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Abstract. The inversion is one of the important operations in bio se-
quence analysis and the sequence alignment problem is well-studied for
efficient bio sequence comparisons. Based on inversion operations, we
introduce the alignment with non-overlapping inversion problem: Given
two strings x and y, does there exist an alignment with non-overlapping
inversions for x and y. We, in particular, consider the alignment problem
when non-overlapping inversions are allowed for both x and y. We design
an efficient algorithm that determines the existence of non-overlapping
inversions and present another efficient algorithm that retrieves such an
alignment, if exists.

1 Introduction

In modern biology, it is important to determine exact orders of DNA se-
quences, retrieve relevant information of DNA sequences and align these se-
quences [1, 7, 12, 13]. For a DNA sequence, a chromosomal translocation is to
relocate a piece of the DNA sequence from one place to another and, thus, re-
arrange the sequence [9]. The chromosomal translocation is a crucial operation
in DNAs since it alters a DNA sequence and often causes genetic diseases [10].
A chromosomal inversion occurs when a single chromosome undergoes break-
age and rearrangement within itself [11]. Based on the important biological
events such as translocation and inversion, there is a well-defined string match-
ing problem: given two strings and translocation or inversion, the string match-
ing problem is finding all matched strings allowing translocations or inversions.
Moreover, people proposed an alignment with translocation or inversion prob-
lem, which is closely related to find similarity between two given strings; that is
to obtain minimal occurrences of translocation or inversion that transform one
to the other. Many researchers investigated efficient algorithms for this prob-
lem [1–4, 6, 8, 13, 14].

The inversions, which are one of the important biological operations, are not
automatically detected by the traditional alignment algorithms [14]. Schöniger
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and Waterman [13] introduced the alignment problem with non-overlapping in-
versions, defined a simplification hypothesis that all regions will not be allowed
to overlap, and showed an O(n6) algorithm that computes local alignments with
inversions between two strings of length n and m based on the dynamic pro-
gramming, where n ≥ m. Vellozo et al. [14] presented an O(n2m) algorithm,
which improved the previous algorithm by Schöniger and Waterman. They built
a matrix for one string and partially inverted string using table filling method
with regard to the extended edit graph. Recently, Cantone et al. [1] introduced
an O(nm) algorithm using O(m2) space for the string matching problem, which
is to find all locations of a pattern of length m with respect to a text of length n
based on non-overlapping inversions.

Many diseases are often caused by genetic mutations, which can be inherited
through generations and can result in new sequences from a normal gene [5]. In
other words, we may have two different sequences from a normal gene by different
mutations. This motivates us to examine the problem of deciding whether or not
two gene sequences are mutated from the same gene sequence. In particular, we
consider an inversion mutation. See Fig. 1 for an example.
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Fig. 1. An example of non-overlapping inversions on both strings x and y, where Θx =
(1, 2)(3, 3)′(4, 4)′(5, 7)(8, 8)′(9, 9) · · · (n− 1, n) and Θy = (1, 1)′(2, 6)(7, 8)(9, 9)′ · · · (n−
3, n − 1)(n, n)′. Note that (i, i)′ denotes the alignment at position i without comple-
menting x[i].

Note that this problem is different from the previous problem [13, 14], where
a non-overlapping inversion occurs only in one string and transforms the string
to the other string; namely Θ(x) = y for a set Θ of non-overlapping inversions.
On the other hand, we consider more general case where inversions can occur
in both x and y simultaneously. The problem is also equivalent to the string
alignment problem allowing the inversions occurring at most two times at the
same positions.

2 Preliminaries

Let A[a1][a2] · · · [an] be an n-dimensional array, where the size of each dimen-
sion is ai for 1 ≤ i ≤ n. Let A[i1][i2] · · · [in] be the element of A with in-
dices (i1, i2, . . . , in). Given a finite setΣ of character and a string s overΣ, we use
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|s| to denote the length of s and s[i] to denote the symbol of s at position i. We use
s(i,j) to denote a substring s[i]s[i+1] · · · s[j], where 1 ≤ i ≤ j ≤ |s|. We consider
biological operation inversion θ and denote by θ(s) the reverse and complement
of a string s. For example, θ(A) = T and θ(AGG) = θ(G)θ(G)θ(A) = CCT . We
define an inversion operation θ(i,j) for a given range i, j as follows:

θ(i,j)(s) = θ(s(i,j)).

