop known as stem-loop. A RNA structure
generally has stems and various kinds of loops as a structural motif, which then
gives rise to well-known structures such as hairpin or pseudoknot. RNA struc-
tures play an important role in cells and give insights to molecular evolution and
function of RNA molecule [19]. Therefore, in bioinformatics, it is one of the most
important and fundamental problems to predict RNA structures made up of a
set of stems with optimal thermodynamic energy. Note that stabilized optimal
foldings of a RNA sequence are closely related to the minimum free energy of
RNA secondary structures based on the theory of thermodynamics.

A pseudoknot structure contains at least two stem-loops that occur in
RNA with intramolecular base-pairing: Second half of one stem is embedded

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 241–252, 2016.
DOI: 10.1007/978-3-662-49192-8 20

242 D.-J. Cho et al.

5′ A G C

T C G
C

T

A G
3′

(b) folding pseudoknot structure

A G C T C G C T G A

second half
of stem

(a) a sequence for pseudoknot structure

5′ 3′

stem loop

Fig. 1. A pseudoknot structure example: (a) A sequence contains a pseudoknot struc-
ture in which the second half of stem (blue box) exists between the two halves of another
stem (green boxes) (b) A sequence folds into a pseudoknot (Color figure online).

in between the two halves of another stem. (See Fig. 1 for an example of pseudo-
knot structure.) Pseudoknot structures appear in many natural RNA molecules
and are closely related with the ribosomal frameshifting that allows viruses to
create many protein structures from a relatively small genome [9]. Since the
ribosomal frameshifting affects on encoding protein and the pseudoknot struc-
ture gives a tertiary structure of molecule, it is a major topic of biomolecu-
lar computing to predict pseudoknot structures [3,9]. This led researchers to
study efficient methods that predict pseudoknot structures [2,4]. From a formal
language viewpoint, several researchers [8,15,17,18] characterized the pseudo-
knot structure and suggested pseudoknot predicting algorithms. Given an input,
the problem of predicting or aligning arbitrary pseudoknot structures is NP-
hard [2,11]. Möhl et al. [17] presented an algorithm that computes the edit-
distance of two RNA structures with arbitrary pseudoknots and showed that
the algorithm is applicable in practice. Kari and Seki [15] formalized particular
case of pseudoknot structures under formal language theory and investigated its
properties. Evans [8] proposed the first polynomial-time algorithm for finding
maximum common substructures that include pseudoknots. Rinaudo et al. [18]
generalized several RNA structures and presented an alignment algorithm based
on tree decomposition approach.

While most researchers considered a problem of predicting pseudoknot struc-
tures from a (long) sequence, we consider pseudoknot structures from a different
angle: A sequence may be expanded (namely, append a new sequence itself) to
form a pseudoknot structure. We consider this process and define a new oper-
ation pseudoknot-generating operation that generates all pseudoknot structures
(from now we just call pseudoknots in short) from a given sequence. Then the
resulting sequences fold itself into pseudoknots. Thus the input string becomes
a seed string to generate pseudoknots. We establish the closure properties of
the pseudoknot-generating operation on a string and present an algorithm that
determines whether or not a string is a pseudoknot. Since pseudoknot struc-
tures are related to some biological mutations, they are crucial for detecting
mutational patterns of a DNA sequence. We also study the closure properties
of pseudoknot-generating operation on languages and examine several questions
related to pseudoknots with respect to languages. From a biological view point,
we can think of the pseudoknot-generating operation on a language as a pro-

Pseudoknot-Generating Operation 243

cedure to generate all possible pseudoknots that may cause a mutation from a
set of subsequences. In particular, we theoretically demonstrate that one can
check whether or not two sets of DNA sequences contain common mutational
seed sequences. Furthermore, we define the pseudoknot-freeness and investigate
the decidability problem for pseudoknot-freeness for regular and context-free
languages.

