
Pseudo-inversion on Formal Languages

Da-Jung Cho1, Yo-Sub Han1, Shin-Dong Kang1, Hwee Kim1,
Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemum-Gu, Seoul 120–749, Republic of Korea

{dajung,emmous,shindong1992,kimhwee,narame7}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We consider the pseudo-inversion operation inspired by a bi-
ological event as a result of the partial inversion. We define the pseudo-
inversion of a string w = uxv to consist of all strings vRxuR, where
uv �= λ and consider the operation from a formal language theoretic
viewpoint. We show that regular languages are closed under the pseudo-
inversion operation whereas context-free languages are not. Furthermore,
we consider the iterated pseudo-inversion operation and establish the
basic properties. Finally, we introduce the pseudo-inversion-freeness and
examine closure properties and decidability problems for regular and
context-free languages. We establish that pseudo-inversion-freeness is de-
cidable in polynomial time for regular languages and undecidable for
context-free languages.

1 Introduction

There have been many approaches that relate biological phenomena to formal
languages. This makes it possible to study biological phenomena using tools of
formal language theory [7, 8]. Several researchers investigated the algebraic and
code-theoretic properties of DNA encoding based on formal language theory [11,
13, 14, 17]. Jonoska et al. [13] introduced involution codes based on the Watson-
Crick complementarity, and Kari and Mahalingam [17] investigated the algebraic
properties of DNA languages that avoid intermolecular cross hybridization. Kari
et al. [16] also studied the DNA hairpin-free structure with respect to algebraic
and decision properties.

A DNA sequence undergoes various transformations from the primitive se-
quence through the biological operations such as insertions, deletions, substitu-
tions, inversions, translocations and duplications. This motivates researchers to
investigate the genetic operations for tracing the evolution process on a DNA
sequence [1, 3–6, 18, 21, 23, 25]. For the DNA evolutionary analysis, an inver-
sion—an operation to reverse an infix (substring) of a sequence—is one of the
well-studied operations in both DNA computing and formal language theory.
Yokomori and Kobayashi [25] showed that the inversion can be simulated by the

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 93–104, 2014.
DOI: 10.1007/978-3-319-08123-6_8, c© Springer International Publishing Switzerland 2014

94 D.-J. Cho et al.

set of primitive operations and languages using GSM mapping. Dassow et al. [6]
noticed that regular and context-free languages are closed under the inversion.
They also proved that regular and context-free languages are not closed under
the iterated inversion. Daley et al. [4, 5] investigated the closure and decidability
properties of some language classes with respect to biological operations includ-
ing the hairpin inversion, which is an extended variant of the inversion. Since
the inversion is an important operation in biology, researchers investigated the
string matching and alignment problems considering inversions [1, 18, 21, 23].

Here we define a new operation called a pseudo-inversion operation. While
the inversion operation reverses an infix of an input sequence, a pseudo-inversion
operation reverses only the outermost parts of the sequence and the middle part
of the sequence is not reversed. See Fig. 1 for an example.

We notice that there are two possible situations where a pseudo-inversion
occurs in practice. The first case is—an inversion operation itself is a mutational
process—that the inversion process may not be completed in the sense that the
sequence of the central part is not fully reversed in the process. The second case
is that an inversion is carried out once and the central part of the reversed part
is reversed once again; this makes the sequence of the central part where the
inversion is applied twice the same as the original sequence. Given two strings
of the same length, we design a linear-time algorithm that determines whether
or not one string is a pseudo-inversion of the other string.

(a) Inversion (b) Pseudo-inversion

Fig. 1. The left figure describes the inversion operation and the right figure describes
the pseudo-inversion operation. Note that the sequence in the dotted box is not reversed
in pseudo-inversion.

We also introduce an iterated pseudo-inversion operation based on the pseudo-
inversion. We establish some closure properties of the pseudo-inversion and the
iterated pseudo-inversion on regular languages and context-free languages. More-
over, we demonstrate that the iterated pseudo-inversion of a context-free lan-
guage is recognized by a nondeterministic reversal-bounded multicounter ma-
chine. Furthermore, we investigate the decision problems regarding the proposed
operations. In particular, we study the question whether a given language L is
pseudo-inversion-free, that is, no string of L contains a pseudo-inversion of an-
other string of L as a substring. Analogous properties have been studied in the
theory of codes [15] and pseudo-inversion-free languages have potential applica-
tions in DNA encoding.