For simplicity, we use (i, j) instead of θ(i,j) if the notation is clear in the

context. We say that i+j
2 is the center of the inversion for (i, j). We define a

set Θ of non-overlapping inversion to be

Θ = {(i, j) | 1 ≤ i ≤ j and for ∀(i′, j′) �= (i, j) ∈ Θ, j < i′ or j′ < i}.

Then, for a set Θ of non-overlapping inversions and a string s, we have Θ(s) = s′,
where

s′[i] =

{
θ(s[j + k − i]) if (j, k) ∈ Θ and j ≤ i ≤ k

s[i] otherwise.

For example, given Θ = {(1, 1), (2, 3)} and s = AGCC, we have Θ(s) =
θ(A)θ(GC)C = TGCC. From now on, we use a set of inversions instead of a
set of non-overlapping inversions since we only consider sets of non-overlapping
inversions.

Definition 1. We define a new alignment problem with non-overlapping inver-
sions on two strings as follows: Given two strings x and y of the same length,
can we determine whether or not there exist two sets Θx and Θy of inversions
such that Θx(x) = Θy(y)?

3 The Algorithm

We use x = AGCT and y = CGAA as our example strings for explaining the
algorithm. Remark that θ(AG)Cθ(T ) = CTCA = Cθ(GA)A and, thus, we have
two sets Θx = {(1, 2), (4, 4)} and Θy = {(2, 3)}.

We start from building a table in which each cell contains a pair of a range
and a character. We define an array Tx[n][n+ 1] for x as follows:

Tx[i][j] =

⎧⎪⎨
⎪⎩
((j, i), θ(x[j])) if j < i,

((i, i)′, x[i]) if j = i,

((i, j − 1), θ(x[j − 1])) if j > i.

We call all elements in Tx inversion fragments of x. For an inversion frag-
ment F = ((p, q), σ) or ((p, p)′, σ), we say that F yields the character σ and p+q

2
is the center of the inversion fragment. For a sequence of inversion fragments
F1, . . . ,Fn, where Fi yields σi, we say that the sequence yields a string σ1 · · ·σn.
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Inversion fragments become useful to compute a substring created by any inver-
sion because of the following property of the inversion operation:

θ(i−1,j+1)(x) = θ(x[j + 1])θ(i,j)(x)θ(x[i − 1]).

From a string x and its table Tx, we make the following observation:

Observation 1. For a string x and its Tx,

(1) θ(i,j)(x) = θ(x[j])θ(x[j − 1]) · · · θ(x[i + 1])θ(x[i]),
(2) ((i, j), θ(x[j])),((i + 1, j − 1), θ(x[j − 1])),. . . ,((i + 1, j − 1), θ(x[i +

1])),((i, j), θ(x[i])) are all inversion fragments in the ith, i+1th, . . ., j−1th,
jth columns of Tx and have the same center.

It is easy to verify from the construction that we can construct Tx in O(n2)
time and the size of Tx is O(n2), where |x| = n. See Fig. 2 for an example. We
also construct Ty for y.
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Fig. 2. An example table Tx for x = AGCT . In this example, Tx[3][3] = ((3, 3)′, C)
means that we put C instead of θ(C) = G since the range is (3, 3)′. On the other hand,
we have Tx[3][4] = ((3, 3), G) because the range is (3, 3). Shaded cells denote inversion
fragments that represent the inversion θ(1,3).

Given a pair (((p1, p2), σ1), ((q1, q2), σ2)) of two inversion fragments, we say
that the pair is an agreed pair if q1 = p2 +1 or p1 + p2 = q1 + q2. Otherwise, we
call it a disagreed pair. Then, for two agreed pairs (((p1, p2), σ1), ((q1, q2), σ2))
and (((q1, q2), σ2), ((r1, r2), σ3)), we say that two pairs are connected by
((q1, q2), σ2). We define an agreed sequence S to be a sequence of inver-
sion fragments ((ai, bi), σi) for 1 ≤ i ≤ n, where a1 = 1, bn = n and
(((ai, bi), σi), ((ai+1, bi+1), σi+1)) is an agreed pair for 1 ≤ i ≤ n− 1.