In Sect. 2, we recall some notation and define the pseudoknot-generating oper-
ation. We consider the pseudoknot-generating operation and design several algo-
rithms for recognizing generated pseudoknots from strings and finite automata
in Sect. 3. Then, we study closure and decision properties of the pseudoknot-
generating operation, and, investigate the pseudoknot-free languages in Sect. 4.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is a subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. Given a string x = x1 · · · xn, |x| is the number of charac-
ters in x, x(i) denotes the ith character xi of x and x(i, j) = xixi+1 · · · xj is the
substring of x from position i to position j, where i ≤ j. Given two strings x
and y in Σ∗, x is a prefix of y if there exists z ∈ Σ∗ such that xz = y and x is a
suffix of y if there exists z ∈ Σ∗ such that zx = y. Furthermore, x is said to be
a substring or an infix of y if there are two strings u and v such that uxv = y.

An FA A is specified by a tuple (Q,Σ, δ, s, F), where Q is a finite set of
states, Σ is an input alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is
the start state and F ⊆ Q is a set of final states. If F consists of a single state f ,
then we use f instead of {f} for simplicity. Let |Q| be the number of states in Q
and |δ| be the number of transitions in δ. Then, the size of A is |A| = |Q| + |δ|.
For a transition δ(p, a) = q in A, we say that p has an out-transition and q has
an in-transition. If δ(q, a) has a single element q′, then we denote δ(q, a) = q′

instead of δ(q, a) = {q′} for simplicity.
A string x over Σ is accepted by A if there is a labeled path from s to a final

state such that this path spells out x. We call this path an accepting path. Then,
the language L(A) of A is the set of all strings spelled out by accepting paths
in A. We say that a state of A is useful if it appears in an accepting path in A;
otherwise, it is useless. Unless otherwise mentioned, in the following we assume
that all states of A are useful.

Given a string x, we say that x has a pseudoknot if there exists a substring w
of x such that w = w1w2w3w4w

R
1 w5w

R
3 for some strings w1, w2, w3, w5 ∈ Σ+ and

w4 ∈ Σ∗. We call the string w pseudoknot string (or pseudoknot in short). We
consider a restricted pseudoknot in which w4 = λ, which means that half of one
stem is adjacent to half of another stem. (See Fig. 2 for an example of restricted
pseudoknot.)

Given a string x, we define the restricted pseudoknot-generating operation

PKR(x) = {x1x2x3x
R
1 x4x

R
3 | x = x1x2x3 and x1, x2, x3, x4 ∈ Σ+}.

244 D.-J. Cho et al.

i ji′ j′ i i′ j j′

(a) simple pseudoknot (b) restricted pseudoknot

Fig. 2. An example of two types of pseudoknot on a sequence of length n: (a) a simple
pseudoknot with two base-pairings (i, j) and (i′, j′) (b) a restrict version of pseudoknot
with two base-pairings (i, j) and (i′, j′) such that the first half of (i′, j′) is immediately
followed by the second half of (i, j), where 0 ≤ i < i′ < j < j′ ≤ n.

For a language L,
PKR(L) =

⋃

x∈L

PKR(w).

We define the iterated operation of PKR to be, for i ≥ 0,

PKR
(0)(L) = L, PKR

(i+1)(L) = PKR(PKR
i(L)), PKR

∗(L) =
∞⋃

i=0

PKR
i(L).

In the following, we only consider restricted pseudoknots and call them simply
pseudoknots unless we need to distinguish restricted pseudoknots from general
pseudoknots.

3 Algorithms for Recognizing Generated Pseudoknots

We first study the problem for checking whether or not a string w = w1w2 · · · wn

is a pseudoknot; namely, is w = x1x2x3x
R
1 x4x

R
3 for some x1, x2, x3, x4 ∈ Σ+.