We give basic definitions and notations in Section 2. We define the pseudo-
inversion operation and the iterated pseudo-inversion in Section 3. Some closure

Pseudo-inversion on Formal Languages 95

properties of the proposed operations are also studied in Section 3. Then, we con-
sider the decision problems—whether or not a given language is pseudo-inversion-
free—and the closure properties of pseudo-inversion-free languages in Section 4
and conclude the paper in Section 5.

2 Preliminaries

We briefly present definitions and notations. Let N be the set of positive integers
and N0 be the set of non-negative integers. Let S be a set and k be a positive
integer. We use [S]k to denote the set of all k-tuples (s1, s2, . . . , sk), where si ∈ S.

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language, the
symbol λ denotes the null string and Σ+ denotes Σ∗ \ {λ}. Given a string w, we
denote the reversal of w by wR. Let |w| be the length of w. For each a ∈ Σ, we
denote the number of occurrences of a in w by |w|a. Given a language L ∈ Σ∗, L̄
denotes the complement of L—Σ∗ \ L. Given an alphabet Σ = {a1, a2, . . . , ak},
let Ψ : Σ∗ → [N0]

k be a mapping defined by Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

This function is called a Parikh mapping and Ψ(w) is called the Parikh vector of
w. We denote the symbol of the string w at position i by w[i] and the substring
w[i]w[i + 1] · · ·w[j] of w by w[i · · · j], where 1 ≤ i ≤ j ≤ |w|. We say that
languages L1 and L2 are letter-equivalent if {Ψ(w) | w ∈ L1} = {Ψ(w) | w ∈ L2}.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-tuple
A = (Q,Σ, δ,Q0, F) where Q is a finite set of states, Σ is a finite alphabet, δ
is a multi-valued transition function from Q × (Σ ∪ λ) into 2Q, Q0 ⊆ Q is the
set of initial states and F ⊆ Q is the set of final states. By an NFA we mean
a nondeterministic automaton without λ-transitions, that is, A is an NFA if δ
is a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA)
if Q0 is a singleton set and δ is a (single-valued) function Q × Σ → Q. The
language L(A) recognized by A is the set of strings w such that some sequence
of transitions spelling out w takes an initial state of A to a final state.

It is well known that λ-NFAs, NFAs and DFAs all recognize the regular lan-
guages [22, 24]. Note that any regular language recognized by a λ-NFA of size n
can be also recognized by an NFA with the same number of states [24].

Proposition 1 (Wood [24]). The language recognized by a λ-NFA A can be
also recognized by an NFA (without λ-transitions) of the same number of states
as A.

A context-free grammar (CFG) G is a four-tuple G = (V,Σ,R, S), where V
is a set of variables, Σ is a set of terminals, R ⊆ V × (V ∪Σ)∗ is a finite set of
productions and S ∈ V is the start variable. Let αAβ be a string over V ∪ Σ,
where A ∈ V and A → γ ∈ R. Then, we say that A can be rewritten as γ
and the corresponding derivation step is denoted by αAβ ⇒ αγβ. The reflexive,
transitive closure of ⇒ is denoted by

∗⇒ and the context-free language generated
by G is L(G) = {w ∈ Σ∗ | S ∗⇒ w}.

96 D.-J. Cho et al.

A context-sensitive grammar (CSG) G is a four-tuple G = (V,Σ,R, S), where
V is a set of variables, Σ is a set of terminals, R ⊆ (V ∪Σ)∗V (V ∪Σ)∗×(V ∪Σ)∗

is a finite set of productions and S ∈ V is the start variable.
A nondeterministic reversal-bounded multicounter machine (NCM) [2, 12]

consists of a finite state control that reads input one-way from the input tape
and a finite number of counters, that is a pushdown store over a one-letter al-
phabet. Furthermore, the counters are reversal-bounded, that is, the number of
alternations between the non-decreasing and the non-increasing mode for each
counter is bounded by a constant.1 Thus, an NCM is a λ-NFA equipped with a
finite number of reversal-bounded counters.

The reader may refer to the textbooks [10, 22, 24] for complete knowledge of
formal language theory.