Given an agreed sequence S, we define a set FΘ(S) of inversions from S as
follows:

FΘ(S) = {(p, q) | ∃S[p] such that S[p] = ((p, q), σ)}.
Given a set Θ of inversions, we can return an agreed sequence S from Θ as

follows: (namely, S = FS(Θ).)

S[i]=

⎧⎪⎨
⎪⎩
((i, j + k − i), θ(x[j + k − i])) if ∃(j, k) ∈ Θ s.t. j ≤ i ≤ k and i < j+k

2 ,

((j + k − i, i), θ(x[j + k − i])) if ∃(j, k) ∈ Θ s.t. j ≤ i ≤ k and i ≥ j+k
2 ,

((i, i)′, x[i]) otherwise.
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Observation 2. Given a string x and its set Θx of non-overlapping inversions,
FS(Θx) yields Θx(x).

Note that an agreed pair of two inversion fragments with the same center
represents the same inversion in Θ. We define an agreed sequence Sx (Sy, re-
spectively) to be legal if there exist Θx and Θy such that Θx(x) = Θy(y) and
FΘ(Sx) = Θx (FΘ(Sy) = Θy, respectively). Then, our problem is to determine
whether or not there exist legal sequences Sx and Sy for two strings x and y.

The main idea of our algorithm is to keep tracking of all possible agreed pairs
for adjacent indices and check if there exist two connected pairs Px and Py for x
and y, that generate a common substring of x and y; namely, we check if there
exist a common substring σ1σ2σ3 and Px = (F1,F2), (F2,F3) for x and Py for
y such that Fj yields σj . For instance, for x = AGCT and y = CGAA, there
exists a common substring CTC from index 1 to 3 such that

Px = (((1, 2), C), ((1, 2), T )), (((1, 2), T ), ((3, 3)′, C))

and

Py = (((1, 1)′, C), ((2, 3), T )), (((2, 3), T ), ((2, 3), C)).

Next, we define the following four sets for each index i:

Definition 2. For a string x, its Tx and an index i, we define four sets as
follows:

(1) AHi
x = {((p, i), σ) = Tx[i][p] | 1 ≤ p ≤ i ≤ n− 1} ∪ {((i, i)′, x[i])}, which is

a set of all inversion fragments that end at i.

(2) AT i
x = {((i+1, q), σ) = Tx[i+1][q+1] | i < q ≤ n}∪{((i+1, i+1)′, x[i+1])},

which is a set of all inversion fragments that start from i+ 1.

(3) BHi
x = {((p, q), σ) = Tx[i][j] | p > 1, 1 ≤ j ≤ n}, which is a set of all

inversion fragments that start before or from i.

(4) BT i
x = {((p, q), σ) = Tx[i + 1][j] | q < n, 1 ≤ j ≤ n}, which is a set of all

inversion fragments that end after or at i+ 1.

From these four sets, we establish the following observations:

Observation 3. Given a string x and its four sets AHi
x, AT

i
x, BHi

x and BT i
x,

the following statements hold: For two inversion fragments F1,F2, if (F1,F2) is
an agreed pair, then

(1) F1 ∈ AHi
x and F2 ∈ AT i

x, or

(2) F1 ∈ BHi
x and F2 ∈ BT i

x.

Based on Observation 3, it is possible to create all agreed pairs for an index i by
comparing AHi

x and AT i
x, and BHi

x and BT i
x. If we can connect pairs through all

indices, then we are able to generate all agreed sequences, which are essentially
all sets of non-overlapping inversions.
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We need additional tables Ci
x[|Σ|][|Σ|][|Σ|] and Ci

y[|Σ|][|Σ|][|Σ|] to record a
sequence of three characters generated by connected pairs. For an index i,

Ci
x[σ1][σ2][σ3] =

{
true if ∃Sx such that Sx[i− 1]Sx[i]Sx[i+ 1] yields σ1σ2σ3,

false otherwise.

We also define Si
x[2][n + 1] and Si

y[2][n + 1] as follows. For an index i and

1 ≤ j ≤ 2, 1 ≤ k ≤ n + 1, we say that Si
x[j][k] 	 (t, σ1σ2σ3) if there exists

Sx such that

• Tx[i+ j − 1][k] = Sx[i+ j − 1] = ((p1, p2), σ3),
• t ≤ i+ j − 1,
• Sx[t] = ((t, p1 + p2 − t), ω) for some ω.