The main idea of our approach is to check if there exists a substring x3x
R
1 of w

such that x1 is a prefix and xR
3 is a suffix of w. A naive approach is to consider

all possible substrings and check this condition. We design a better algorithm
that checks the required condition more efficiently based on the Aho-Corasick
algorithm [1].

w
x3 xR1

x1

xR3i j

Fig. 3. A naive approach for checking whether or not w is a pseudoknot. For each
substring w(i, j), we check whether or not w(i, j) is a catenation of x3 and xR

1 for a
prefix x1 and a suffix x3 of w—w(i, j) = x3x

R
1 —by comparing characters from both

directions.

Pseudoknot-Generating Operation 245

Before we describe the whole algorithm, we first present an algorithm that
finds the shortest length of the matching prefix of the input pattern string with
respect to the input for each index of the input. This algorithm is crucial for
checking whether or not w is a pseudoknot.

Procedure. ShortestMatchingLength(w, T)
/* w is a length m pattern and T is a length n text */

Construct a DFA A = (Q, Σ, δ, 0, Q \ {0}) for w, where Q = {0, 1, . . . , m}

/* construct the goto function G */

G(0, a �= w1 ∈ Σ) ← 0
for i ← 0 to m − 1 do

G(i, wi+1) ← i + 1

/* construct the failure function F and the output function O */

F(1) ← 0
for i ← 1 to m do

if G(i, a) = i + 1 then
v ← F(i)
while G(v, a) �= ∅ do

v ← F(v)

F(i + 1) ← G(v, a)
O(i + 1) ← min(O(i + 1),O(F(i + 1)))

/* read T using G,F,O */

q ← 0
for i ← 1 to n do

while G(q, T (i)) �= ∅ do
q ← F(q)

q = G(q, T (i))
if O(q) �= ∅ then

SML[q] ← O(q)

return SML

Given an input pattern string w and a text T , Proc. ShortestMatchin-
gLength is a modified Aho-Corasick algorithm that finds the shortest length
of the matching prefix of w at each index of T ; if u the shortest matching prefix
of w, then the reversal uR of u appears as an infix of T . The two main differences
from the original Aho-Corasick algorithm are

1. it receives only one string w as an input pattern and regards all prefixes of
w as matching patterns

246 D.-J. Cho et al.

2. the output function O returns the shortest length of the match-
ing pattern instead of reporting all matching patterns: O(i+i) ←
min(O(i+1),O(F(i+i))).

It is easy to verify that Proc. ShortestMatchingLength runs in O(m + n)
time, where m = |w| and n = |T |.

Now we design the whole algorithm that determines whether or not w is a
pseudoknot using Proc. ShortestMatchingLength. First, we consider all prefixes
of w up-to length n

2—candidates for being w1 in the pseudoknot—and compute
the set wp[i] of the shortest length of the matching prefix of each index using
Proc. ShortestMatchingLength with w = w1w2 · · · wn

2
and T = wR. Next, we

similarly consider all suffixes of w up-to length n
2—candidates for being wR

3

in the pseudoknot—and compute the set ws[i] of the shortest length of the
matching suffix for each index 1 ≤ i ≤ n using Proc. ShortestMatchingLength
with w = wn

2 +1 · · · wn−1wn and T = w.

wp[n] 6 4 3 2 3 2

3 2 3 4 6ws[n]

1 2 3 4 5 6 7 8 9 10 11 12w

Fig. 4. An example of running Proc. ShortestMatchingLength for checking whether
or not w is a pseudoknot.

Figure 4 is an example of running Proc. ShortestMatchingLength for a
string w and obtain wp[n] and ws[n]. In this example, because of ws[9] and
wp[10], we know that w is a pseudoknot. However, a pair of ws[5] and wp[6] is
invalid since, at index 6, w cannot have a prefix of size 6 (=wp[6]). Similarly, a
pair of ws[11] and wp[12] is invalid for checking the pseudoknot structure for w
since, after index 11, w cannot have a wR

1 w4w
R
3 , where |wR

3 | = 6.

Lemma 1. Given a string w of length n, we can determine whether or not w
is a pseudoknot in O(n) time.