3 Pseudo-inversion

The pseudo-inversion reverses a given string, but the central part of the string
may not be reversed. This is the reason why we call the operation the pseudo-
inversion. Fig. 2 depicts an example of a pseudo-inversion of a string.

w[1] w[i] w[j] w[n]w

PI(w) w[n] w[j] w[1]w[i]

u x v

vR x uR

Fig. 2. Given a string w = uxv, the pseudo-inversion PI(w) of w is defined as vRxuR,
where vu �= λ

Formally, we define the pseudo-inversion as follows:

Definition 1. For a string w ∈ Σ∗, we define the pseudo-inversion of w to be

PI(w) = {vRxuR | u, x, v ∈ Σ∗, w = uxv, and vu 	= λ}.
As a special case, the pseudo-inversion of λ is λ. We can extend the pseudo-

inversion of strings to languages. Given a language L, PI(L) =
⋃

w∈L

PI(w). We

also define an iterated pseudo-inversion operation, which is an iterated version of
the pseudo-inversion. First, we set PI1(w) = PI(w). Given a string w, we define
PI

i+1(w) = PI(PIi(w)) for a positive integer i > 0.

Definition 2. Given a string w, we define the iterated pseudo-inversion PI
∗(w)

of w to be PI
∗(w) =

∞⋃

i=1

PI
i(w).

1 Unrestricted two-counter machines accept all recursively enumerable languages [9].

Pseudo-inversion on Formal Languages 97

Furthermore, given a languageL, we define the iterated pseudo-inversion PI
∗(L)

of L to be PI∗(L) =
⋃

w∈L

PI
∗(w).

Next we define a pseudo-inversion-free language L (or code) where there is
no pair of strings in L such that a string is a pseudo-inversion substring of the
other string.

Definition 3. Let L ⊆ Σ∗ be a language. We define L to be pseudo-inversion-
free if no string in L is a pseudo-inversion substring of any other string in L.
In other words, L is pseudo-inversion-free if Σ∗ · PI(L) ·Σ∗ ∩ L = ∅.

3.1 Closure Properties of Pseudo-inversion

It is well-known that regular languages are closed under the reversal operation.
Given an NFA recognizing a regular language L, we can easily obtain an NFA
of the same size for the reversal of L by flipping the transition directions and
exchanging the set of initial states and the final states [10, 24]. We may need
one more state if we do not allow the multiple initial states.

We show that regular languages are also closed under the pseudo-inversion
operation.

Theorem 1. If L is a regular language, then PI(L) is also regular.

Theorem 1 shows that regular languages are closed under the pseudo-inversion
operation. Based on the result, we have the following observation.

Observation 2. Given a regular language L, PI
n(L) is regular for any inte-

ger n ≥ 1.

Notice that context-free languages are closed under reversal operation [10].
However, we demonstrate that context-free languages are not closed under the
pseudo-inversion operation.

Theorem 3. Context-free languages are not closed under the pseudo-inversion.

Proof. We prove the statement by the context-free pumping lemma [10, 24].
Consider the context-free language L = {aibjcjdi | i, j ≥ 1}.

We pick a string w = d2nc2nanb2nan ∈ PI(L), where n is the pumping con-
stant, see Fig. 3. According to the pumping lemma we can split w into five parts,
w = uvxyz, where the parts u, v, x, y and z satisfy the conditions of the pumping
lemma. By the pumping lemma |vxy| ≤ n, and hence vxy cannot contain both
a’s and d’s and vxy cannot contain both b’s and c’s.

Remember that if a stringw is in PI(L), then |w|a = |w|d and |w|b = |w|c should
hold. However, since vy 	= λ, the string uv2xy2z does not satisfy this condition.
Therefore, uv2xy2z 	∈ PI(L) and we conclude that PI(L) is not context-free. �

98 D.-J. Cho et al.

a2n b2n c2n d2n

d2n c2n an anb2n

reverse

Fig. 3. For a language L = {aibjcjdi | i, j ≥ 1}, we pick a string d2nc2nanb2nan ∈
PI(z), where z = a2nb2nc2nd2n ∈ L

3.2 Iterated Pseudo-inversion

We investigate the closure properties of the iterated pseudo-inversion operation.
It turns out that the iterated pseudo-inversion is equivalent to the permutation
operation. Given a string w, let π(w) be the set of all permutations of w, that
is, π(w) = {u ∈ Σ∗ | (∀a ∈ Σ)|u|a = |w|a}.