In other words, an element (t, σ1σ2σ3) in the first column (second column, re-
spectively) of Si

x for an index i represents that there exists an agreed sequence Sx,
where inversion (t, s) (or the identity function at index t) creates a suffix of the
string yielded by the sequence.

We design an algorithm that computes Si
x and Si

y for each index and checks
whether or not Sn−1

x and Sn−1
y are empty. If Tx[1][j] yields σ, then we set

S1
x[1][j] = {(1, AAσ)} as initial data. We also set S1

y similarly. Note that each

cell in Si
x and Si

y has O(n) elements. Now we execute the following steps from
index 1 to n − 1 for x and y. We only illustrate the case for x. (The case for y
is similar.)

STEP-1:We check all inversion fragments in the ith column of Tx. For Tx[i][j] =
((j, i), σ2) (or ((i, i)

′, σ2)), if (j, σ0σ1σ2) ∈ Si
x[1][j], then we add ((j, i), σ1σ2) (or

((i, i)′, σ1σ2)) to a set AHi
x. Namely, AHi

x contains every inversion fragment that
can be the ith element in a legal sequence and ends at i. We need to check i+1
inversion fragments for this step, and for each inversion fragment, we need to
examine O(n) elements. Therefore, we need O(n2) time for the step.

STEP-2: We check all inversion fragments in the i+1th column of Tx. For
Tx[i + 1][i + 1] = ((i + 1, i + 1),′ σ3), we add ((i + 1, i + 1)′, σ3) to a set AT i

x.
Moreover, for each Tx[i+1][j] = ((i+1, j−1), σ3), we add ((i+1, j−1), σ3) to a
set AT i

x. In other words, AT i
x contains every inversion fragment that can be the

i+1th element in a legal sequence and starts from i+1. Note that AT i
x has n−i

inversion fragments. Therefore, the total process takes O(n2) time and requires
O(n) space for storing all inversion fragments.

Once we have two set AHi
x and AT i

x, we can calculate all agreed pairs gener-
ated from AHi

x and AT i
x.

STEP-3: Based on Observation 3(1), for every ((p1, i), σ1σ2) (or ((i, i)
′, σ1σ2))

in AHi
x and ((i+1, p2), σ3) (or ((i+1, i+1)′, σ3)) in AT i

x, we set C
i
x[σ1][σ2][σ3] =

true. We also add (i+ 1, σ1σ2σ3) to Si
x[2][p2]. Since |AHi

x| ≤ i+ 1 and |AT i
x| =

n − i, we repeat this step at most (i + 1)(n − i) = O(n2) times. Thus, we can
update Ci

x and Si
x in O(n2) time.
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Fig. 3. An example for S1
x after STEP-3. Shaded cells in the first column of Tx are

AH1
x and shaded cells in the second column of Tx are AT 1

x .

We have calculated all agreed pairs generated from AHi
x and AT i

x in STEP-3,
and the other case of generating agreed pairs for an index i is to use the inver-
sion fragments with the same center from BHi

x and BT i
x. Note that inversion

fragments with the same center means the same inversion by Observation 1.

STEP-4: Based on Observation 3(2), for two elements ((p1, p2), σ2) = Tx[i][j]
and ((q1, q2), σ3) = Tx[i+1][k], where p1 + p2 = q1 + q2 and i �= j and i+1 �= k,
if (t, σ0σ1σ2) ∈ Si

x[1][j] and t ≤ p1, then we set Ci
x[σ1][σ2][σ3] = true and add

(t, σ1σ2σ3) to Si
x[2][k]. For an inversion fragment in the ith column of Tx, we

can find the inversion fragment in the i+1th column with the same center in the
constant time. Since there are O(n) inversion fragments in ith column of Tx and
for each inversion fragment we need to examine O(n) elements in Si

x, the whole
process takes O(n2) time.
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Fig. 4. An example for S1
x after STEP-4. Shaded cells in Tx generates elements for

S1
x.

STEP-5: For all three letter strings σ1σ2σ3 over Σ,

Ci
x[σ1][σ2][σ3] =

{
true if Ci

x[σ1][σ2][σ3] = true and Ci
y[σ1][σ2][σ3] = true,

false otherwise.