Note that if w is a pseudoknot, then we can find all indices i of w such that
w(1, i) = x1x2x3 and w(i + 1, n) = xR

1 x4x
R
3 from the algorithm. Let Ipk(w) be

the set of such indices.

Corollary 1. Given two pseudoknot strings x and y, we can determine whether
or not both x, y ∈ PKR(w) for a string w in linear-time in the size of x and y.
We can also identify such w using Ipk(x) and Ipk(y) within the same runtime.

We next consider a problem of determining whether or not w is in PKR(L(A))
of a given FA A. Our approach is simple: we read w character by character with
A and find all indices j of w when we enter a final state of A while reading w.
Namely, w(1, j) ∈ L(A). Let Ip(w,A) be the set of such indices.

Pseudoknot-Generating Operation 247

Lemma 2. Given a string w and an FA A,

w ∈ PKR(L(A)) iff Ipk(w) ∩ Ip(w,A)
= ∅.

Note that a pseudoknot string may have several different pseudoknots. There-
fore, even if w(1, i) = x1x2x3 and w(i + 1, n) = xR

1 x4x
R
3 for an index i of w,

w(1, i) may not be accepted by A. This is why we have considered all possible
indices in Ipk(w). We now establish the following result based on pseudoknot
checking algorithm and Lemma 2.

Theorem 1. Given a string w of size n and an FA A of size m = |A|, we can
determine whether or not w ∈ PKR(L(A)) in O(mn) time. If A is a DFA, then
the runtime becomes O(n).

Proof. It takes O(n) time to compute Ipk(w) and O(mn) time to compute
Ip(w,A). If A is a DFA, then we can compute Ip(w,A) in O(n) time. ��

Note that pseudoknots of RNA are closely related with the frameshifting muta-
tion of protein expressions and commonly found in viral genomes, in particular
influenza virus [7]. This leads researchers to consider the structural comparison
among several sequences to find the common mutational pattern, in particular,
pseudoknots [6]. Here, we investigate a necessary condition of PKR(x)∩PKR(y)
=
∅ for two strings x and y and show that it is decidable to check whether or not two
strings have a common pseudoknot in PKR(x) and PKR(y).

y

u

uR

y1

x1

y2 y3

x3x2

t v z u tR
xR1

zR
xR3x4

yR1 yR3y4

uR

x
y

u

uR

y1

x1

y2 y3

x3x2

t

v z u

tR

xR1

zR
xR3x4

yR1 yR3y4

uR

x

(b)

(a)

Fig. 5. An example of two strings x and y such that PKR(x) ∩ PKR(y) �= ∅. First, x is
a prefix of y. Second, the longer part u (slanted line box in the figure) of y appears as
(a) a prefix of x or (b) an infix (but not prefix) of x in the reversed form uR, where
t, v, z ∈ Σ+.

Let x and y be two strings, where |x| < |y|. Figure 5 shows that PKR(x) ∩
PKR(y)
= ∅ if and only if x is a prefix of y, and y(|x| + 1, |y|) (= u in the
figure) appears as an infix of x(1, |x| − 2)—we consider x(1, |x| − 2) to ensure
t, v, z ∈ Σ+, if exists. There are two possible cases for being an infix as follows:

248 D.-J. Cho et al.

(a) Since uR appears as a prefix of x(1, |x|−2), we can select an arbitrary prefix t
of x(1, |x| − 2) for y1 as depicted in Fig. 5(a).

(b) Since uR appears an infix (but not a prefix) of x(1, |x| − 2), we can select
the prefix t of x1 such that x1 = tuR for y1 as depicted in Fig. 5(b).

We can check this in O(|x|) time using the KMP algorithm [16] and, therefore,
obtain the following result.

Lemma 3. Given two strings x and y such that |x| < |y|, we can determine
whether or not PKR(x) ∩ PKR(y)
= ∅ in O(|x|) time.

Proof. The proof is immediate from Fig. 5. ��
We know if two strings have a common pseudoknot in PKR(x) and PKR(y).