We establish the following result:

Theorem 4. Given a string w over Σ, the iterated pseudo-inversion of w is the
same as the set of all possible permutations of w; namely, PI∗(w) = π(w).

Based on Theorem 4, we show that regular and context-free languages are not
closed under the iterated pseudo-inversion.

Lemma 1. Regular languages and context-free languages are not closed un-
der the iterated pseudo-inversion operation. Furthermore, the iterated pseudo-
inversion of a regular language need not be context-free.

Proof. Consider a regular language L = {(abc)∗}. For L, the iterated pseudo-
inversion PI

∗(L) of L is

PI
∗(L) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}.

We note that
PI

∗(L) ∩ a∗b∗c∗ = {aibici | i ≥ 0}
is not context-free. Since the regular languages and the context-free languages
are closed under intersection with regular languages, the claim follows. �

Below in Proposition 2 we see that the family of context-sensitive languages
is closed under the iterated pseudo-inversion, and consequently it follows that
the iterated pseudo-inversion of a regular or a context-free language is always
context-sensitive.

In fact, as a consequence of Theorem 4 we see that the iterated pseudo-
inversion of a context-free language can be recognized by a reversal-bounded
multicounter machine NCM that defines a considerably more restricted language
family than the context-sensitive languages. The Parikh set of any language
recognized by an NCM is semi-linear and the emptiness problem for NCMs is
decidable [12]. Furthermore, the NCMs cannot recognize, for example, the set of
marked palindromes {w#wR | w ∈ {0, 1}∗} [2].

Pseudo-inversion on Formal Languages 99

Corollary 1. If L is a context-free language over an alphabet Σ, PI∗(L) can be
recognized by an NCM with |Σ| counters that each makes only one reversal.

Proof. There exists a regular language L′ that is letter equivalent to L ([20],
part I, Theorem 7.2) and let A be an NFA for L′. On an input w, the NCM
stores the value |w|a for each a ∈ Σ in the available counters. After that, using
λ-transitions, the NCM simulates the NFA A for L′. For a transition of A on
input b ∈ Σ, the counter corresponding to symbol b is decremented and at the
end of the computation the NCM checks that all the counters are empty.

By Theorem 4, the NCM recognizes the language PI
∗(L). �

Corollary 1 uses only Theorem 4 and the observation that the Parikh set of
a context-free language is semi-linear, which means that the corollary can be
stated as:

Corollary 2. If the Parikh set of L is semi-linear, then PI
∗(L) can be recognized

by a reversal-bounded multicounter machine.

Corollary 2 implies, in particular, that the family of languages recognized
by reversal-bounded multicounter machines is closed under iterated pseudo-
inversion. To conclude this section we examine the closure properties for context-
sensitive languages and establish the following result. A similar result for inver-
sion of context-sensitive languages is known from Dassow et al. [6].

Proposition 2. Given a context-sensitive languageL,PI∗(L) is context-sensitive.

4 Pseudo-inversion-Freeness

We investigate the decidability problem for pseudo-inversion-freeness and estab-
lish the closure properties of pseudo-inversion-free languages.

4.1 Decidability of Pseudo-inversion-freeness

We say that a language L is pseudo-inversion-free if no string in L is a pseudo-
inversion substring of any other string in L. We consider the decidability problem
of pseudo-inversion-freeness when L is regular or context-free.

We first consider a simple case when we are given two strings of the same
length. We determine whether or not a string is not a pseudo-inversion of the
other string. In other words, given two strings u and v, is u in PI(v)? We present
a linear-time algorithm in the size of u for the question. We rely on the following
observation to simplify the presentation of the algorithm.

Observation 5. Let u and v be two strings of the same length. Then, u ∈ PI(v)
if and only if u = wxy and vR = wxRy, where wy 	= λ.