Once we recompute Ci
x, for each (p, σ1σ2σ3) in Sx, we remove (p, σ1σ2σ3)

from Si
x if Ci

x[σ1][σ2][σ3] = false. The process ensures that Si
x and Si

y produce

the same sequence of characters by connected pairs. Since the size of Si
x is O(n2)

and the size of Ci
x is constant, this step takes O(n2) time.
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Algorithm 1

Input: Strings x and y
Output: Boolean (whether or not there exist Θx and Θy s.t. Θx(x) = Θy(y).)
/* time complexity: O(n3), space complexity: O(n2) */

1 make Tx and Ty.
2 initialize S1

x and S1
y .

3 for i ← 1 to n− 1 do
4 for strings x and y do
5 for j ← 1 to i+ 1 do // STEP-1

6 σ2 is yielded from Tx[i][j]

7 if (j, σ0σ1σ2) ∈ Si
x[1][j] then ((j, i), σ1σ2) ∈ AHi

x

8 for j ← i+ 1 to n+ 1 do // STEP-2

9 Tx[i][j] ∈ AT i
x

10 for each ((p1, i), σ1σ2) ∈ AHi
x and ((i+ 1, p2), σ3) ∈ AT i

x do // STEP-3

11 Ci
x[σ1][σ2][σ3] = true

12 (i+ 1, σ1σ2σ3) ∈ Si
x[2][p2]

13 for j ← 1 to n+ 1 except min(i+ 1, 1), i do // STEP-4

14 if j = i+ 1 ∨ j = i+ 2 then
15 k ← j − 2

16 else
17 k ← j − 1

18 ((p1, p2), σ2) ← Tx[i][j], ((q1, q2), σ3) ← Tx[i+ 1][k]

19 if (t, σ0σ1σ2) ∈ Si
x[1][j] ∧ t ≤ p1 then

20 Ci
x[σ1][σ2][σ3] = true

21 (r, σ1σ2σ3) ∈ Si
x[2][k]

22 Ci
x, C

i
y ← Ci

x ∧ Ci
y // STEP-5

23 for strings x and y do
24 for each (p, σ1σ2σ3) ∈ Si

x do
25 if Ci

x[σ1][σ2][σ3] = false then remove (p, σ1σ2σ3) from Si
x

26 copy the second columns of Si
x and Si

y to the first column of Si+1
x and Si+1

y .

27 if the second columns of Sn−1
x and Sn−1

y are not empty then
28 return true

29 else
30 return false

We are now ready to present the whole procedure of our algorithm. See Al-
gorithm 1 that is a pseudo description of the proposed algorithm.

Once we finish calculating Si
x and Si

y using STEPS-1,2,3,4 and 5 from index
1 to n − 1, we check whether or not the second columns in Sn−1

x and Sn−1
y are

empty. If they are not empty, then there exist agreed sequences for x and y that
generate the same string, which are legal sequences. On the other hand, if they
are empty, then there are no legal sequences for x and y.
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Fig. 5. An example for S1
x and S1

y after STEP-5. Note that the second column of S1
x

and S1
y generate same substrings, ACT , ATC and AGC.

Tx

1

2

3

4

5

1 2S3
x

1

2

3

4

5

4

((1, 4), T )

((2, 4), C)

((3, 4), G)

((4, 4)′, T )

((4, 4), A)

(3, TCG)

(1, GCT )

3

((1, 3), T )

((2, 3), C)

((3, 3)′, C)

((3, 3), G)

((3, 4), A)

(3, CTC)

(4, CTT ), (4, TCT ), (4, CGT )

(4, CTA), (4, TCA), (4, CGA)

Fig. 6. An example for S3
x after STEP-5. Since the second column of S3

x (and S3
y) is

not empty, the algorithm returns true.

Theorem 4. The proposed algorithm runs in O(n3) time using O(n2) space,
where n = |x| = |y|.

Lemmas 1 and 2 guarantee the correctness of our algorithm.

Lemma 1. If (t, σ1σ2σ3) ∈ Si
x[2][j] after completing STEP-5, then there exists

(t′, σ0σ1σ2) ∈ Si−1
x [2][k] after completing STEP-5.