We next investigate the inclusion between PKR(x) and PKR(x) when |x| < |y|.
Lemma 4. Given two strings x and y, if |x| < |y|, then it is impossible that
PKR(x) ⊂ PKR(y).

Given a string z, it is straightforward to verify that PKR(z) is regular and
PKR(z) is infinite from the definition of the operation. We consider the case of
applying the PKR operation on the resulting language several times, and prove
that the iterated PKR does not preserve the regularity.

Theorem 2. There exists a string z such that PKR
2(z) and PKR

∗(z) are not
regular.

Proof. By choosing Σ = {a, ¢, $} and z = ¢a$, it can be verified that PKR
2(z)

and PKR
∗(z) are not regular. ��

4 Pseudoknot-Generating Operation on Languages

We investigate the properties of pseudoknot on a set of strings. The pseudoknot
operation on a string implies that we generate a pseudoknot family related by
a common structural motif for pseudoknot. Note that a given string expands
and becomes a pseudoknot string by the pseudoknot operation on a string. We
extend this view point into languages in which a set of strings represents a set
of all subsequences of a long RNA sequence. This implies that the pseudoknot
operation on a language generates all possible pseudoknots that may partially
occur as a mutation.

4.1 Closure and Decision Properties of the Pseudoknot-Generating
Operation

We first consider the closure property of the pseudoknot operation and determine
whether or not two sets of pseudoknots on languages contain a common string.

Theorem 3. Regular and context-free languages are not closed under PKR.

Pseudoknot-Generating Operation 249

Next, given regular languages L and R we consider the problem of checking
whether or not there is a pseudoknot generated both by a string of L and a string
of R. Note that, by Theorem3, we know that PKR(L) need not be even context-
free in general. This means that we cannot simply first produce a representation
of the languages PKR(L) and PKR(R), respectively, and then check whether or
not they have a non-empty intersection. Instead, our algorithm is based directly
on finite automata for the original language L and R.

Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) be two FAs for L
and R. Then, we first construct an FA C = (QA ×QB , Σ, δC , sA × sB , FA ×FB)
for L(A) ∩ L(B) by the standard Cartesian product, where

δC((p, q), a) = {(p′, q′) | p′ ∈ δA(p, a) and q′ ∈ δB(q, a)}.

Our algorithm is similar to the idea illustrated in Fig. 5: We check if there
exists a pair of strings—say x ∈ L(A), y ∈ L(B) and |x| < |y| (the other case
is symmetric)—such that PKR(x) ∩ PKR(y)
= ∅. Since x is a prefix of y, there
exists a path from sB to a nonfinal state q that spells out x in B. We search for
such paths in C. For each state (f, q) of C, where f ∈ FA, q ∈ QB , we define two
FAs as follows:

–
←−−
Cf,q = (QA × QB , Σ, δC , sA × sB , {(f, q)}); in other words, (f, q) is the only
final state of C.

–
−→
Bq = (QB , Σ, δB , q, FB); in other words, q is the new start state of B.

x

y u

L(A) L(B)

u

uR

L(
←−−
Cf,q)

x qf
x

L(C)
x (f, q)

Fig. 6. An example of two FAs A and B such that PKR(L(A)) ∩PKR(L(B)) �= ∅. Note
that uR is an infix of the string x(2, |x| − 2).

Lemma 5. There exists a state (f, q) of C such that

L(
←−−
Cf,q) ∩ Σ∗ · (L(

−→
Bq)R · Σ2) · Σ∗
= ∅

or a state (p, f ′) of C such that

L(
←−−−
Cp,f ′) ∩ Σ∗ · (L(

−→
Ap)R · Σ2) · Σ∗
= ∅

if and only if PKR(L(A)) ∩ PKR(L(B))
= ∅.