The main idea of the linear-time algorithm is to scan two strings vR and
u from both end-sides until we find an index where two strings have different

100 D.-J. Cho et al.

Algorithm 1. A linear-time algorithm for deciding v ∈ PI(u)

Input: Two strings u and v of the same length n
1 i ← 0
2 j ← n

3 while i ≤ n ∧ u[i] = vR[i] do i ← i+ 1

4 while 1 ≤ j ∧ u[j] = vR[j] do j ← j − 1
5 if i ≥ j then return false
6 else
7 for k = i to j do
8 if u[k] �= vR[i+ j − k] then return false

9 return true

characters. Let ML denote the left maximum matching index, where the first
discrepancy occurs and MR denote the right maximum matching index where
the last discrepancy occurs. Lastly, we check whether or not u[ML · · ·MR]

R =
vR[ML · · ·MR]. See Algorithm 1 for the whole procedure.

Theorem 6. Given two strings u and v of length n, we can determine whether
or not v ∈ PI(u) in O(n) time.

We can also determine if v ∈ PI
∗(u) by checking whether or not the two

Parikh vectors Ψ(u) and Ψ(v) are the same.

Corollary 3. Given two strings u and v of length n, we can determine whether
or not v ∈ PI

∗(u) in O(n) time.

Next, we consider the regular language case. Recalling from Definition 3 the
notion of pseudo-inversion-freeness, we can decide whether or not a regular lan-
guage L is pseudo-inversion-free by checking whether or notΣ∗·PI(L)·Σ∗∩L = ∅.
Theorem 7. Given an FA of size n recognizing a regular language L, we can
determine whether or not L is pseudo-inversion-free in O(n4) time.

Proof. Based on the NFA construction in Theorem 1, we can construct an NFA
of size O(n3) recognizing PI(L). Since we can check the intersection emptiness
of two NFAs of size m and n in O(mn) time [24], we can determine whether or
not L is pseudo-inversion-free in O(n3 × n) = O(n4) time. �

Theorem 7 shows that it is decidable whether or not a given language L
is pseudo-inversion-free in polynomial time when L is regular. We prove that
pseudo-inversion-freeness is undecidable for context-free languages.

First we recall the following undecidability result. An instance of the Post’s
Correspondence Problem (PCP) [19] consists of n ∈ N and two ordered n-tuples
of strings (U, V), where U = (u0, u1, . . . , un−1) and V = (v0, v1, . . . , vn−1),
ui, vi ∈ Σ∗, 0 ≤ i ≤ n − 1. A solution for the PCP instance (U, V) is a se-
quence of integers i1, . . . , ik, 0 ≤ ij ≤ n− 1, j = 1, . . . , k, k ≥ 1, such that

ui1ui2 · · ·uik = vi1vi2 · · · vik .

Pseudo-inversion on Formal Languages 101

Proposition 3 (E. Post [19]). The decision problem of determining whether
or not a given PCP instance has a solution is unsolvable.

Now we can prove that deciding the pseudo-inversion-freeness of a given
context-free language is undecidable by reducing PCP to this problem.

Theorem 8. It is undecidable to determine whether or not a given context-free
language L is pseudo-inversion-free.

Proof. Let Σ be an alphabet and (U, V) be an instance of Post’s Correspon-
dence Problem, where U = (u0, u1, . . . , un−1) and V = (v0, v1, . . . , vn−1). As-
sume that the symbols 0, 1,#, $,%, φ, � and � are not in Σ. Let Σ′ = Σ ∪
{0, 1,#, $,%, φ, �, �}. For any nonnegative integer i, let βi be the shortest binary
representation of i.

We define a linear grammar G = (N,Σ′, R, S), where

– N = {S, TU , TV } is a nonterminal alphabet,
– Σ′ is a terminal alphabet,
– S is the sentence symbol, and
– R has the following rules:

• S → βiφTUui##%��� | ��%�##vRi TV φβi,
• TU → βiφTUui | βi$ui, and
• TV → vRi TV φβi | vRi $βi

for i ∈ {0, 1, . . . , n− 1}.

Then L(G) consists of the following strings:

βin−1φ · · ·φβi0$ui0 · · ·uin−2uin−1##%��� (1)

and
��%�##vRin−1

vRin−2
· · · vRi0$βi0φ · · ·φβin−1 . (2)

We now show that L(G) is not pseudo-inversion-free if and only if the PCP
instance (U, V) has a solution.
(⇐=)We prove that L(G) is not pseudo-inversion-free if the PCP instance (U, V)
has a solution. Assume that the PCP instance (U, V) has a solution. Let z = vwx
and z′ = uxRwvRy, where xv 	= λ. Then, L is not pseudo-inversion-free if both
z′ and z exist in L. Since the PCP instance has a solution by the assumption,
there should be a sequence i0, i1, . . . , in−2, in−1 satisfying

ui0 · · ·uin−2uin−1 = vi0 · · · vin−2vin−1 .