Lemma 2. If there exists a string s = σ0σ1 · · ·σn such that Si
x[2][ji] =

(ti, σi−1σiσi+1), then there exists a sequence S of inversion fragments whose
ith element S[i] is

S[i] = Tx[i][k],where

⎧⎪⎨
⎪⎩
k ∈ {1, 2} and Tx[1][k] yields σ1 if i = 1 and t1 = 2,

Tx[i][k] = ((1, p+ q − 1), σ1) if i = 1 and t1 = 1,

k = ji otherwise.

Then, S is an agreed sequence.
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Theorem 5. We can solve the alignment with non-overlapping inversion prob-
lem in O(n3) time using O(n2) space, where n is the size of input strings.

Algorithm 2

Input: Strings x and s of length n
Output: Agreed sequence Sx for x such that Sx yields s

1 t ← 1 // t is the length of the comparing substrings

2 for i ← 1 to n do
// comparing substrings created from identity function

3 if t = 1 ∧ θ(x)[n+ 1− i] = θ(s[i]) then
4 add ((i, i)′, s[i]) to Sx

// comparing substrings created from inversion

5 else if θ(x)(n+1−i,n+t−i) = s(i−t+1,i) then
6 for j ← 1 to �t/2� do
7 add ((i− t+ j, i+ 1− j), s[i− t+ j]) to Sx

8 for j ← 	t/2
 to t do
9 add ((i+ 1− j, i− t+ j), s[i− t+ j]) to Sx

10 t ← 1

11 else
12 t ← t+ 1

13 return Sx

Next, we consider the problem of retrieving an alignment when we know that
there exist two non-overlapping inversions for x and y. Note that Algorithm 1
determines the existence of Θx and Θy .

Definition 3. We define the alignment finding problem with non-overlapping
inversions on two strings as follows: Given two strings x and y of the same
length, find two sets Θx and Θy of inversions such that Θx(x) = Θy(y).

We tackle the problem in Definition 3 by retrieving the common string s such
that s = Θx(x) = Θy(y). After completing STEP-5 for each i, we store every
σ1σ2σ3 to a set F i, where Ci

x[σ1][σ2][σ3] = true.

Observation 6. For such sets F i’s, we have the following two observations:

1. The space requirement for F i’s is O(n),
2. For any string s, where s(i−2,i) ∈ F i, for 3 ≤ i ≤ n, there exist Θx and Θy

such that s = Θx(x) = Θy(y).

Due to Observation 6, the problem becomes to find Θx for x and s such that
Θx(x) = s (and Θy for y). Algorithm 2 retrieves Sx equivalent to Θx from x
and s. The idea of the algorithm is that every substring generated by an inversion
on x is a substring of θ(x), and substrings do not overlap with each other on
θ(x) if inversions do not overlap. Fig. 7 illustrates this idea.
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θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

...

i = 1

i = 2

i = 3

i = 4

t = 1

t = 1

t = 1

t = 2

Fig. 7. An example of comparing θ(x) and s, where x = AGTCCAG and s =
TGGACCT . Dotted boxes are compared substrings in each i. In θ(x), substrings
matched by inversions are same as substrings in s, and substrings matched by identity
functions are complements of substrings in s. When i = 3, since A �= G and C, t is
increased and the algorithm compares GA and GA when i = 4.

Theorem 7. Once we solve the alignment with non-overlapping inversion prob-
lem, we can solve the alignment finding problem in O(n2) using additional O(n)
space.

4 Conclusions

The inversion is an important operation for bio sequences such as DNA or RNA
and is closely related to mutations. We have, in particular, considered non-
overlapping inversions on both sequences, which is important to find the original
common sequence from two mutated sequences. We have proposed a new prob-
lem, alignment with non-overlapping inversions on two strings, and presented
a polynomial algorithm for the problem. Given two strings x and y, based on
the inversion properties, our algorithm decides whether or not there exist two
sets Θx and Θy of inversions for x and y such that Θx(x) = Θy(y) in O(n3)
time using O(n2) space, where n = |x| = |y|. Once we know the existence of Θx

and Θy , we can retrieve Θx and Θy in O(n2) time using additional O(n) space.
One future work is to improve the current running time O(n3). As far as we are
aware, this algorithm is the first try to find an alignment with non-overlapping
inversions on both strings. The proposed problem is about the sequence align-
ment and can be extended to approximate pattern matching or edit distance
problem.
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