250 D.-J. Cho et al.

Once we have an intersection FA C, there are at most |QA||QB | states in
the form of (f, q) or (p, f ′). Then, for each state, say (f, q), we need to check
whether or not L(

←−−
Cf,q) ∩ Σ∗ · (L(

−→
Bq)R · Σ2) · Σ∗ is empty. Since the size of Cf,q

is at most |A||B| and the size of
−→
Bq is at most |B|, it takes O(|A||B|2) time.

Therefore, in the worst-case, the total runtime is

O(n2) (the number of states) × O(n6) (intersection test) = O(n8),

where n is the maximum number of states between A and B.

Theorem 4. Given two FAs A and B, we can determine whether or not

PKR(L(A)) ∩ PKR(L(B))
= ∅

in polynomial-time.

Often we need to verify if there exists a pseudoknot in the input set—a set
of strings. In biology, a RNA sequence might first fold into non-pseudoknot, and
then form a more complex structure including pseudoknots. According to this
phenomenon, Jabbari and Condon [10] considered non-pseudoknots for predict-
ing pseudoknots capturing all possible pre-structures of pseudoknots.

When an input set has a finite number of elements, we may check them one by
one. However, if the set is infinite, then we need a better algorithm. We consider
this problem when the set is a regular language. Before we present an algorithm,
we define the inverse restricted pseudoknot-generating operation PKR

−1 to be

PKR
−1(w) = {x1x2x3 | w ∈ x1x2x3x

R
1 x4x

R
3 , x1, x2, x3, x4 ∈ Σ+}.

Lemma 6. Let A be an NFA. Then there exists an NFA A′ such that

L(A′) = PKR
−1(L(A)).

Corollary 2. Given an NFA A, we can determine if A accepts a pseudoknot.

Note that it is decidable to determine whether or not a given regular lan-
guage contains a pseudoknot. Here, we contrast the result of Corollary 2 by
showing that it is undecidable whether or not a context-free language con-
tains a pseudoknot. We use a reduction from the Post Correspondence Prob-
lem (PCP) [20]. Recall that an instance of PCP consists of two lists of strings
((u1, . . . , un), (v1, . . . , vn)), ui, vi ∈ Σ∗, 1 ≤ i ≤ n, and a solution of this instance
is a sequence of integers i1, . . . , ik ∈ {1, . . . , n} such that ui1 · · · uik = vi1 · · · vik .
It is well known that PCP is unsolvable [20].

Proposition 1. For a given context-free language L, it is undecidable whether
or not L contains a pseudoknot.

Pseudoknot-Generating Operation 251

4.2 Pseudoknot-Free Languages

Analogously with the definition of restricted code classes, such as prefix- or suffix-
codes [12], we define that a language L is PKR-free (informally just pseudoknot-
free) if no string of L is a pseudoknot generated by another string of L.

Definition 1. We say that a language L is PKR-free if L ∩ PKR(L) = ∅.
In DNA coding applications, pseudoknots are in general undesirable because

they can result in undesired bonds in DNA sequences [13,14]. This means that if
we can efficiently check the property of PKR-freeness, it might be worthwhile to
add a preprocessing stage for predicting pseudoknot-structures. Note that some
approaches for prediction pseudoknots consider also “non-pseudoknots” because
an RNA sequence can fold a non-pseudoknot to form a pseudoknot.

We consider the case when L is regular and show that we can decide whether
or not L is PKR-free. We use a similar construction for constructing an FA
for PKR

−1.

Lemma 7. Let A be an FA. Then there exists an NFA A′ that accepts a set of
strings u = u1u2u3 such that uR

1 u4u
R
3 u1u2u3 ∈ L(A).

Theorem 5. Given an FA A, we can determine whether or not L(A) is PKR-
free in polynomial-time.

Here, we observe that deciding PKR-freeness of a context-free language is
undecidable based on Proposition 1.

Theorem 6. For a given context-free language L it is undecidable whether or
not L is PKR-free.