Now we decompose (1) into uvwxy such that

– v = βin−1φ · · ·φβi0$ui0 · · ·uin−2uin−1##,
– w = %�,
– x = ��, and
– u, y = λ.

102 D.-J. Cho et al.

Then, xRwvR = ��%�##uin−1uin−2 · · ·ui0$βi0φ · · ·φβin−1 ∈ L(G). Therefore,
L(G) is not pseudo-inversion-free.
(=⇒) If L(G) is not pseudo-inversion-free, then there exist two strings z =
vwx and z′ = uxRwvRy in L(G), where xv 	= λ. Then, there are two possible
decompositions as follows:

C1. u = λ, v = βin−1φ · · ·φβi0$ui0 · · ·uni−1##, w = %�, x = ��, and y = λ.
C2. u = λ, v = ��, w = %�, x = ##vRin−1

vRin−2
· · · vRi0$βi0φ · · ·φβin−1 , and y = λ.

It implies that the PCP instance (U, V) has a solution since

v = βin−1φ · · ·φβi0$ui0 · · ·uni−1##

should be equal to

xR = βin−1φ · · ·φβi0$vi0 · · · vni−1##.

Thus, L(G) is not pseudo-inversion-free if and only if the PCP instance (U, V)
has a solution. Since PCP is undecidable [19], it is also undecidable whether or
not L is pseudo-inversion-free when L is context-free. �

We summarize the results for decision properties of pseudo-inversion-freeness:

(i) It can be decided in polynomial time whether or not a given regular language
is pseudo-inversion-free (Theorem 7).

(ii) It is undecidable whether or not a given linear context-free language is
pseudo-inversion-free (Theorem 8).

4.2 Closure Properties of Pseudo-inversion-free Languages

We first consider closure properties of the pseudo-inversion-free languages under
the basic operations.

Theorem 9. Pseudo-inversion-free languages are closed under intersection but
not under catenation or union.

We note that the pseudo-inversion free languages are not closed under com-
plementation nor Kleene star. Moreover, the complementation or the Kleene star
of any pseudo-inversion-free language is not pseudo-inversion-free.

Theorem 10. For any pseudo-inversion-free language L ⊆ Σ∗, L̄ is not pseudo-
inversion-free.

Theorem 11. For a nonempty language L ⊆ Σ∗ \ {λ}, Lm ∪Ln is not pseudo-
inversion-free, for 1 ≤ m < n. Moreover, L∗ is not pseudo-inversion-free, either.

Proof. Let w = au be a string in L, where a ∈ Σ and u ∈ Σ∗. Then, we have
wm ∈ Lm and wn ∈ Ln. Then, wm = av and wn = avwn−m, where v = uwm−1.
Since w = au, wn = avauwn−m−1 in which va appears as a substring. Since
va ∈ PI(wm), Lm ∪ Ln is not pseudo-inversion-free. It is easy to see that L∗ is
not pseudo-inversion-free since L∗ = L0 ∪ L1 ∪ L2 ∪ · · · . �

Pseudo-inversion on Formal Languages 103

5 Conclusions

We have defined a biologically inspired operation called the pseudo-inversion.
Informally, the pseudo-inversion incompletely reverses the order of strings while
the inversion operation reverses the order of infix of strings. Given a string
w = uxv, we define the pseudo-inversion of w to be the set of strings vRxuR,
where uv 	= λ.

We have investigated the closure properties of the pseudo-inversion operation
and the iterated pseudo-inversion operation. While regular languages are closed
under the pseudo-inversion, context-free languages are not closed. Moreover, we
have established that the iterated pseudo-inversion is equivalent to the permu-
tation operation. We also have considered the problem of deciding whether or
not a given language is pseudo-inversion-free. We have designed a polynomial-
time algorithm for regular languages and established an undecidability result for
linear context-free languages.

Acknowledgements. Cho, Han, Kang and Ko were supported by the Basic Sci-
ence Research Program through NRF funded by MEST (2012R1A1A2044562),
Kim was supported by NRF-2013-Global Ph.D. Fellowship Program and Salo-
maa was supported by the Natural Sciences and Engineering Research Council
of Canada Grant OGP0147224.

References

1. Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-
overlapping inversions. Theoretical Computer Science 483, 85–95 (2013)

2. Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: One-reversal counter
machines and multihead automata: Revisited. Theoretical Computer Science 454,
81–87 (2012)

3. Cho, D.-J., Han, Y.-S., Kim, H.: Alignment with non-overlapping inversions on
two strings. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344,
pp. 261–272. Springer, Heidelberg (2014)

4. Daley, M., Ibarra, O.H., Kari, L.: Closure and decidability properties of some
language classes with respect to ciliate bio-operations. Theoretical Computer Sci-
ence 306(1-3), 19–38 (2003)

5. Daley, M., Kari, L., McQuillan, I.: Families of languages defined by ciliate bio-
operations. Theoretical Computer Science 320(1), 51–69 (2004)

6. Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices
suggested by the genome evolution. Theoretical Computer Science 270(1), 701–738
(2002)

7. Deaton, R., Garzon, M., Murphy, R.C., Rose, J.A., Franceschetti, D.R., Stevens
Jr., S.E.: Genetic search of reliable encodings for DNA-based computation. In:
First Conference on Genetic Programming, pp. 9–15 (1996)

8. Garzon, M., Deaton, R., Nino, L.F., Stevens, E., Wittner, M.: Encoding genomes
for DNA computing. In: Proceedings of the Third Annual Conference on Genetic
Programming 1998, pp. 684–690 (1998)

104 D.-J. Cho et al.

9. Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages.
North-Holland Publishing Company (1975)

10. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation, 2nd edn. Addison-Wesley, Reading (1979)

11. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages.
Theoretical Computer Science 290(3), 1557–1579 (2003)

12. Ibarra, O.H.: Reversal bounded multicounter machines and their decision problems.
Journal of the ACM 25, 116–133 (1978)

13. Jonoska, N., Kari, L., Mahalingam, K.: Involution solid and join codes. Fundamenta
Informaticae 86(1-2), 127–142 (2008)

14. Jonoska, N., Mahalingam, K., Chen, J.: Involution codes: With application to DNA
coded languages. Natural Computing 4(2), 141–162 (2005)

15. Jürgensen, H., Konstantinidis, S.: Codes. In: Handbook of Formal Languages. I,
pp. 511–607. Springer (1997)

16. Kari, L., Losseva, E., Konstantinidis, S., Sośık, P., Thierrin, G.: A formal lan-
guage analysis of DNA hairpin structures. Fundamenta Informaticae 71(4), 453–475
(2006)

17. Kari, L., Mahalingam, K.: DNA codes and their properties. In: Mao, C., Yokomori,
T. (eds.) DNA12. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg (2006)

18. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for the inversion
distance between two chromosomes. In: Apostolico, A., Crochemore, M., Galil, Z.,
Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg
(1993)

19. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52(4), 264–268 (1946)

20. Salomaa, A.: Formal Languages. Academic Press (1973)
21. Schniger, M., Waterman, M.S.: A local algorithm for DNA sequence alignment

with inversions. Bulletin of Mathematical Biology 54(4), 521–536 (1992)
22. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-

bridge University Press (2009)
23. Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping in-

versions in O(n3)-time. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS
(LNBI), vol. 4175, pp. 186–196. Springer, Heidelberg (2006)

24. Wood, D.: Theory of Computation. Harper & Row (1986)
25. Yokomori, T., Kobayashi, S.: DNA evolutionary linguistics and RNA structure

modeling: A computational approach. In: Proceedings of the 1st Intelligence in
Neural and Biological Systems, pp. 38–45. IEEE Computer Society (1995)

	Pseudo-inversion on Formal Languages
	1 Introduction
	2 Preliminaries
	3 Pseudo-inversion
	3.1 Closure Properties of Pseudo-inversion
	3.2 Iterated Pseudo-inversion

	4 Pseudo-inversion-Freeness
	4.1 Decidability of Pseudo-inversion-freeness
	4.2 Closure Properties of Pseudo-inversion-free Languages

	5 Conclusions
	References