5 Conclusions

We have considered one of RNA structures called pseudoknot and specific
phenomenon in which a sequence expands itself and forms a pseudoknot. We
have defined the restrict version of the pseudoknot-generating operation: For a
string x, PKR(x), roughly speaking, consists of all possible continuations of x
that can fold back onto x to form a pseudoknot.

We have investigated (closure-)properties of pseudoknot-generating operation
on a string and designed linear-time algorithm for determining whether or not
given string is a pseudoknot. We have shown that for two strings x and y, it is
decidable whether or not PKR(x) ∩ PKR(y)
= ∅. Moreover, we have examined
the pseudoknot-generating operation on languages, and showed that regular and
context-free languages are not closed under pseudoknot-generating. On the other
hand, we have established that given two FAs A and B, it is decidable whether
or not PKR(L(A)) ∩ PKR(L(B))
= ∅ in polynomial-time in the size of A and B.
Furthermore, we have shown that it is decidable whether or not a given regular
language is PKR-free in polynomial-time. However, it is undecidable to determine
whether or not a given context-free language is PKR-free.

252 D.-J. Cho et al.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Appl. Math. 104(1), 45–62 (2000)

3. Brierley, I., Digard, P., Inglis, S.C.: Characterization of an efficient coronavirus
ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57(4),
537–547 (1989)

4. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA
pseudoknotted structures. Theor. Comput. Sci. 320(1), 35–50 (2004)

5. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational
nucleic acid design. Nucleic Acids Res. 32(4), 1392–1403 (2004)

6. Doose, G., Metzler, D.: Bayesian sampling of evolutionarily conserved RNA sec-
ondary structures with pseudoknots. Bioinformatics 28(17), 2242–2248 (2012)

7. Du, Z., Hoffman, D.W.: An NMR and mutational study of the pseudoknot within
the gene 32 mRNA of bacteriophage T2: insights into a family of structurally
related RNA pseudoknots. Nucleic Acids Res. 25(6), 1130–1135 (1997)

8. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. J.
Discrete Algorithms 9(4), 335–343 (2011)

9. Giedroc, D.P., Theimer, C.A., Nixon, P.L.: Structure, stability and function of
RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol.
298(2), 167–185 (2000)

10. Jabbari, H., Condon, A.: A fast and robust iterative algorithm for prediction of
RNA pseudoknotted secondary structures. BMC Bioinform. 15(1), 147 (2014)

11. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. J. Comput. Biol. 9(2), 371–388 (2002)

12. Jürgensen, H., Konstantinidis, S.: Codes. In: Word, Language, Grammar. Hand-
book of Formal Languages, vol. 1, pp. 511–607 (1997)

13. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer Descriptions of DNA Code
Properties and Undecidability of Antimorphic Problems. arXiv:1503.00035 (2015)

14. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat.
Comput. 9(2), 297–316 (2010)

15. Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput.
Syst. Sci. 75(2), 113–121 (2009)

16. Knuth, D.E., Morris Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

17. Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA
structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.)
CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)

18. Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameter-
ized algorithms for RNA structure-sequence alignment including tertiary interac-
tions and pseudoknots. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol.
7534, pp. 149–164. Springer, Heidelberg (2012)

19. Saraiya, A.A., Lamichhane, T.N., Chow, C.S., SantaLucia Jr, J., Cunningham,
P.R.: Identification and role of functionally important motifs in the 970 loop of
Escherichia coli 16S ribosomal RNA. J. Mol. Biol. 376(3), 645–657 (2008)

20. Shallit, J.: A Second Course in Formal Languages and Automata Theory, vol. 179.
Cambridge University Press, Cambridge (2009)

http://arxiv.org/abs/1503.00035

	Pseudoknot-Generating Operation
	1 Introduction
	2 Preliminaries
	3 Algorithms for Recognizing Generated Pseudoknots
	4 Pseudoknot-Generating Operation on Languages
	4.1 Closure and Decision Properties of the Pseudoknot-Generating Operation
	4.2 Pseudoknot-Free Languages

	5 Conclusions
	References

